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Abstract We study the conceptual details and the physical interpretation of the two promi-
nent singularity theorems due to Penrose and Hawking. Their usage is discussed in detail for
the Schwarzschild spacetime with positive and negative mass. First, we present a detailed
mathematical proof to formally guarantee the existence of a singularity of geodesic incom-
pleteness for the case of positive mass. Second, we discuss the applicability of the mathe-
matical tools used by the theorems in the negative mass case. The physical implications of
the validity or inconsistency of the hypotheses of such theorems on the latter case are also
exhibited. As far as this analysis is concerned, some clues are produced regarding future
research that could result in general properties for naked singularities.

1 Introduction

The theory of singularities in general relativity represents an enlightening theoretical devel-
opment that, despite being around for about 50 years by now, keeps captivating the attention
of beginners and specialists. Nobody (even without any training in physics) should doubt its
profound significance and implications to our understanding of the Universe. The discovery
of singularities, as an inevitable (and generic) consequence of one of the most successful
physical theories in history, rocked our minds to their core. The experimental astronomi-
cal observations to date, together with a vastly tested and many times corroborated theory
like general relativity, suggest that: (a) a long (but finite) time ago, the stuff that constitutes
everything around us might have suddenly started to exist under a set of rules (e.g. the theory
itself) that seem to be oblivious of that initial event, and (b) a similar (but time-reversed)
phenomenon seems to take place when enough energy-matter is brought together inside a
bounded spatial region. Such a content of matter (or at least part of it) would collapse on
itself until it reaches such an extreme state that its existence comes to an end (i.e. it ceases to
exist within the framework of the theory and cannot be described any longer by means of it).

Whether or not one is willing to accept a sudden “creation” or an inevitable final fate as
the ultimate consequences of the singularity theorems, they surely state without a doubt a set
of circumstances under which one cannot rely anymore on the theory to make predictions.
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As if general relativity were not astounding enough, certain cases in which its validity cannot
be assumed any longer are plainly exposed by the theory itself via the theorems in question.

With such profound implications, and as it should be the case, a huge variety of results have
been motivated by the singularity theorems after the first one of their kind (due to Penrose)
was published in 1965 [1]. An extensive and illustrative summary of the antecedents, concepts
and consequences of that particular theorem can be found in [2]. Specifically speaking, the
novelty of such theorem (and the other classical one that succeeded it, due to Hawking
and Penrose [3]) resides in its use of an original concept called a closed trapped surface
(that captures the idea of an inevitable and instantaneous total confinement scenario for an
enclosed energy-matter distribution) which, together with other geometric properties of a
given spacetime (like an “energy” condition and some sort of global causality), tends to
favour the formation of geodesic incompleteness within such spacetime (being this the very
same concept representing the aforementioned notion of sudden creation/disappearance of
particles, also presented for the first time by Penrose).

It is not an overstatement to say that all the research that have been motivated by the first
theorems is vast and can easily lead to bewilderment. Despite the existence of works like
[2,4,5] that can be used as a first guide to the nowadays world of singularities, as soon as one
steps outside of them, one immediately has to face a menagerie of results that (in one way or
another) were inspired by the three notions/concepts previously mentioned. In order to briefly
give some particular examples related to the main conclusions derived from the following
sections (that in no way constitute an exhaustive list, but that are intended to broaden in here
the outlook of their corresponding subjects), three categories (most likely intertwined) can
be made.

First, the concept of a trapped surface has been a very prolific one as it can be generalized in
several ways thanks to its possible characterization via the mean curvature vector field [2]. By
virtue of this vector field, in particular, closed trapped submanifolds of arbitrary co-dimension
can be defined in order to generalize the Hawking–Penrose theorem [6]. In a similar manner,
the Penrose theorem can be generalized to include surfaces to some extent “less trapped”
(like marginally outer trapped surfaces, for example), and to approach the possible formation
of singularities from an initial data set (i.e. the so-called initial data singularity theorems)
[7]. Additionally, and with respect to more recent incursions of the trapped surface concept
into the realm of black hole physics, the notion of the smallest trapped region in a spacetime
can be used to define the boundary of black holes that do not necessarily belong to stationary
spacetimes [8]. By virtue of the present work, the notion of a trapped surface could even
be used to hint the existence of (curvature) singularities, despite those submanifolds not
representing total confinement.

Second, the earliest attempts to address the natural question of whether or not additional
information about a singularity of geodesic incompleteness could be extracted from the the-
ory (apart from their mere existence) were promptly made after the first singularity theorems
were proven. From theorems stating conditions under which a spacetime could be extended
to include a singularity (in a smoothly enough manner) [9–12], to theorems and results cate-
gorizing singularities by the way in which certain scalar magnitudes diverge when traversing
the curves leading to them [13–16], the issue has shown to be a complicated one to resolve
(most likely because, in a strict sense, singularities are not part of the spacetime “possessing”
them and cannot be analysed like any other geometric object). As far as the present work is
concerned, some restrictions can be imposed on the rate at which the stress tidal tensor (with
respect to a parallelly propagated orthonormal/pseudo-orthonormal basis) grows towards a
singularity of geodesic incompleteness [16]. As exposed in the following analysis of the
Schwarzschild spacetime, not every component of such tensor is restrained to diverge with
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the rate in question towards singularities in null incomplete geodesics. As it turns out, the use
of such decomposition for the tidal stress tensor might even provide information regarding
the repulsive or attractive nature of a singularity. This feature could be used to shed some light
into the soundness of new ideas intended to precisely define repulsive gravitational effects
[17,18].

Third, the profound conceptual (and philosophical) repercussions of the theorems have
always been largely based on the seeming physical feasibility of their hypotheses. Neverthe-
less, with only local experimental evidence at our disposal, it is only natural to explore the
possibility of weakening or even changing/improving some of those assumptions. Excellent
expositions of the ideas behind some efforts on the matter, and the results obtained concerning
the so-called rigidity theorems, can be found in [19–21]. Although important generalizations
of the classical theorems have been accomplished in relation to, for example, the weaken-
ing of requirements like smoothness or global causality [22,23], it also has being possible
to relax the boundary/initial condition of the theorems (appearing in the form of trapped
submanifolds). As mentioned earlier, the use of the mean curvature vector field allows for
“lesser trapped” scenarios to be considered, and singularity theorems have been shown to
hold for spacetimes possessing marginally and marginally outer trapped surfaces [24]. One
of the main results of the following exposition consists in showing an example of another
way in which a trapped surface (that is not closed nor it represents inevitable confinement)
could be used to hint the presence of (some sort of) singularities.

Finally, it goes without saying that the Schwarzschild spacetime has always played an
invaluable role in the development of the general theory of relativity and its experimental
corroboration. Since every introductory relativity book makes use of such solution to derive
classical tests of the theory, and to plainly show some illustrative effects, its significance is
beyond dispute. Regarding the impact of studies exploiting spherical symmetry to the theory
of singular spacetimes, it is worth to recall that from the very first theoretical indication (to
more recent ones) of the possible production of singularities by gravitational collapse, an
exterior vacuum Schwarzschild spacetime has always been matched to another collapsing
interior solution [25,26]. Additionally, such level of symmetry has also been used, among
many other things, to understand the global properties of closed trapped surfaces [27], to
attempt to define the boundary of non-stationary black holes [8], and to rule out low classes
of extensions with which one could otherwise attach a singularity to its spacetime [28].
Within this context, the present article exploits once again the analytical manageability of the
Schwarzschild solution (where a singularity is known to be present beforehand) to exhibit: (a)
a way in which singularities within more general spacetimes can be studied and (b) specific
geometrical properties that could hopefully render new topics of singularity research.

