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Abstract In this paper, we formulate a mathematical model to investigate a within-host
HIV dynamics under the effect of cytotoxic T lymphocytes immune response. The model
incorporates two modes of transmission, virus-to-cell (VTC) and cell-to-cell (CTC). The
CTC infection is due to the contact of healthy CD4+ T cells with (i) silent HIV-infected
cells, and (ii) active HIV-infected cells. The model integrates three types of distributed time
delays. We show that the model is well posed and it has three equilibria. The existence
and stability of equilibria are governed by two threshold parameters. We prove the global
asymptotic stability of all equilibria by utilizing Lyapunov function and LaSalle’s invariance
principle. We have presented numerical simulations to illustrate the theoretical results. We
have studied the effects of CTC transmission and time delays on the dynamical behavior
of the system. We have shown that inclusion of time delay can significantly increase the
concentration of healthy CD4+ T cells and reduce the concentrations of infected cells and
free HIV particles. While the inclusion of CTC transmission decreases the concentration
of healthy CD4+ T cells and increases the concentrations of infected cells and free HIV
particles.

1 Introduction

Acquired immunodeficiency syndrome (AIDS) is one of the fatal human diseases which is
caused by human immunodeficiency virus (HIV). HIV is a retrovirus that mainly infects
the healthy (uninfected) CD4+ T cells and other immune cells such as macrophages and
dendritic cells. For long period up to 10 years [1], the HIV infection can be controlled
by two main components (i) cytotoxic T lymphocytes (CTLs) that kill the HIV-infected
cells, and (ii) B cells that generate specific antibodies which in turn neutralize the viruses.
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However, during this period of time the concentration of healthy CD4+ T cells declines. When
the concentration of the CD4+ T cells reaches below 200 cells/mm3, the patient is said to
have progressed to AIDS. During the last decades, mathematical modeling of a within-host
HIV infection has witnessed a significant development. Moreover, mathematical analysis
of the HIV dynamics models has also become one of the most important and fundamental
methods for understanding the within-host HIV dynamics [2–8]. Nowak and Bangham [6]
have introduced an HIV infection model which describes the interaction between healthy
CD4+ T cells (W ), active HIV-infected cells (M), free HIV particles (N ) and HIV-specific
CTLs (P):

⎧
⎪⎪⎨

⎪⎪⎩

Ẇ (t) = ρ − αW (t) − η1W (t)N (t),
Ṁ(t) = η1W (t)N (t) − aM(t) − μP(t)M(t),
Ṅ (t) = bM(t) − εN (t),
Ṗ(t) = σ P(t)M(t) − π P(t).

(1)

The healthy CD4+ T cells are generated at specific constant rate ρ and die at rate αW .
The term η1WN refers to the rate at which new infectious appears by virus-to-cell (VTC)
transmission between free HIV particles and healthy CD4+ T cells. The active HIV-infected
cells die at rate aM . The term μPM is the killing rate of active HIV-infected cells due to
their HIV-specific CTL-mediated immunity. The free HIV particles are generated at rate bM
and cleared from the plasma at rate εN . The proliferation rate of the effective HIV-specific
CTLs is given by σ PM . The term π P represents the decay rate of the CTLs. HIV infection
models with CTL-mediated immune response have been investigated in many papers (see,
e.g., [2–16]).

Model (1) is formulated on the assumption that HIV can only spread by VTC transmission.
However, several works have reported that there is another mode of transmission called cell-
to-cell (CTC) where HIV can be transmitted directly from an infected cell to a healthy CD4+
T cell through the formation of virological synapses (see, e.g., [17–20]). Sourisseau et al. [21]
have shown that CTC transmission plays an efficient role in the HIV replication. Sigal et al.
[22] have demonstrated the importance of CTC transmission in the HIV infection process
during the antiviral treatment. Iwami et al. [19] have shown that more than 50% of HIV
infections are due to CTC transmission. The effects of both VTC and CTC transmissions on
the virus dynamics have been addressed in several works (see, e.g., [23–29]), although the
CTL-mediated immunity has not been considered. Virus dynamics models with both VTC
and CTC transmissions and CTL-mediated immunity have been investigated in [30–32].
Wang et al. [31] have proposed the following virus dynamics model with CTL-mediated
immunity, both VTC and CTC transmissions and a distributed time delay for production of
active infected cells:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ẇ (t) = ρ − αW (t) − η1W (t)N (t) − η2W (t)U (t),

Ṁ(t) =
∞∫

0
�(ϕ)e−�ϕW (t − ϕ) [η1N (t − ϕ) + η2U (t − ϕ)] dϕ − aM(t) − μP(t)M(t),

Ṅ (t) = bM(t) − εN (t),
Ṗ(t) = σ P(t)M(t) − π P(t).

(2)

The healthy CD4+ T cells are contacted with active CD4+ T infected cells and become
infected due to CTC transmission at rate η2WU . The factor �(ϕ)e−�ϕ represents the prob-
ability that healthy CD4+ T cells contacted by HIV particles or active HIV-infected cells at
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time t −ϕ survived ϕ time units and become active infected at time t . The delay parameter ϕ

is random taken from a probability distribution function �(ϕ) over the time interval (0,∞).
It is known that current anti-retroviral drugs can suppress HIV replication to a low level

but cannot enucleate HIV from the body. One of the main reasons of this fact is the presence
of silent (latent) CD4+ T infected cells where the HIV provirus can reside [33,34]. Silent
HIV-infected cells live long, but they can be activated to produce new HIV particles. Silent
HIV-infected cells have been included in the virus dynamics models with both VTC and CTC
transmissions in [35–40]. In a very recent work [41], it has been shown that both silent and
active HIV-infected cells can infect the healthy CD4+ T cells through CTC mechanism. In
the literature, all viral infection models with CTC transmission and silent infected cells have
assumed that the CTC transmission only occurs due to the active infected cells.

In the present paper, we extend model (2) by considering in the dynamics (i) both silent
and active HIV-infected cells, (ii) three types of distributed time delays and (iii) three types of
infection modes, VTC, silent HIV-infected CTC and active HIV-infected CTC transmissions.
The well-posedness of the model is investigated. We deduce two threshold parameters which
govern the existence and stability of the three equilibria. Global stability of all equilibria is
proven by formulating Lyapunov functions and utilizing LaSalle’s invariance principle. We
perform some numerical simulations to illustrate the strength of our theoretical results.

2 Model formulation

We formulate a distributed delay HIV infection model with CTL-mediated immunity. We
assume that the HIV virions can replicate by two mechanisms VTC and CTC transmissions.
The CTC infection has two sources, (i) the contact between healthy CD4+ T cells and silent
HIV-infected cells, and (ii) the contact between healthy CD4+ T cells and active HIV-infected
cells. Under these assumptions, we propose the following model:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ẇ (t) = ρ − αW (t) − η1W (t)N (t) − η2W (t)U (t) − η3W (t)M(t),

U̇ (t) =
κ1∫

0
�1(ϕ)e−�1ϕW (t − ϕ) [η1N (t − ϕ) + η2U (t − ϕ) + η3M(t − ϕ)] dϕ − (λ + γ )U (t),

Ṁ(t) = λ
κ2∫

0
�2(ϕ)e−�2ϕU (t − ϕ)dϕ − aM(t) − μP(t)M(t),

Ṅ (t) = b
κ3∫

0
�3(ϕ)e−�3ϕM(t − ϕ)dϕ − εN (t),

Ṗ(t) = σ P(t)M(t) − π P(t),

(3)

where U (t) is the concentration of silent HIV-infected cells. The healthy CD4+ T cells are
contacted with silent HIV-infected cells and become infected due to CTC transmission at rate
η3WM . The term λU is the rate of silent HIV-infected cells that become active HIV-infected
cells. γU represents the death rate of the silent HIV-infected cells. The factor �1(ϕ)e−�1ϕ

represents the probability that healthy CD4+ T cells contacted by HIV particles or HIV-
infected cells at time t − ϕ survived ϕ time units and become silent infected at time t .
The term �2(ϕ)e−�2ϕ is the probability that silent HIV-infected cells survived ϕ time units
before transmitted to be active at time t . Moreover, the factor �3(ϕ)e−�3ϕ demonstrates the
probability of new immature HIV particles at time t −ϕ lost ϕ time units and become mature
at time t . Here, �i , i = 1, 2, 3 are positive constants. The delay parameter ϕ is random taken
from a probability distribution function �i (ϕ) over the time interval [0, κi ] , i = 1, 2, 3,
where κi is the limit superior of this delay period. The function �i (ϕ), i = 1, 2, 3 satisfies
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Table 1 Parameters of model (3) and their interpretations

Parameter Biological meaning

ρ Recruitment rate for the healthy CD4+ T cells

α Natural death rate constant for the healthy CD4+ T cells

η1 Virus-cell incidence rate constant between free HIV particles and healthy CD4+ T cells

η2 Cell-cell incidence rate constant between silent HIV-infected cells and healthy CD4+ T cells

η3 Cell-cell incidence rate constant between active HIV-infected cells and healthy CD4+ T cells