The contents of the next exposition have the following structure. In Sect. 2, the theorems
of Penrose and Hawking–Penrose are presented, along with physically explanatory inter-
pretations for each one of their hypotheses. Section 3 contains a precise definition of the
innermost Schwarzschild vacuum spacetime with positive mass (i.e. the black hole region
of the full Schwarzschild solution, viewed as a manifold on its own), followed by a detailed
proof (split into several subsections) of the fulfilment by such spacetime of Penrose’s theorem
hypotheses. In Sect. 4, the main differences between the cases of positive and negative mass
are pointed out in order to precisely define the corresponding spacetime for the latter. In the
form of several subsections, the fulfilment or infringement by this second spacetime of the
hypotheses of both theorems (associated with compact gravitational sources) is analysed.
Special attention is given to the physical causes and/or implications of the obtained results.
Lastly, some concluding remarks are given in Sect. 5. Natural units with G = c = 1 are used
throughout this paper.
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2 Review of two singularity theorems

The two singularity theorems used in the following sections are due to Penrose and Hawk-
ing [29] and nowadays can be regarded as classical. Despite them being well known and
understood by now, it seems hard to find in the literature a concise and intuitive way of
understanding the physical meaning of their hypotheses. Because of this, and taking into
account the fact that they can be found in a variety of references, here they will be simply
stated right away, followed only by their physical interpretation in the context of a particular
spacetime structure. For the sake of completeness, it should be reminded here that the concept
of a spacetime simply refers to the collection of all possible positions and times (i.e. events) in
the manifold under consideration, together with the capacity to measure temporal and spatial
distances. Moreover, it should also be kept in mind that in these theorems a spacetime always
refers to a four-dimensional differential manifold without a boundary that is paracompact,
connected, Hausdorff, and which is equipped with a (sufficiently well-behaved) Lorentzian
metric.

Theorem 2.1 [Penrose (1965)] Let (M, gαβ) be a spacetime for which the following condi-
tions are met: (1) It is connected. (2) It is globally hyperbolic with a non-compact Cauchy
surface. (3) At each one of its points, the inequality Rαβkαkβ ≥ 0 is satisfied by every null
vector kμ. (4) It contains a closed future(past)-trapped surface. Then, (M, gαβ) contains at
least one future(past)-inextensible null geodesic that is incomplete.

Interpretation. Given a spacetime such that: (1) There do not exist isolated (spacetime)
regions within it. (2) By knowing the initial conditions in a spacelike unbounded hypersurface
(that represents a given global time), it is possible (in principle) to determine the complete
physical state at every other event. (3) The gravitational interaction felt by light waves due to
an energy-matter distribution is always attractive. (4) There exists a spacelike 2-surface that
closes on itself, for which the two families of light rays departing orthogonally from it into
the future (past) have instantaneously decreasing area wavefronts [30]. Then, there exists at
least one light ray trajectory that cannot be extended to the future (past), and which ends up
after a finite extent.

Theorem 2.2 [Hawking–Penrose (1970)] Let (M, gαβ) be a spacetime for which the follow-
ing conditions are met: (1) For every causal vector vμ, the inequality Rαβvαvβ ≥ 0 holds.
(2) There do not exist closed timelike curves within M. (3) Every causal and inextensible
geodesic possesses a point at which its tangent vector kμ satisfies the (so called) generic
condition k[αRβ]γ δ[μkν]kγ kδ �= 0. (4) There exists within M at least one of the following
subsets: (a) A compact and non-chronological set without an edge. (b) A closed trapped sur-
face. (c) A (trapped) point such that the expansion of the family of null geodesics emanating
from it into the future (past) always becomes negative along each one of these geodesics.
Then, (M, gαβ) contains at least one inextensible causal geodesic that is incomplete.

Interpretation. Given a spacetime such that: (1) The gravitational interaction due to an
energy-matter distribution is always attractive for every collection of massive particles and
light waves. (2) No massive particle can have any influence on its own past. (3) Every freely
falling massive object experiments, at some moment in its history, tidal forces within it. Also,
along each light ray trajectory, there exists a point such that, on accelerating a massive object
to near-light velocities in its direction, the tidal forces across its points become a greater
issue to overcome than its energy increase [19]. (4) There exists at least one of the following
sets: (a) A subset with no endpoints, despite being bounded, whose events cannot influence
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their own past (i.e. a global time hypersurface if M is a spatially closed universe and if such
hypersurface is spacelike). (b) A closed trapped surface. (c) A point for which, along every
direction, the light waves emanating from it into the future (past) always suffer a contraction
at some moment. Then, there exists at least one freely falling massive particle trajectory, or
a light ray trajectory, that cannot be extended and which ends up after a finite extent.

For more details on the physical interpretations of these singularity theorems, see [29,31,
32].

3 Schwarzschild spacetime with positive mass

It is a common practice in the literature to work out a formal proof of the previous theorems
and then simply state the validity of their hypotheses for a given spacetime. In the case of the
Schwarzschild solution, the Penrose diagram for its maximal (Kruskal–Szekeres) extension
can be used to visualize the applicability of Theorem 2.1 to it. Nevertheless, there does
not seem to exist so far a complete and detailed treatment addressing this fact. Even if its
confirmation is considered as straightforward and trivial as things can get, carrying its details
out definitely sheds some light into the key features that must be taken into account when
dealing with the theorems. It also opens up a window into the physical properties that can be
learned about a spacetime, via the mathematical tools used in the theorems. Because of all
of these reasons, special attention is given next to the definition of the spacetime itself.

3.1 The Schwarzschild spacetime

The spacetime to be considered (MSch, gαβ) consists of only the inner region (r < 2M) of
the (so-called) exterior Schwarzschild solution. Specifically speaking, the manifold is given
by the set of points p ∈ MSch ≡ O, for which a single chart {(O, �)} is defined by means
of the map

p �−→ � (p) = (t (p), x(p), y(p), z(p)) ∈ R × Bo(2M),

where M > 0 and Bo(2M) ≡ {(x, y, z) ∈ R
3 | 0 < x2 + y2 + z2 < 4M2}. The metric gαβ

is introduced in the form (with x(1) ≡ x , x(2) ≡ y, x(3) ≡ z and (δi j ) = diag(1, 1, 1))

ds2 = −
⎛
⎝1 − 2M√

x(i)x( j)δi j

⎞
⎠ dt2 + dx(i)dx( j)δ

i j

+ 2M√
x(i)x( j)δi j − 2M

(
δkmδln x(k)x(l)dx(m)dx(n)

)
. (1)

In order to relate this expression to the usual one in spherical coordinates (but in an
inconsistency-free manner), three additional charts {(Oi , �i )}3

i=1 must be taken into con-
sideration. The most common transformation between (flat) spherical and Cartesian coor-
dinates is used to define these charts. The only difference between each chart is the
fact that the vertical direction is taken to coincide with a different Cartesian coordinate
axis fixed in the background (Fig. 1). For example, the second one of these charts cor-
responds to the case y = r sin ϑ2 cos ϕ2, z = r sin ϑ2 sin ϕ2 and x = r cos ϑ2, with
(ϑ2, ϕ2, r) ∈ (0, π) × (0, 2π) × (0, 2M). It is then a matter of simple algebra to reduce
the previous line element to the form
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Fig. 1 Three (well-defined) different spherical open charts are required in order to completely cover R3 \
{(0, 0, 0)}

ds2 = 2M − r

r
dt2 + r2 (

dϑ2
i + sin2 ϑi dϕ2

i

) − r

2M − r
dr2. (2)

Despite the fourth coordinate being timelike in this spacetime, it will remain being des-
ignated by the symbol r (i.e. the conventional spherical radial character) because of the way
it relates to the Cartesian-like coordinates used in the first place. Nevertheless, it will be
referred to as the area coordinate of the atlas in question, in accordance with the preferred
spheres of this spacetime having an area of 4πr2. Furthermore, its global nature (i.e. the
fact that it takes a certain value for a point p ∈ MSch , regardless of the neighbourhood Oi

containing it) can be exploited to establish a temporal orientation for the whole (MSch, gαβ).
More specifically, every tangent vector Xμ whose components (Xμ) = (Xt , Xϑi , Xϕi , Xr )

satisfy the condition Xr < 0 will be said to be future directed.
As can be anticipated from the way a spacetime is handled by the singularity theorems

of Sect. 2, the last construction comprises all the basic structure required to corroborate
whether the hypotheses of the theorems are satisfied or not by (MSch, gαβ). The content
of the following subsections includes some formal arguments regarding the applicability of
Theorem 2.1 to this spacetime.