γ Death rate constant of silent HIV-infected cells

a Death rate constant of active HIV-infected cells

μ Killing rate constant of active HIV-infected cells due to their specific

CTL-mediated immunity

λ Transmission rate constant of silent HIV-infected cells that become active

HIV-infected cells

b Generation rate constant of new HIV particles

ε Death rate constant of free HIV particles

σ Proliferation rate constant of effective HIV-specific CTLs

π Decay rate constant of HIV-specific CTLs

ϕ Delay parameter

�i (ϕ) Probability distribution function

�i (ϕ) > 0 and

κi∫

0

�i (ϕ)dϕ = 1 and

κi∫

0

�i (ϕ)e−uϕdϕ < ∞,

where u > 0. Let us denote

H̄i (ϕ) = �i (ϕ)e−�iϕ and Hi =
κi∫

0

H̄i (ϕ)dϕ,

where i = 1, 2, 3. Thus, 0 < Hi ≤ 1, i = 1, 2, 3. The initial conditions of system (3) are
given by:

W (x) = ε1(x),U (x) = ε2(x), M(x) = ε3(x), N (x) = ε4(x), P(x) = ε5(x),

ε j (x) ≥ 0, x ∈ [−κ, 0], j = 1, 2, . . . , 5, κ = max{κ1, κ2, κ3}, (4)

where ε j (x) ∈ C([−κ, 0], R≥0), j = 1, 2, . . . , 5 and C = C([−κ, 0], R≥0) is the Banach
space of continuous functions with norm ‖ε j‖ = sup

−κ≤m≤0
|ε j (m)| for ε j ∈ C. Therefore,

system (3) with initial conditions (4) has a unique solution by using the standard theory of
functional differential equations [42,43]. All remaining variables and parameters have the
same biological meaning as explained in Sect. 1. Table 1 summarizes all parameters and their
definitions.
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3 Well-posedness of solutions

Proposition 1 All solutions of system (3) with initial conditions (4) are nonnegative and
ultimately bounded.

Proof First, we show the nonnegativity of solutions. From the first equation of system (3),
we have Ẇ |W=0= ρ > 0, then W (t) > 0 for all t ≥ 0. Moreover, the rest equations of
system (3) give us the following:

U (t) = ε2(0)e−(λ+γ )t

+
t∫

0

e−(λ+γ )(t−�)

κ1∫

0

H̄1(ϕ)W (� − ϕ) [η1N (� − ϕ) + η2U (� − ϕ)

+ η3M(� − ϕ)] dϕd� ≥ 0,

M(t) = ε3(0)e− ∫ t
0 (a+μP(y))dy + λ

t∫

0

e− ∫ t
� (a+μP(y))dy

κ2∫

0

H̄2(ϕ)U (� − ϕ)dϕd� ≥ 0,

N (t) = ε4(0)e−εt + b

t∫

0

e−ε(t−�)

κ3∫

0

H̄3(ϕ)M(� − ϕ)dϕd� ≥ 0,

P(t) = ε5(0)e− ∫ t
0 (π−σM(y))dy ≥ 0,

for all t ∈ [0, κ]. Thus, by a recursive argument, we getW (t),U (t), M(t), N (t), P(t) ≥ 0 for
all t ≥ 0. Hence, the solutions of system (3) satisfy (W (t),U (t), M(t), N (t), P(t)) ∈ R

5≥0
for all t ≥ 0.

Now, we investigate the boundedness. From the first equation of system (3), we obtain
lim supt→∞ W (t) ≤ ρ

α
. Let �1(t) = ∫ κ1

0 H̄1(ϕ)W (t − ϕ)dϕ +U (t), then

�̇1(t) =
κ1∫

0

H̄1(ϕ) [ρ − αW (t − ϕ)] dϕ − (λ + γ )U (t)

= ρH1 − α

κ1∫

0

H̄1(ϕ)W (t − ϕ)dϕ − (λ + γ )U (t)

≤ ρ − φ1

⎡

⎣

κ1∫

0

H̄1(ϕ)W (t − ϕ)dϕ +U (t)

⎤

⎦ = ρ − φ1�1(t),

where φ1 = min{α, λ + γ }. It follows that, lim supt→∞ �1(t) ≤ �1, where �1 = ρ
φ1

. Since
∫ κ1

0 H̄1(ϕ)W (t − ϕ)dϕ and U (t) are nonnegative, then lim supt→∞ U (t) ≤ �1. Moreover,
we let �2(t) = M(t) + μ

σ
P(t), then

�̇2(t) = λ

κ2∫

0

H̄2(ϕ)U (t − ϕ)dϕ − aM(t) − μπ

σ
P(t) ≤ λH2�1 − aM(t) − μπ

σ
P(t)

≤ λ�1 − aM(t) − μπ

σ
P(t) ≤ λ�1 − φ2

(
M(t) + μ

σ
P(t)