3.2 Connectedness

Every Oi is clearly connected since its image, under the homeomorphism �i , is the set
R×(0, π)×(0, 2π)×(0, 2M). The fact that no two of the regions Oi are disjoint guarantees
the connectedness of the whole MSch = ∪3

i=1Oi [33].

3.3 Closeness and non-compactness of a hypersurface Sr0

By means of the following subsets (with 0 < r0 < 2M)

Sr0 ≡ {p ∈ MSch |r(p) = r0}, Sr<r0 ≡ {p ∈ MSch |0 < r(p) < r0}
and Sr>r0 ≡ {p ∈ MSch |r0 < r(p) < 2M}, (3)

a disjoint partition of the manifold MSch is made. Since �i (Sr0 ∩Oi ) is closed inR×(0, π)×
(0, 2π)× (0, 2M), it also happens that Sr0 ∩Oi is closed in Oi . If A represents the closure of
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A ⊂ MSch , it is clear that Sr0 ∩Oi = Sr0 ∩ Oi ∩Oi and Sr0 ∩Oi = Sr0 ∩ Oi ∩Oi . Because

of each Oi being an open subset of MSch , it is also the case that Sr0 ∩ Oi = Sr0 ∩ Oi [33].
From all the previous statements, it is straightforward to obtain Sr0 = Sr0 .

On the other hand, Sr0 is clearly a Hausdorff topological space (with respect to its induced
topology) that can be covered by the collection of open sets Un ⊂ MSch (n ∈ N), defined by
�(Un ∩O) ≡ (−n, n)×[Bo(r0 +ε)\Bo(r0 −ε)] (with 0 < ε < r0). Since no finite subcover
for Sr0 can be extracted from {Un}n∈N, it follows that this hypersurface is not compact.

It is intuitively clear from the (by now standard) r − t diagram of the radial null geodesics
(i.e. the ones with dϑ = dϕ = 0) that Sr0 is a good candidate for a Cauchy surface. The
purpose of the following four subsections is to formally corroborate that this is indeed the
case.

3.4 Achronality of Sr0

Given a smooth timelike curve γ (τ), parameterized by its arc length τ , its tangent vector
components (ṫ, ϑ̇i , ϕ̇i , ṙ) (with ȧ ≡ da/dτ ) satisfy the relation

−1 = 2M − r

r
ṫ2 + r2 (

ϑ̇2
i + sen2ϑi ϕ̇

2
i

) − r

2M − r
ṙ2.

Since r is a global coordinate for {(Oi , �i )}3
i=1, the previous expression and the smooth-

ness of γ imply that ṙ never becomes equal to zero nor it changes its sign. In the case of having
with γ a future directed curve, the area coordinate of its points will always be decreasing.
This means that for every such a curve starting from p = γ (τ = 0) ∈ Sr0 into the future,
r(τ ) ≡ r [γ (τ)] will be strictly less than r(p) = r0 for τ > 0. The disconnected nature of
the partition MSch = Sr<r0 ∪ Sr0 ∪ Sr>r0 guarantees then that I+ (

Sr0

) ⊂ MSch \ Sr0 .

3.5 Future domain of dependence of Sr0 : D+ (
Sr0

) = Sr<r0 ∪ Sr0

Consider a point p ∈ Sr<r0 and a smooth timelike curve γ that starts from p into the past
that is past-inextensible (within MSch) and which has been parameterized by its arc length
τ . Because of the temporal orientation that has been chosen, the following relation will be
satisfied along γ (within each Oi containing a segment of it)

ṙ =
(

2M − r

r

)1/2 [
1 +

(
2M − r

r

)
ṫ2 + r2 (

ϑ̇2
i + sen2ϑi ϕ̇

2
i

)]1/2

. (4)

Under the assumption of the parameter τ taking on every single value within [0,∞), it is
always possible to give a partition for this interval into segments [τi , τi+1), characterized by
(where O(i) ∈ {O j }3

j=1 for every i)

τ0 = 0,

γ (τ ) ∈ O(i) ∀τ ∈ [
τi , τi+1

)
,

γ (τ ) ∈ O(i+1) ∀τ ∈ [
τi+1, τ(i+1)+1

)
, with γ (τ∗) /∈ O(i) for some τ∗ ∈ [

τi+1, τ(i+1)+1
)
.

(5)

By integrating (4) within each one of these intervals (and then taking into consid-
eration the continuity of r(τ )), the inequality 2M > r(τ ) > (2M)−1/2

∫ τ

0 (2M −
r)1/2dτ ′ follows for every τ ∈ [0,∞). This relation indicates the existence of the limits
limτ→∞

∫ τ

0 (2M − r)1/2 dτ ′ and limτ→∞ (2M − r(τ ))1/2 [34], which in turn guarantees
that r(τ ) −→ 2M when τ −→ ∞. The immediate consequence of this statement is that
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γ ∩ Sr0 �= ∅, whenever the arc length of such a curve is able to take on every single value
within [0,∞).

In order to fully prove the desired identity for D+ (
Sr0

)
, it must also be considered having

γ ∩ Sr0 = ∅ for the curve in question. Nevertheless, the previous procedure forces τ to
be bounded from above for this case. If τM ≡ sup{τ } so that τ ∈ [0, τM ), the increasing
feature of r(τ ) implies the existence of rM ≡ sup{r(τ )} = limτ→τM r(τ ) ≤ r0. By taking a
partition of [0, τM ) identical to the one given in (5), a similar line of arguments leads now
to 2M > r(τ ) > (2M)−1(2M − r0)

∫ τ

0 |ṫ |dτ ′. Once again, this inequality guarantees that
tM ≡ limτ→τM t (τ ) ∈ R [34].

On the other hand, it is also possible to give the following formulation for ṙ

ṙ =
(

2M − r

2M

)1/2 [
1 +

(
2M − r

r

)
ṫ2 + ṙ2 + r2(ϑ̇2

i + sen2ϑi ϕ̇
2
i )

]1/2

.

The usefulness of this expression resides in the possibility to isolate from it the function
f (τ ) ≡ {ṙ2(τ ) + r2(τ )[ϑ̇2

i (τ ) + sin2 ϑi (τ )ϕ̇2
i (τ )]}1/2. Because of the coordinate transfor-

mations between the given atlases, it is obviously the case that this function has in fact a
global nature by admitting the formulation f (τ ) = [ẋ2(τ ) + ẏ2(τ ) + ż2(τ )]1/2. It is then a
matter of simple algebra to see that 2M > r(τ ) > (2M)−1/2(2M − r0)

1/2
∫ τ

0 f (τ ′)dτ ′.
This again assures the existence of xM ≡ limτ→τM x(τ ), yM ≡ limτ→τM y(τ ) and
zM ≡ limτ→τM z(τ ). Since it must be the case that rM = (x2

M + y2
M + z2

M )1/2 (with
0 < r(p) ≤ rM ≤ r0 < 2M), the existence of these three limits, and the one for t (τ ),
implies that �(γ (τ)) = (t (τ ), x(τ ), y(τ ), z(τ )) −→ (tM , xM , yM , zM ) ∈ R × Bo(2M),
when τ −→ τM . This obviously contradicts the inextensibility of γ and leads to the conclu-
sion that γ ∩ Sr0 �= ∅.

The content of the previous procedure can be summarized as follows: Every smooth
timelike curve that starts from Sr<r0 and is past-inextensible intersects Sr0 . This entails that

Sr0 ∪ Sr<r0 ⊂ D+ (
Sr0

)
[31].

On the other hand, the chosen temporal orientation also implies that γ ′ ∩ Sr0 = ∅, for
every smooth timelike curve γ ′ that starts from Sr>r0 and is past-inextensible. By the same

reason as before, this last statement implies the inclusion Sr>r0 ⊂ MSch \ D+ (
Sr0

)
. The

disconnected nature of the partition (3) for MSch indicates then that D+ (
Sr0

) ⊂ Sr0 ∪ Sr<r0 .

3.6 Future Cauchy horizon of Sr0 : H+(Sr0) = ∅

For every future directed timelike curve γ that starts from some p ′ ∈ D+(Sr0), the relation
γ ⊂ Sr<r0 ∪ Sr0 always holds. As a consequence of this, p ′ ∈ I− (γ ) ⊂ I− (

Sr<r0 ∪ Sr0

) =
I−[D+ (

Sr0

)] implies the containment D+ (
Sr0

) ⊂ I−[D+ (
Sr0

)]. The desired result follows

from the definition of H+(Sr0) as the intersection set D+ (
Sr0

) ∩ {MSch \ I−[D+ (
Sr0

)]}
[31].

3.7 Global hyperbolicity of (MSch, gαβ)

An identical procedure to the one given above produces the relations D−(Sr0) = Sr>r0 ∪ Sr0

and H−(Sr0) = ∅. By the second one of these, and the result from the previous subsection, the
total Cauchy horizon of Sr0 equals ∅ (i.e. H(Sr0) = H−(Sr0) ∪ H+(Sr0) = ∅). In summary,
Sr0 makes up a closed non-empty set that is not chronological, and for which H(Sr0) = ∅.
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Being MSch connected, all of these properties imply that Sr0 forms a Cauchy surface within
MSch [31]. The spacetime in question is then globally hyperbolic.

3.8 Closed trapped surfaces

It is a well-known fact by now that every 2-sphere of the form T (t0, r0) ≡ {p ∈ MSch |t (p) =
t0 and r(p) = r0} (with t0 ∈ R and r0 ∈ (0, 2M)) is actually a closed future-trapped surface
of the whole Schwarzschild spacetime. Nevertheless, it is important to emphasize here what
is actually meant by that. A future-trapped surface is a smooth two-dimensional embedded
submanifold T that is spacelike, and whose expansions θ± (of the families of null geodesics
departing orthogonally from it into the future) are negative everywhere on T . Additionally,
a surface like this one is said to be closed if it is also a compact submanifold without a
boundary. If the metric induced on T by gαβ is represented by γαβ , the numerical value of
(θ±), (at each (p ∈ T )) can be worked out from the formula

θ± ≡ γ α
β ∇αk

β
± =

2∑
i=1

1

ησ
(i)η(i)σ

ηα
(i)η(i)β∇αk

β
±, (6)

where {ηα
(i)}2

i=1 is an arbitrary orthogonal basis for the tangent (sub)space to T at p.
From the definition of T (t0, r0), it follows that the vector fields (∂/∂ϑi )

α and (∂/∂ϕi )
α

generate all the tangent spaces to T (t0, r0)∩Oi . By using these two vectors as the basis {ηα
(i)},

and then considering for (6) the input kμ
± ≡ f±(t0, r0)[(∂/∂r)μ±(−1 + 2M/r0)

−1 (∂/∂t)μ],
the expressions θ± = 2 f±(t0, r0)/r0 are easily derived. The two vectors fields kμ

± are future
directed for every negative value of f±(t0, r0). The remaining properties that make each
T (t0, r0) a closed trapped surface are of course true.

Aside from (2) satisfying the vacuum Einstein field equations (hence guaranteeing the
validity of Rαβkαkβ ≥ 0 for every null kμ), one additional detail must be taken into consid-
eration before drawing upon the theorems to conclude the existence of a singularity. In order to
satisfactorily identify the existence of a singularity of geodesic incompleteness, the theorems
in question require the complementary hypothesis of having an inextensible spacetime. The
future-inextensibility of (MSch, gαβ) follows from the divergent nature of its Kretschmann
scalar RαβμνRαβμν = 48M2/r6, when r −→ 0+. Although this last behaviour is frequently
used to point out the singularity at r = 0, no clear general relationship seems to exist so far
between these two kinds of singularities (i.e. the ones due to divergent curvature scalars and
geodesic incompleteness). Despite the fact that some insightful progress has been made in
this direction (see [12,16] and references therein), that kind of scalar divergence will only
be used here to guarantee the spacetime inextensibility (nevertheless, a recent proof of the
C0 inextensibility of the full Schwarzschild–Kruskal spacetime could also be evoked [28]).
Theorem 2.1 guarantees then the existence of at least one incomplete, and future-directed,
null geodesic. As a matter of fact, every inextensible null geodesic within this spacetime is
incomplete.

One last remark must be made before concluding the present section. The previous pro-
cedure signals (though in a somewhat measly way) some possibility of using the singularity
theorems when analysing spacetimes that, despite being the product of complete gravitational
collapse, do not necessarily contain an event horizon.
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4 Schwarzschild spacetime with negative mass

As suggested before, the question of whether or not is possible to rely on this kind of theo-
rems when dealing with spacetimes that contain singularities, but not an event horizon, arises
naturally even after analysing the simplest of the examples. The formation of the so-called
naked singularities, as a product of gravitational collapses, is nowadays considered a plau-
sible possibility by some authors [26]. Since the possible existence of singularity theorems
applicable to naked singularities is still an open problem to this day (after half a century of
the proof of theorems 2.1 and 2.2), a less ambitious approach can be taken. Instead of trying
to prove in the most general manner whether a (well-defined [31]) naked singularity can be
related to the occurrence of geodesic incompleteness, one could try to find out what type of
physical information can be gathered about (specific examples of) this kind of singularities
by means of the existing theorems and/or their mathematical tools.

The content of the following subsections addresses this last issue for the case of the
Schwarzschild spacetime with negative mass M ≡ −m < 0 (within which a naked
scalar/geodesic-incompleteness singularity is known to be present), and theorems 2.1 and 2.2.
Even though no general theorem contemplating such singularity seems to exist so far,
analysing (some of) its properties by means of the concepts used in those two theorems
renders, once again, a glance into the scope of the theorems and/or their tools.

4.1 The naked singularity Schwarzschild spacetime

The definition of the spacetime to be considered (MSchN , g(N )
αβ ) is almost identical to the one

given before. The principal differences are the following: (a) The mass parameter M ≡ −m
in (1) is negative. (b) The set R3

o × R ⊂ R
4, with R

3
o ≡ R

3 \ {(0, 0, 0)}, is homeomorphic
to MSchN by means of �. (c) The open subsets Oi , defined by the maps �i , are given by
�i (Oi ) ≡ (0,∞)×(0, π)×(0, 2π)×R. (d) The temporal orientation is set by considering as
future oriented, all vectors with components (Xr , Xϑi , Xϕi , Xt ) such that Xt > 0. Although
these differences are not taken completely into consideration in the upcoming subsections,
they are presented here for the sake of completeness. Since all of the next analysis only
takes place within one Oi , it is convenient to do Oi ←→ O, �i ←→ �, ϑi ←→ ϑ , and
ϕi ←→ ϕ.

4.2 No global hyperbolicity

Assuming that (MSchN , g(N )
αβ ) is globally hyperbolic, there must exist a global time function

f such that its level hypersurfaces � f0 ≡ {p ∈ MSchN | f (p) = f0} are Cauchy surfaces
[31]. Because of the field ∇α f being timelike, its temporal component satisfies in O that
∂t f �= 0. These remarks can be used to see that |∂r f/∂t f | < r/(r + 2m).