)
= λ�1 − φ2�2(t),

123



593 Page 6 of 30 Eur. Phys. J. Plus (2020) 135:593

where φ2 = min{a, π}. It follows that, lim supt→∞ �2(t) ≤ �2, where �2 = λ�1

φ2
. Since

M(t) ≥ 0 and P(t) ≥ 0, then lim supt→∞ M(t) ≤ �2 and lim supt→∞ P(t) ≤ �3, where
�3 = σ

μ
�2. Finally, from the fourth equation of system (3), we have

Ṅ (t) = b

κ3∫

0

H̄3(ϕ)M(t − ϕ)dϕ − εN (t) ≤ bH3�2 − εN (t) ≤ b�2 − εN (t).

Thus, lim supt→∞ N (t) ≤ �4, where �4 = b�2

ε
. �	

According to Proposition 1, we can show that the region

� =
{
(W,U, M, N , P) ∈ C5≥0 : ‖W‖ ≤ �1, ‖U‖ ≤ �1, ‖M‖ ≤ �2, ‖P‖ ≤ �3, ‖N‖ ≤ �4

}

is positively invariant with respect to system (3). �	

4 Equilibria

Let (W,U, M, N , P) be any equilibrium of system (3) satisfying the following equations:

0 = ρ − αW − η1WN − η2WU − η3WM, (5)

0 = H1 (η1WN + η2WU + η3WM) − (λ + γ )U, (6)

0 = λH2U − aM − μPM, (7)

0 = bH3M − εN , (8)

0 = (σM − π) P. (9)

The straightforward calculation finds that system (3) admits five equilibria.
(i) It is obvious that system (3) has an infection-free equilibrium, -D0 = (W0, 0, 0, 0, 0),

where W0 = ρ/α. This case describes the situation of healthy state where the HIV infection
is absent.

(ii) When P1 = 0, we have a chronic HIV infection equilibrium with inactive CTL-
mediated immune response, -D 1 = (W1,U1, M1, N1, 0), where

W1 = aε (γ + λ)

H1 [aεη2 + λH2 (bη1H3 + εη3)]
,

U1 = aεα

aεη2 + λH2 (bη1H3 + εη3)

[
W0H1 {aεη2 + λH2 (bη1H3 + εη3)}

aε (γ + λ)
− 1

]

,

M1 = εαλH2

aεη2 + λH2 (bη1H3 + εη3)

[
W0H1 {aεη2 + λH2 (bη1H3 + εη3)}

aε (γ + λ)
− 1

]

,

N1 = αbλH2H3

aεη2 + λH2 (bη1H3 + εη3)

[
W0H1 {aεη2 + λH2 (bη1H3 + εη3)}

aε (γ + λ)
− 1

]

.

Therefore, -D1 exists when

W0H1 [aεη2 + λH2 (bη1H3 + εη3)]

aε (γ + λ)
> 1.

At the equilibrium -D1, the chronic HIV infection persists while the CTL-mediated immune
response is unstimulated. In order to state the threshold dynamics of infection-free equi-
librium, it is necessary to define the basic HIV reproduction number 
0 of the model. If
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the antiviral drugs are taken into account in that HIV dynamics model, then 
0 can be used
to determine the minimum drug efficacy which stabilizes the system around the infection-
free equilibrium and clears the viruses from the body. The basic HIV reproduction number
of model (3) can be calculated by different methods such as (i) the next-generation matrix
method of van den Driessche and Watmough [44], (ii) local stability of the infection-free
equilibrium, and (iii) the existence of the chronic HIV infection equilibrium with inactive
CTL-mediated immune response. In the present paper, we derive 
0 by method (iii) as:


0 = W0H1 [aεη2 + λH2 (bη1H3 + εη3)]

aε (γ + λ)
= 
01 + 
02 + 
03,

where


01 = W0λbη1H1H2H3

aε (γ + λ)
, 
02 = W0η2H1

γ + λ
, 
03 = W0λη3H1H2

a (γ + λ)
.

The parameter 
0 determines whether or not the infection will be chronic in the absence of
the immune response. In fact, 
01 determines the average number of secondary HIV-infected
cells caused by an existing free HIV particle due to VTC transmission, while 
02 and 
03

determine the average numbers of secondary HIV-infected cells caused by living silent and
active HIV-infected cell, respectively, due to CTC transmission. In terms of 
0, we can write

W1 = W0


0
,U1 = aεα

aεη2 + λH2 (bη1H3 + εη3)
(
0 − 1) ,

M1 = εαλH2

aεη2 + λH2 (bη1H3 + εη3)
(
0 − 1) , N1 = αbλH2H3

aεη2+λH2 (bη1H3 + εη3)
(
0−1) .