When f is of class C1 in MSchN , there exists an open neighbourhood O(0) ⊂ O of p0 ∈
� f0 ∩O (for some f0), such that f̃ ≡ f − f0 (viewed as a function of the tetrads in �(O(0))) is
of class C1 and such that (∂t f̃ )|�(p0) �= 0 and f̃ (�(p0)) = 0. Let �(p0) ≡ (r0, ϑ0, ϕ0, t0).
In accordance with the implicit function theorem, there exist open sets J (0) ⊂ R and A(0) ⊂
(0,∞)× (0, π)× (0, 2π) (such that (r0, ϑ0, ϕ0, t0) ∈ A(0) × J (0) ⊂ �(O(0))) that form the
image and domain of a function t̃ (0)(r, ϑ, ϕ), for which 0 = f̃ (r, ϑ, ϕ, t̃ (0)(r, ϑ, ϕ)) for every
(r, ϑ, ϕ) ∈ A(0). Aside from being C1 in its domain, t̃ (0) satisfies that ∂ t̃ (0)/∂r = −∂r f/∂t f .
This in turn leads to |∂ t̃ (0)/∂r | < r/(r + 2m).
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Fig. 2 Inextensible radial null
geodesics that do not intersect an
assumed Cauchy surface

Because of A(0) being open, there exists a maximal curve �(0) ≡ {�−1(r, ϑ, ϕ, t)|r ∈
(a0, b0), ϑ = ϑ0, ϕ = ϕ0, t = t̃ (0)(r, ϑ, ϕ)} (with 0 ≤ a0 < r0 < b0) that, apart from being
C1 and be contained in � f0 , passes through p0 and can be parameterized by its coordinate r .

Having a C1 function t (r) ≡ t̃ (0)(r, ϑ0, ϕ0), whose derivative satisfies |dt (r)/dr | <

r/(r + 2m), makes it easier to see the existence of t1 ≡ limr→a+
0
t̃ (0)(r, ϑ0, ϕ0) (as a con-

sequence of the convergence of
∫ r∗
r |dt/dr ′|dr ′, with 0 ≤ a0 < r∗ < b0, when r −→ a+

0 ).
Let r1 ≡ a0.

Taking a sequence {qn}n∈N ⊂ �(0), for which |r(qn) − r1| < 1/n, produces another
sequence {(r(qn), ϑ0, ϕ0, t (qn))}n∈N that converges to (r1, ϑ0, ϕ0, t1). In the case of having
r1 > 0, it would also occur that qn −→ p1 ≡ �−1(r1, ϑ0, ϕ0, t1) ∈ � f0 ∩ O, with
r(p1) = r1 < r0 = r(p0), when n −→ +∞.

If the same procedure were to be repeated for p1, it would yield another curve �(1) ≡
{�−1(r, ϑ, ϕ, t)|r ∈ (a1, b1), ϑ = ϑ0, ϕ = ϕ0, t = t̃ (1)(r, ϑ, ϕ)} ⊂ � f0 (with a1 < r1 <

b1, and t̃ (1) another C1 function) that passes through p1 and can be smoothly matched with
�(0). That is to say, having r1 > 0 would allow to smoothly extend �(0) through � f0 , to get
γ (1) = �(0) ∪�(1), in a way that increases its domain into (a1, b0) (with a1 < r1 < r0 < b0).
Once again, if the condition 0 < r2 ≡ a1 would come to happen, it would again be possible
to smoothly extend γ (1) into a C1 curve γ (2) with a lower bound r3 < r2 for its domain.

This argument can be repeated as many times as a lower bound greater than zero is
obtained for the coordinate r of the resultant curve. Since � f0 is a closed set, this would
also be true after an infinite number of steps (or an infinite number of infinite numbers of
them) that were to result in a γ (∞) with a new lower bound r∞ > 0. Because of this, it is
not unrealistic to assume that this construction can only be stopped after obtaining a curve γ

with r(in f ) ≡ inf p∈γ {r(p)} = 0. Analogously, it could also be assumed that γ does not have
a maximum value for its coordinate r .

All of this reasoning indicates the existence of a curve γ ≡ {p ∈ � f0 ∩ O|r(p) ∈
(0,∞), ϑ(p) = ϑ0, ϕ(p) = ϕ0, t (p) = t̃(r(p))}, where t̃(r) is a C1 real function whose
derivative satisfies |dt̃(r)/dr | < r/(r + 2m). Once again, t(in f ) ≡ limr→0+ t̃(r) ∈ R. After
integrating the last inequality, the following radial behaviour (for which dϑ = dϕ = 0) is
obtained for � f0 (Fig. 2)

t(in f ) −
[
r − 2m ln

(
1 + r

2m

)]
≤ t̃(r) ≤ t(in f ) +

[
r − 2m ln

(
1 + r

2m

)]
.

On the other hand, a solution for the radial and null geodesic equations is given by
t (r) = t∗0 + r − 2m ln(1 + r/2m), with t∗0 an arbitrary real constant. Due to the divergent
nature of the scalar RαβμνRαβμν = 48m2/r6, every such geodesic is clearly inextensible at
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r = 0. Even more so, because of the linear relationship between their coordinate r and affine
parameter λ, all of these geodesics are also incomplete.

Moreover, every p ′ ∈ γ and p̃ ′ ∈ MSchN with r( p̃ ′) = r(p ′), ϑ( p̃ ′) = ϑ(p ′),
ϕ( p̃ ′) = ϕ(p ′) and t ( p̃ ′) > t(in f ) + r(p ′) − 2m ln

[
1 + r(p ′)/2m

]
, are chronologically

related by p̃ ′ ∈ I+(p ′) ⊂ I+(� f0) (Fig. 2). Bearing this in mind, it is clear that not a single
one of this null geodesics will intersect � f0 if t∗0 > t(in f ). This contradicts the fact that � f0
is a Cauchy surface [31].

An important remark to make is the following. By knowing all the physical information
of the events in a Cauchy surface, it is possible (in principle) to completely determine the
(physical) state at every other point in the spacetime. Nevertheless, even if the physical state
of every event were to be known at a certain global time (represented by an assumed Cauchy
surface), the existence of null geodesics that start from r = 0 at any time would completely
ruin total predictability for (MSchN , g(N )

αβ ). Furthermore, it is clear by now that this spacetime
is singular at r = 0, due to the existence of incomplete geodesics that originate from (or end
at) that region. However, it is not possible to draw this conclusion from Theorem 2.1.

Additionally, the occurrence of geodesic incompleteness in r = 0, and also the behaviour
that an assumed Cauchy surface should have near such region, is something that could most
certainly be pictured from the corresponding Penrose diagram. The preceding reasoning
represents a more formal argument (in mathematical terms) that does not depend on such
additional techniques to illustrate the usage and meaning of the notions employed by the
theorems nonetheless.

4.3 No generic condition

In accordance with theorem 2.2, a vector Xα is said to be generic if the tensor relation
X[αRβ]γ δ[μXν]Xγ X δ �= 0 holds for it.