(10)

(iii) When P �= 0, we have M2 = π

σ
. In this case, we consider a chronic HIV infection

equilibrium with active CTL-mediated immune response, -D 2 = (W2,U2, M2, N2, P2),
where

W2 = ρεσ

bπη1H3 + ε (πη3 + ασ + ση2U2)
, N2 = bπH3

εσ
, P2 = a

μ

(
λσH2U2

aπ
− 1

)

,(11)

and U2 satisfies the quadratic equation

ÃU 2
2 + B̃U2 + C̃ = 0, (12)

where

Ã = εη2σ (γ + λ) ,

B̃ = π (bη1H3 + εη3) (γ + λ) + εσ
[
α (γ + λ) − η2ρH1

]
,

C̃ = −πρH1 (bη1H3 + εη3) . (13)

Since Ã > 0 and C̃ < 0, then B̃2 − 4 ÃC̃ > 0 and there are two distinct real roots of Eq.
(12). The positive root is given by

U2 = −B̃ +
√
B̃2 − 4 ÃC̃

2 Ã
.
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It follows that W2 > 0 and P2 > 0 only when
λσH2U2

aπ
> 1. We define the HIV specific

CTL-mediated immunity reproduction number as follows:


1 = λσH2U2

aπ
.

Thus, P2 = a

μ
(
1 − 1). Therefore, -D2 exists when 
1 > 1. The parameter 
1 determines

whether or not the HIV-specific CTL-mediated immune response is stimulated.
The threshold parameters are given as follows:


0 = W0H1 [aεη2 + λH2 (bη1H3 + εη3)]

aε (γ + λ)
, 
1 = λσH2U2

aπ
.

�	

5 Global stability analysis

In this section, we prove the global asymptotic stability of all equilibria by constructing
Lyapunov functional following the method presented in [45–49]. Define �(x) = x − 1 −
ln x . Denote (W,U, M, N , P) = (W (t),U (t), M(t), N (t), P(t)) and (Wϕ,Uϕ, Mϕ, Nϕ) =
(W (t − ϕ),U (t − ϕ), M(t − ϕ), N (t − ϕ)).

Theorem 1 If 
0 ≤ 1, then -D0 is globally asymptotically stable (G.A.S).

Proof Construct a Lyapunov functional candidate �0(W,U, M, N , P) as follows:

�0 = W0�

(
W

W0

)

+ 1

H1
U + W0 (bη1H3 + εη3)

aε
M + η1W0

ε
N + μW0 (bη1H3 + εη3)

σaε
P

+ 1

H1

κ1∫

0

H̄1(ϕ)

t∫

t−ϕ

W (�) [η1N (�) + η2U (�) + η3M(�)] d�dϕ

+ λW0 (bη1H3 + εη3)

aε

κ2∫

0

H̄2(ϕ)

t∫

t−ϕ

U (�)d�dϕ + bη1W0

ε

κ3∫

0

H̄3(ϕ)

t∫

t−ϕ

M(�)d�dϕ.

It is seen that, �0(W,U, M, N , P) > 0 for all W,U, M, N , P > 0, and �0 has a global

minimum at -D0. We calculate d�0
dt along the solutions of model (3) as:

d�0

dt
=
(

1 − W0

W

)

(ρ − αW − η1WN − η2WU − η3WM)

+ 1

H1

⎡

⎣

κ1∫

0

H̄1(ϕ)Wϕ

(
η1Nϕ + η2Uϕ + η3Mϕ

)
dϕ − (λ + γ )U

⎤

⎦

+ W0 (bη1H3 + εη3)

aε

⎡

⎣λ

κ2∫

0

H̄2(ϕ)Uϕdϕ − aM − μPM

⎤

⎦

+ η1W0

ε

⎡

⎣b

κ3∫

0

H̄3(ϕ)Mϕdϕ − εN

⎤

⎦+ μW0 (bη1H3 + εη3)

σaε
(σ PM − π P)
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+ 1

H1

κ1∫

0

H̄1(ϕ)
[
W (η1N + η2U + η3M) − Wϕ

(
η1Nϕ + η2Uϕ + η3Mϕ

)]
dϕ

+ λW0 (bη1H3 + εη3)

aε

κ2∫

0

H̄2(ϕ)
(
U −Uϕ

)
dϕ + bη1W0

ε

κ3∫

0

H̄3(ϕ)
(
M − Mϕ

)
dϕ

(14)

Collecting terms of Eq. (14), we get

d�0

dt
=
(

1 − W0

W

)

(ρ − αW ) + η2W0U − λ + γ

H1
U

+ λW0H2 (bη1H3 + εη3)

aε
U − μπW0 (bη1H3 + εη3)

σaε
P.