Nevertheless, if Xα is not null, this condition turns out to be equivalent to the relation
Rαμνβ XμXν �= 0 [19]. Because of this, the tensor identity Rαμνβ XμXν = 0 can be taken
as a system of equations for a non-generic vector Xα . For the spacetime in question, it is
easy to verify that no timelike solution exists. It follows immediately from this that every
timelike geodesic of (MSchN , g(N )

αβ ) is generic at every one of its points. That is to say, any
massive object in free fall within MSchN will always experience tidal forces across its points
(because of Sαβ ≡ Rαμνβ XμXν being the tidal stress tensor along a geodesic with tangent

vector Xα). In contrast, after imposing the condition KμK νg(N )
μν = 0 on the system of

equations K[αRβ]γ δ[μKν]K γ K δ = 0, the expressions r2(Kr )2 − (r + 2m)2(K t )2 = 0 and
K ϑ = K ϕ = 0 end up being the necessary and sufficient conditions for a null vector Kμ to
be non-generic. Therefore, no radial and null geodesic can ever be generic in (MSchN , g(N )

αβ ).
The failure of highly symmetrical spacetimes to be generic is often used to emphasize the

generality of the scenarios covered by the singularity theorems. In order to achieve a sufficient
degree of physical realism, spacetimes with a high degree of symmetry can easily be ruled
out from consideration by means of the generic condition. In spite of this fact, the analytical
manageability of such particular cases is (and should) always (be) exploited to point out
specific physical and/or geometric features. Bearing this in mind, it is worth mentioning that
even though the existence of non-generic geodesics in (MSchN , g(N )

αβ ) also precludes the use
of theorem 2.2 to guarantee the existence of singularities, insightful information about this
spacetime and its singularity can be gained with the help of this particular mathematical tool
of the theorems.
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Fig. 3 Tidal force vectors

In order to understand the physical implications of having non-generic null geodesics, the
fact that the tensor identity K[αRβ]γ δ[μKν]K γ K δ = 0, for K α null, is equivalent to the vector
map Rα

βμνK
βVμK ν being proportional to K α every time VμKμ = 0 [19] must be taken into

consideration. Since this (restricted) map is actually trivial when K α is the tangent vector to
any null and radial geodesic in MSchN , no tidal acceleration orthogonal to K α will then be
experienced (at such geodesics) by any family of geodesics containing them. In particular,
no tidal force is ever felt by the family of null geodesics that emerge from any point into the
future (or past), along its two radially directed members.

This is not to say that no tidal force exists along such geodesics. Let K α− be the tangent
vector field to the radial ingoing null geodesics γ−. If {Ẽα

(i)}4
i=1 is a pseudo-orthonormal basis

adapted to K α− (i.e. such that each Ẽα
(i) is parallelly transported along γ−, with Ẽα

(4) = K α−),
the corresponding tensor Sα

β can be decomposed as

Sα
β ≡ Rα

μνβK
μ
−K ν− = 2m

r3 Ẽα
(4) ⊗ ẽ(3)

β , (7)

where {̃e(i)
α }4

i=1 is the corresponding dual basis. Because of this, Sα
β Ẽ

β

(3) will always point in

the direction of K α−. Since Ẽα
(3) is proportional to the tangent field of the radial outgoing null

geodesics, it can be regarded as separating two geodesics γ− that depart from the same fixed
source at different times (Fig. 3a). This indicates then an instantaneous relative acceleration
towards the singularity for the light waves originating from a continuous fixed source. Even
though the previous result can be interpreted as a tendency for light to get compressed towards
the singularity (when it has been directly aimed at it), the singularity at r = 0 is, as will be
pointed out later, a timelike one.

On the other hand, for a general incomplete null geodesic with affine parame-
ter λ, and an adapted pseudo-orthonormal basis {Ẽα

(i)}4
i=1, the components R̃I44J ≡

Rαμνβ Ẽα
(I ) Ẽ

μ

(4) Ẽ
ν
(4) Ẽ

β

(J ) (with I, J = 1, 2) cannot grow faster in modulus than |λ − λ∗|−2,
when approaching its singularity at λ∗ [16]. This condition is trivially met for every γ−. Nev-
ertheless, since the coordinate r of such geodesics takes the form r(λ) = f−(λ − λ∗) (with
f− < 0 and λ ≤ λ∗), this restriction is obviously not satisfied for the remaining components
R̃α44β . This corroborates that the full tensor Sαβ could in fact contain valuable information
regarding the divergent nature of the curvature for incomplete null geodesics.

In order to make one last statement with respect to this spacetime not being generic, two
additional vector bases must be taken into consideration [19]. As is easily corroborated, the
vector fields
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Eα
(1) ≡ 1

r

(
∂

∂ϑ

)α

Eα
(3) ≡ −r + m

r

(
∂

∂r

)α

− m

r + 2m

(
∂

∂t

)α

Eα
(2) ≡ 1

r sin ϑ

(
∂

∂ϕ

)α

Eα
(4) ≡ m

r

(
∂

∂r

)α

+ r + m

r + 2m

(
∂

∂t

)α

,

are orthonormal (with Eα
(4) being timelike), parallelly transported along each γ−, and such

that K α− = − f−[Eα
(3) + Eα

(4)] = f− {(∂/∂r)α − [r/(r + 2m)] (∂/∂t)α}. The second basis is
defined by (with ψ > 0)

E
α

(1) ≡ Eα
(1) E

α

(3) ≡ cosh ψEα
(3) + sinh ψEα

(4)

E
α

(2) ≡ Eα
(2) E

α

(4) ≡ sinh ψEα
(3) + cosh ψEα

(4),

and it clearly corresponds to the proper orthonormal basis for an observer moving in the
spatial direction of Eα

(3), at a speed v = tanh ψ , with respect to another one having Eα
(4) as

its 4-velocity. Additionally, despite E
α

(4) being always future directed, it will only point in
the direction of r decreasing if (at a given point) tanh ψ > m/(r + m).

Let Rαβμν and Rαβμν be the components of the curvature tensor with respect to these
bases. Once again, let I, J = 1, 2. Because of K α− being non-generic, it follows that R̃I4J4 =
0 [19]. This implies having RI4I4 = RI4I4 + (

1 − e−2ψ
)
RI4I3 and R2414 = R2414 +[(

1 − e−2ψ
)
/2

]
(R2413 + R2314). Additionally, from R̃34I4 = 0 (which is referred to as K α−

being nondestructive), it is straightforward to get R34I4 = e−ψR34I4. It also happens that
R3434 = R3434 = R̃3434 = 2m/r3.

Consider now a massive object in free fall from some p0, such that it has E
α

(4)|p0 as
its instantaneous 4-velocity. The geodesic deviation equation, together with the non-generic
and nondestructive nature of K α−, justifies the following statement: No significant difference
exists between the tidal forces experienced by the points of the object, lying along each
direction E

α

(I ), and the tidal forces that would be exerted over the object if it were to fall
freely from p0 with 4-velocity Eα

(4)|p0 . This assertion is independent of the value given to ψ .
On the other hand, perhaps the most interesting conclusion is the one that can be drawn

from the remaining curvature component, R̃3434. According to the geodesic deviation equa-
tion, the tidal force associated with the displacement J̄α|p0 = J̄ 3

0 E
α

(3)|p0 is given by

Sα|p0 = − J̄ 3
0

[
e−ψ

(
R1434E

α

(1) + R2434E
α

(2)

)
+ 2m

r3 E
α

(3)

] ∣∣∣∣
p0

= −2m

r3 J̄α

∣∣∣∣
p0

.

Because of this, if an observer at p0, with 4-velocity Eα
(4), were to throw a massive object

towards the singularity (i.e. along its spacelike direction Eα
(3)) at a speed v = tanh ψ >

m/ [r(p0) + m], the constituents of the object that lie along its own radial direction E
α

(3)

would experience a repulsive tidal force in the opposite direction (Fig. 3b). This force is
clearly divergent when r −→ 0+. The importance of this feature resides on the fact that
E

α

(4) approaches
[
eψ/ (2| f−|)] K α− when ψ � 1. That is to say, if a massive object were to

approach the singularity at r = 0 by travelling along a near-incomplete-null-geodesic curve,
it would have to overcome infinite repulsive tidal forces (aside from the infinite increase
in energy necessary to accelerate it to near-light velocities). Even though this repulsive
behaviour can already be recognized with the aid of an r − t diagram for the radial timelike
geodesics (Fig. 4), the preceding argument completely forbids a massive object to ever reach
such singularity by travelling along a radial path.

Although repulsive effects associated with negative mass sources can be treated in a some-
what more general way with the quasi-local Misner–Sharp–Hernandez mass of spherical
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Fig. 4 Numerically obtained
radial (i.e. with ϑ̇ = ϕ̇ ≡ 0)
timelike geodesics (black curves)
that start from a point into the
future with initial
ṙ = −3,−2, −1, 0 (all
parameterized by their arc
length). The curves in colour
correspond to the ingoing and
outgoing null geodesics. In every
case, the value m = 1 was used

symmetry [35,36], there does not seem to exist an agreement on how to satisfactorily define
a quasi-local gravitational mass-energy completely sensible to every possible repulsive phe-
nomenon of more general spacetimes (in addition to being unique and having all the desired
limiting values) [37–39]. The absence of general criteria that (analogously to the quasi-local
mass of spherical symmetry) could be used to handle gravitational repulsive effects makes
the previous analysis of tidal forces a possible alternative to test new approaches that intend
to define repulsive gravity in an invariant manner [17].

In summary, the remaining components of (7) not only could provide information regard-
ing the growth of the curvature tensor in a singularity of (null) geodesic incompleteness,
they could also be used as indicators of its attractive and/or repulsive nature. A comparison
between the divergent behaviour of the stress tidal tensor towards this singularity, and existing
extensibility criteria for arbitrary spacetimes (based on Hölder and/or Sobolev norms [12]),
will also be explored in the future.

4.4 No trapped points

As is well known, Eq. (6) can be used to determine the expansion of a null-geodesic congru-
ence at anyone of its points. In particular, if a family of affinely parameterized null geodesics
{γ (λ)} generate a null hypersurface (so that orthogonal vectors to K α ≡ (∂/∂λ)α are asso-
ciated with trajectories contained in the hypersurface), the same equation can be used to
determine the expansion of the generators γ (λ) at any point in them. For this particular
case, each ηα

(i) in (6) can be taken as the deviation vector (∂/∂si )α of some one parameter
smooth subfamily {γsi (λ)} ⊂ {γ (λ)}. In view of these facts, the expansion of the geodesics
in question can also be reformulated as

θ = 1

2

2∑
i=1

1

ησ
(i)η(i)σ

K α∇α

[
ηα

(i)η(i)α

]
, (8)
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from which it is possible to determine its value along each geodesic. Even more so, in
order to get (8) for a particular γ0(λ) ∈ {γ (λ)}, both vectors ηα

(i) need only be Jacobi fields,
orthogonal to such geodesics, that satisfy appropriate initial conditions at some p ∈ γ0(λ).

Consider now the affinely parameterized family of null geodesics {γ (0)(λ)} that depart
into the future from p0 = �−1(r0, ϑ0 = π/2, ϕ0, t0). Along the radial ingoing and outgoing
geodesics of this family, γ (0)

− and γ
(0)
+ , any Jacobi field ηα(λ) would need to be proportional

at p0 to the corresponding Kα± ≡ (∂/∂λ)α |
γ

(0)
±

, if it were to be part of a deviation vector field

for {γ (0)(λ)}. Solving for ηα(λ) the geodesic deviation equation along γ
(0)
± , the following

Jacobi fields can be obtained

ηα
(1±)(λ) = η±(λ)

(
∂

∂ϑ

)α ∣∣∣∣
γ

(0)
±

and ηα
(2±)(λ) = η±(λ)

(
∂

∂ϕ

)α ∣∣∣∣
γ

(0)
±

,

where η±(λ) ≡ r0(λ−λ0)/
[
f±(λ − λ0) + r0

]
(once again, being r±(λ) ≡ f±(λ−λ0)+ r0

the coordinate r of γ
(0)
± (λ), with sign( f±) = ±1). Since η±(λ0) = 0, these two vector fields

can be used in (8) to calculate the expansion of {γ (0)(λ)} along γ
(0)
± . The resulting expressions

of doing so are θ
(0)
± = 2 f±/

[
r±(λ) − r0

]
, and none of them ever become negative when

traversing the corresponding geodesics into the future. Because of the spherical symmetry
of this spacetime, the aforementioned result for γ

(0)
+ indicates that no trapped point exists

within (MSchN , g(N )
αβ ).

Two important conclusions can be drawn from the previous results. First, since the whole
family of null geodesics departing from a point into the future represents a pulse of light
being emitted in all directions during a single event, the lack of trapped points in MSchN can
effectively be viewed as (an indicator for) the absence of regions of inescapable confinement.
This result is in agreement with the existence of incomplete null geodesics that start from
the singularity and can be extended indefinitely (i.e. to infinity) into the future (a fact usually
referred to as such singularity being naked). Second, the limit θ

(0)
− −→ 2| f−|/r0 ∈ R, when

r−(λ) −→ 0+, is in agreement with the previously asserted lack of tidal forces experienced
by {γ (0)(λ)} along γ

(0)
± . According to this, the null geodesics from an arbitrary point into

the future even experience an unaccelerated expansion towards the singularity at r = 0. This
means that even the nearly radial geodesics in {γ (0)(λ)} will avoid the singularity in question.
As was previously anticipated, this property emphasizes its temporal nature.

It must be emphasized once more that such conclusions derive from the mere use of the
mathematical tools involved in the theorems. The majority of the existing theorems do not
make any assertions regarding the repulsive, attractive, temporal, spatial or null nature of a
singularity of geodesic incompleteness, nor do they state whether such a singularity must
belong to a region of inescapable confinement (i.e. a black hole), or if it turns out to be naked.
As a matter of fact, very few information about a singularity can be obtained from most
theorems aside from the mere existence of geodesic incompleteness.

Nevertheless, in the sole case of spherically symmetric spacetimes, the Misner–Sharp–
Hernandez quasi-local mass could (as a matter of fact) also be used to determine whether a
central singularity is trapped and spatial, or untrapped and temporal [40]. Agreement is then
found between the previous result and such an analysis based on quasi-local mass. However,
it is convenient to stress again the fact that the preceding argument has the advantages of: (a)
being physically illustrative and applicable to more general cases in a straightforward manner,
(b) using only concepts associated with the singularity theorems and (c) not requiring any
additional notion of gravitational mass (for which, as previously mentioned, no satisfactory
unique generalization exists to date for spacetimes with fewer degrees of symmetry [39]).

123



Eur. Phys. J. Plus (2020) 135:636 Page 17 of 21 636

4.5 Trapped surfaces

It has been proven by now (in a rather elegant way) that closed trapped surfaces cannot exist
within stationary spacetimes [30]. In order to understand the meaning and implications of the
possible existence of trapped surfaces that are not necessarily closed, a quick review of the
main tools used in such a proof is needed. For the sake of simplicity, the arguments presented
next will be restricted to (MSchN , g(N )

αβ ). However, the generalizations of the formulae and
concepts that do not specifically refer to quantities of this spacetime are plainly true.

Consider a two-dimensional smooth manifold � that is orientable, an embedding from
it into MSchN , � : � −→ S ≡ �(�) ⊂ MSchN , and a C1 vector field ξα (defined
within an open neighbourhood of S) that generates a one parameter group of diffeo-
morphisms {φτ }τ∈(a,b), such that φτ=0(∈(a,b)) is the identity map. Additionally, assume
that a family of metrics on � can be defined by means of the quantities γAB(τ ) ≡
{g(N )

αβ

[
�∗

τ e(A)

]α [
�∗

τ e(B)

]β}|Sτ , where each e(A) (A = 1, 2) is a basis vector field for �,
and �∗

τ is the push-forward map associated with the embedding �τ ≡ φτ ◦� : � −→ Sτ ≡
�τ (�) ⊂ MSchN . From its definition, the matrix (γAB(τ )) also comprises the components
of a tensor γαβ(τ ) that equals the metric induced on Sτ by g(N )

αβ , when det(γAB(τ )) �= 0.
If γαβ ≡ γαβ(τ = 0) is positive definite, two future directed continuous null vector

fields kα±, orthogonal to S, can be constructed. By using them, it is straightforward to get the
following identity for the (instantaneous) variation of the induced area elements η�(τ)

dη�(τ)

dτ

∣∣∣∣
τ=0

= 1

2

[
£ξ g

(N )
]
αβ

γ αβη� = (
divSξ‖

+ ξμH
μ
)
η�. (9)

where divSξ‖ ≡ γ α
β ∇α(γ

β
μ ξμ) is the induced divergence of the parallel projection of ξα

on S, and Hα ≡ (
kμ
+k−μ

)−1 (
θ−kα+ + θ+kα−

)
(with θ± given by (6)) is the so-called mean

curvature vector field of S. The advantage of introducing Hμ resides in the fact that S being
a future-trapped surface is equivalent to Hμ being timelike and future directed.