Using W0 = ρ/α, we obtain

d�0

dt
= −α

(W − W0)
2

W
+ λ + γ

H1

[
W0H1 {aεη2 + λH2 (bη1H3 + εη3)}

aε (λ + γ )
− 1

]

U

− μπW0 (bη1H3 + εη3)

σaε
P

= −α
(W − W0)

2

W
+ λ + γ

H1
(
0 − 1)U − μπW0 (bη1H3 + εη3)

σaε
P.

Therefore, d�0
dt ≤ 0 for all W,U, M, N , P > 0 with equality holding when W = W0 and

U = P = 0. Let ϒ0 =
{
(W,U, M, N , P) : d�0

dt = 0
}

and ϒ
′
0 be the largest invariant subset

of ϒ0. The solutions of system (3) converge to ϒ
′
0 [42]. The set ϒ

′
0 is invariant and contains

elements which satisfy W (t) = W0 and U (t) = P(t) = 0. According to the LaSalle’s
invariance principle, limt→∞ W (t) = W0 and limt→∞ U (t) = limt→∞ P(t) = 0. Then,
Ẇ (t) = 0 and U̇ (t) = Ṗ(t) = 0. From the third and fourth equations of system (3), we have

Ṁ(t) = − aM(t), (15)

Ṅ (t) = b

κ3∫

0

H̄3(ϕ)Mϕdϕ − εN (t). (16)

We define a Lyapunov function:

�̃0 = M(t) + a

2bH3
N (t) + a

2H3

κ3∫

0

H̄3(ϕ)

t∫

t−ϕ

M(�)d�dϕ.

Therefore, the time derivative of �̃0 along the solutions of system (15)–(16) can be calculated
as follows:

d�̃0

dt
= −a

2

(

M(t) + ε

bH3
N (t)

)

≤ 0.

Clearly, d�̃0
dt = 0 if and only if M(t) = N (t) = 0 for all t . Let ϒ

′′
0 =

{
(W,U, M, N , P) ∈ ϒ

′
0 : d�̃0

dt = 0
}

. It follows that ϒ
′′
0 =

{
(W,U, M, N , P) ∈ ϒ

′
0 :

123
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W = W0,U = M = N = P = 0} = {-D0}. Hence, all solution trajectories approach -D0

and this means that -D0 is G.A.S [42,43]. �	
Lemma 1 If 
1 ≤ 1, then M1 ≤ M2.

Proof Let 
1 ≤ 1, then λσH2U2
aπ

≤ 1 and hence

U2 ≤ aπ

λσH2

⇒ −B̃ +

√
B̃2 − 4 ÃC̃

2 Ã
≤ aπ

λσH2


⇒
√

B̃2 − 4 ÃC̃ ≤ 2 Ãaπ + λσH2 B̃

λσH2


⇒
(

2 Ãaπ + λσH2 B̃

λσH2

)2

+ 4 ÃC̃ − B̃2 ≥ 0.

Using Eqs. (10) and (13), we obtain

4aπεη2σ(γ + λ)2 [aεη2 + λH2 (bη1H3 + εη3)]

λ2H2
2

(M2 − M1) ≥ 0.

Hence, M1 ≤ M2. �	
We consider the following equalities to be used in the proceeding theorems:

ln

(
WϕNϕ

WN

)

= ln

(
WϕNϕUn

WnNnU

)

+ ln

(
Wn

W

)

+ ln

(
NnU

NUn

)

,

ln

(
WϕUϕ

WU

)

= ln

(
WϕUϕ

WnU

)

+ ln

(
Wn

W

)

,

ln

(
WϕMϕ

WM

)

= ln

(
WϕMϕUn

WnMnU

)

+ ln

(
Wn

W

)

+ ln

(
MnU

MUn

)

,

ln

(
Uϕ

U

)

= ln

(
UϕMn

UnM

)

+ ln

(
UnM

UMn

)

,

ln

(
Mϕ

M

)

= ln

(
MϕNn

MnN

)

+ ln

(
MnN

MNn

)

, n = 1, 2. (17)

�	
Theorem 2 Suppose that 
1 ≤ 1 < 
0, then -D1 is G.A.S.