According to the second expression of (9), if ξα were to be replaced by a smooth extension
of one of the fields kα±, the term between parentheses would reduce to θ±. This result justifies
the physical interpretation given in Sect. 2 for a future-trapped surface St . Nevertheless, it
also follows from (9) that even if such a surface were to exist within MSchN , no inescapable
confinement scenario would be hinted by it. This assertion is founded by the fact that, for
a future directed timelike Killing vector field ξα , the previous equation would entail for St
the relation 0 < −ξμHμ = divSt ξ‖. Since no such St can then have ξα‖ ≡ γ α

β ξβ ≡ 0, no
simultaneous emission of two shrinking area light beams (relative to the coordinate time
of the global temporal translation symmetry) could be represented by it (contrary to every
T (t0, r0) of Sect. 3.8, with respect to the global time r of (MSch, gαβ)).

That is not to say that trapped surfaces could not be of any significance for stationary
spacetimes. In general, the induced divergence of a non-vanishing vector field ζ α , tangent to
St , can be expressed as divSt ζ = ∂(ln

√
γ )/∂v = γ −1/2(∂γ 1/2/∂v), where γ ≡ det(γAB(0))

and (∂/∂v)α = ζ α for some right-handed coordinate system on St . According to this, the
inequality divSt ξ‖ > 0 would in fact imply the existence of a direction field over St , ξα‖ , along
which the induced area element would always increase (hence making −ξα‖ a direction field
of area decrease on the surface in question). Because the divergence in question is a scalar,
this conclusion is coordinate invariant.
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Fig. 5 Non-compact trapped
surface ST ⊂ MSchN

On the other hand, the aforementioned proof of [30] strongly bases its main argument
on the impossibility of having trapped surfaces that, simultaneously, are compact and lack
a boundary (as embedded submanifolds). This fact alone does not prevent the existence of
mere trapped surfaces, so the orientability and compactness of such possible surfaces could
be referred to as them being physically feasible. That is to say, any physically feasible trapped
surface within a stationary spacetime must have a boundary.

As a matter of fact, the existence of (non-compact) trapped surfaces even within Minkowski
spacetime has been established for quite a while by now [4]. This clearly opens up the
possibility of finding non-closed trapped surfaces in the (static) spacetime (MSchN , g(N )

αβ ).
In particular, inspired by the shape of such examples, several non-compact trapped surfaces
can be constructed. Perhaps the most illustrative one is the two-dimensional submanifold ST ,
defined as the intersection of two hypersurfaces given by

{
t + 1

2

[
r − 2m ln

(
1 + r

2m

)] = 0,

z = 0.
(10)

As can easily be verified, ST turns out to be a spacelike submanifold without a boundary that,
by having θ± = −2(r + m)/(3r2), forms a non-compact orientable future-trapped surface
(Fig. 5). Naturally, physically feasible trapped surfaces can then be obtained by extracting
smooth compact portions from it (guaranteeing in this way the possibility to smoothly extend
their orthogonal fields kα±, and expansions θ±, to their boundary points). To construct such
feasible surfaces, families of light rays must be emitted simultaneously from points along
rings of constant r (contained in the equatorial plane) at different global times t (r) given by
(10) (Fig. 5). Once again, no inescapable confinement is represented then by ST .

Finally, for the parallel projection of ξα = (∂/∂t)α on ST (given by ξα‖ = [2(r +
2m)/(3r)] (∂/∂r)α − (1/3) (∂/∂t)α), the induced divergence is divST ξ‖ = 2(r + m)/(3r2).
In accordance with the previous remarks, −ξα‖ points in a direction on ST toward which
the induced area element always decreases. Even more so, since divST ξ‖ −→ +∞ when
r −→ 0+, −ξα‖ corresponds in fact to a direction of infinite area contraction along the
non-compact trapped surface ST .

Although a similar divergent behaviour occurs for the trapped surface (within Minkowski
spacetime) of [4], an infinite extent must be traversed for it to be reached (for such a sur-
face S(0)

T , defined as the intersection of X = 0 and T + ln [cosh(Z)] = 0, the expression
div

S(0)
T

ξ‖ = cosh2(Z) is easily obtained, where (X ,Y,Z, T ) are the usual Cartesian coor-

dinates for this spacetime, and ξα = (∂/∂T )α). Because in (MSchN , g(N )
αβ ) such contraction
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coincides with the presence of a scalar/geodesic-incompleteness singularity, it is suggested
here that any extreme behaviour of divSt ξ‖ could in fact be used as an indicator of the exis-
tence of intrinsic pathological regions in a (stationary) spacetime. That is to say, the existence
of (non-closed) trapped surfaces could still be used to hint the presence of singularities, even
if they do not correspond to situations of inescapable confinement.

The content of the previous statement should not be interpreted as an assertion that non-
closed trapped surfaces always guarantee the existence of singularities (of scalar divergence or
geodesic incompleteness). Just as the presence of closed trapped surfaces alone is nothing but
an additional hypothesis for singularities of geodesic incompleteness to form, the appearance
of reachable extreme phenomena associated with non-compact trapped surfaces is something
that could be worth exploring as part of some possible general result under which naked
singularities could be guaranteed to exist.

On the other hand, it is important to mention that hypothesis (4)(a) of Theorem 2.2 has not
been taken into consideration due to the fact that its usual physical interpretation allures only
to spatially closed universes [29]. Nevertheless, its physical implications will be discussed
in future works for the sake of completeness, together with an analogous analysis for the
trapped submanifolds of co-dimension 3 (i.e. trapped curves) of [6].

5 Conclusions

This work presents a complete usage of the classical singularity theorems of Penrose (1965)
and Hawking–Penrose (1970). Together with appropriate and illustrative interpretations for
all of their hypothesis, the applicability of the theorems themselves or the mathematical tools
used in them is discussed for the Schwarzschild spacetimes (i.e. the ones with positive and
negative mass).

A rigorous treatment for the positive mass case from the point of view of Penrose’s theorem
(that seemingly does not exist so far in the literature) is discussed in detail. As is expected
from the way a spacetime is handled by the theorems, the sole definition of the Schwarzschild
spacetime is enough to guarantee the existence of a singularity by such theorem. The main
result for this case is the validity of the hypotheses of the theorem in a spacetime that, despite
being part of a black hole (i.e. the possible outcome of a process of complete gravitational
collapse), does not contain an event horizon.

For the second case, the impossibility of using either of the theorems to assure the existence
of singularities is shown. From the proof of such spacetime not being globally hyperbolic, one
conclusion can be drawn: The presence of incomplete null geodesics within this spacetime
is responsible for the absence of total predictability.

Additionally, it is shown that even though the radial null geodesics of this spacetime are
all non-generic, the temporal nature of their singularity can be better understood from this
fact. Even more so, this analysis presents an example of how the full components of the tidal
stress tensor along such null geodesics, with respect to pseudo-orthonormal bases adapted
to them, could in fact provide information regarding divergent curvature behaviour in the
singularity as well as its possible repulsive or attractive. nature.

In regard to this singularity being naked, agreement is found between the existence of
incomplete null geodesics that extend to infinity and the absence of regions of inescapable
confinement suggested by a lack of trapped points (and closed trapped surfaces). Furthermore,
the occurrence of non-closed trapped surfaces within this spacetime is discussed. It is argued
how despite them not representing scenarios of inevitable confinement, they still can suggest
the existence of singularities in static spacetimes.
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Further analyses for these features, in cases of more general static (or even stationary)
spacetimes, will be explored in the future.
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