Proof We define a functional �1(W,U, M, N , P) as:

�1 = W1�

(
W

W1

)

+ 1

H1
U1�

(
U

U1

)

+ W1 (bη1H3 + εη3)

aε
M1�

(
M

M1

)

+ η1W1

ε
N1�

(
N

N1

)

+ μW1 (bη1H3 + εη3)

σaε
P + η1W1N1

H1

κ1∫

0

H̄1(ϕ)

t∫

t−ϕ

�

(
W (�)N (�)

W1N1

)

d�dϕ

+ η2W1U1

H1

κ1∫

0

H̄1(ϕ)

t∫

t−ϕ

�

(
W (�)U (�)

W1U1

)

d�dϕ

123
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+ η3W1M1

H1

κ1∫

0

H̄1(ϕ)

t∫

t−ϕ

�

(
W (�)M(�)

W1M1

)

d�dϕ

+ λW1 (bη1H3 + εη3)U1

aε

κ2∫

0

H̄2(ϕ)

t∫

t−ϕ

�

(
U (�)

U1

)

d�dϕ

+ bη1W1M1

ε

κ3∫

0

H̄3(ϕ)

t∫

t−ϕ

�

(
M(�)

M1

)

d�dϕ.

Calculating d�1
dt as:

d�1

dt
=
(

1 − W1

W

)

(ρ − αW − η1WN − η2WU − η3WM)

+ 1

H1

(

1 − U1

U

)
⎡

⎣

κ1∫

0

H̄1(ϕ)Wϕ

(
η1Nϕ + η2Uϕ + η3Mϕ

)
dϕ − (λ + γ )U

⎤

⎦

+ W1 (bη1H3 + εη3)

aε

(

1 − M1

M

)
⎡

⎣λ

κ2∫

0

H̄2(ϕ)Uϕdϕ − aM − μPM

⎤

⎦

+ η1W1

ε

(

1 − N1

N

)
⎡

⎣b

κ3∫

0

H̄3(ϕ)Mϕdϕ − εN

⎤

⎦+ μW1 (bη1H3 + εη3)

σaε

× (σ PM − π P) + η1W1N1

H1

κ1∫

0

H̄1(ϕ)

[
WN

W1N1
− WϕNϕ

W1N1
+ ln

(
WϕNϕ

WN

)]

dϕ

+ η2W1U1

H1

κ1∫

0

H̄1(ϕ)

[
WU

W1U1
− WϕUϕ

W1U1
+ ln

(
WϕUϕ

WU

)]

dϕ

+ η3W1M1

H1

κ1∫

0

H̄1(ϕ)

[
WM

W1M1
− WϕMϕ

W1M1
+ ln

(
WϕMϕ

WM

)]

dϕ

+ λW1 (bη1H3 + εη3)U1

aε

κ2∫

0

H̄2(ϕ)

[
U

U1
− Uϕ

U1
+ ln

(
Uϕ

U

)]

dϕ

+ bη1W1M1

ε

κ3∫

0

H̄3(ϕ)

[
M

M1
− Mϕ

M1
+ ln

(
Mϕ

M

)]

dϕ. (18)

Collecting terms of Eq. (18), we derive

d�1

dt
=
(

1 − W1

W

)

(ρ − αW ) + η2W1U − λ + γ

H1
U − η1

H1

κ1∫

0

H̄1(ϕ)
WϕNϕU1

U
dϕ

123
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− η2

H1

κ1∫

0

H̄1(ϕ)
WϕUϕU1

U
dϕ − η3

H1

κ1∫

0

H̄1(ϕ)
WϕMϕU1

U
dϕ + λ + γ

H1
U1

− λW1 (bη1H3 + εη3)

aε

κ2∫

0

H̄2(ϕ)
UϕM1

M
dϕ + W1 (bη1H3 + εη3)

ε
M1

+ μW1 (bη1H3 + εη3)

aε
PM1 − bη1W1

ε

κ3∫

0

H̄3(ϕ)
MϕN1

N
dϕ + η1W1N1

− μπW1 (bη1H3 + εη3)

σaε
P + η1W1N1

H1

κ1∫

0

H̄1(ϕ) ln

(
WϕNϕ

WN

)

dϕ

+ η2W1U1

H1

κ1∫

0

H̄1(ϕ) ln

(
WϕUϕ

WU

)

dϕ + η3W1M1

H1

κ1∫

0

H̄1(ϕ) ln

(
WϕMϕ

WM

)

dϕ

+ λW1H2 (bη1H3 + εη3)

aε
U + λW1 (bη1H3 + εη3)U1

aε

κ2∫

0

H̄2(ϕ) ln

(
Uϕ

U

)

dϕ

+ bη1W1M1

ε

κ3∫

0

H̄3(ϕ) ln

(
Mϕ

M

)

dϕ. (19)

Using the equilibrium conditions for -D1, we get

ρ = αW1 + η1W1N1 + η2W1U1 + η3W1M1,

η1W1N1 + η2W1U1 + η3W1M1 = λ + γ

H1
U1,

λH2U1

a
= M1, N1 = bH3M1

ε
.

In addition,

η1W1N1 + η3W1M1 = W1 (bη1H3 + εη3)

ε
M1 = λW1H2 (bη1H3 + εη3)

aε
U1.

Then, we obtain

d�1

dt
=
(

1 − W1

W

)

(αW1 − αW ) + (η1W1N1 + η2W1U1 + η3W1M1)

(

1 − W1

W

)

− η1W1N1

H1

κ1∫

0

H̄1(ϕ)
WϕNϕU1

W1N1U
dϕ − η2W1U1

H1

κ1∫

0

H̄1(ϕ)
WϕUϕ

W1U
dϕ

− η3W1M1

H1

κ1∫

0

H̄1(ϕ)
WϕMϕU1

W1M1U
dϕ + η1W1N1 + η2W1U1 + η3W1M1

− η1W1N1 + η3W1M1

H2

κ2∫

0

H̄2(ϕ)
UϕM1

U1M
dϕ + η1W1N1 + η3W1M1

123
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+ μW1 (bη1H3 + εη3)

aε
PM1 − η1W1N1

H3

κ3∫

0

H̄3(ϕ)
MϕN1

M1N
dϕ + η1W1N1

− μπW1 (bη1H3 + εη3)

σaε
P + η1W1N1

H1

κ1∫

0

H̄1(ϕ) ln

(
WϕNϕ

WN

)

dϕ

+ η2W1U1

H1

κ1∫

0

H̄1(ϕ) ln

(
WϕUϕ

WU

)

dϕ + η3W1M1

H1

κ1∫

0

H̄1(ϕ) ln

(
WϕMϕ

WM

)

dϕ

+ η1W1N1 + η3W1M1

H2

κ2∫

0

H̄2(ϕ) ln

(
Uϕ

U

)

dϕ + η1W1N1

H3

κ3∫

0

H̄3(ϕ) ln

(
Mϕ

M

)

dϕ.

Using the equalities given by (17) in case of n = 1, we get

d�1

dt
= −α

(W − W1)
2

W
− (η1W1N1 + η2W1U1 + η3W1M1)

[
W1

W
− 1 − ln

(
W1

W

)]

− η1W1N1

H1

κ1∫

0

H̄1(ϕ)

[
WϕNϕU1

W1N1U
− 1 − ln

(
WϕNϕU1

W1N1U

)]

dϕ

− η2W1U1

H1

κ1∫

0

H̄1(ϕ)

[
WϕUϕ

W1U
− 1 − ln

(
WϕUϕ

W1U

)]

dϕ

− η3W1M1

H1

κ1∫

0

H̄1(ϕ)

[
WϕMϕU1

W1M1U
− 1 − ln

(
WϕMϕU1

W1M1U

)]

dϕ

− η1W1N1 + η3W1M1

H2

κ2∫

0

H̄2(ϕ)

[
UϕM1

U1M
− 1 − ln

(
UϕM1

U1M

)]

dϕ

− η1W1N1

H3

κ3∫

0

H̄3(ϕ)

[
MϕN1

M1N
− 1 − ln

(
MϕN1

M1N

)]

dϕ

+ μW1 (bη1H3 + εη3)

aε

(
M1 − π

σ

)
P. (20)

Therefore, Eq. (20) becomes

d�1

dt
= −α

(W − W1)
2

W
− η1W1N1

H1

κ1∫

0

H̄1(ϕ)

[

�

(
WϕNϕU1

W1N1U

)

+ �

(
W1

W

)]

dϕ

− η2W1U1

H1

κ1∫

0

H̄1(ϕ)

[

�

(
WϕUϕ

W1U

)

+ �

(
W1

W

)]

dϕ

− η3W1M1

H1

κ1∫

0

H̄1(ϕ)

[

�

(
WϕMϕU1

W1M1U

)

+ �

(
W1

W

)]

dϕ

123
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− η1W1N1 + η3W1M1

H2

κ2∫

0

H̄2(ϕ)�

(
UϕM1

U1M

)

dϕ

− η1W1N1

H3

κ3∫

0

H̄3(ϕ)�

(
MϕN1

M1N

)

dϕ

+ μW1 (bη1H3 + εη3)

aε
(M1 − M2) P.

Using Lemma 1 and since 
1 ≤ 1 then M1 ≤ M2 and d�1
dt ≤ 0 for all W,U, M, N , P > 0

with equality holding when W = W1, P = 0 and � = 0. Let ϒ ′
1 be the largest invariant

subset of ϒ1 =
{
(W,U, M, N , P) : d�1

dt = 0
}

. The trajectories of system (3) converge to

ϒ
′
1. The set ϒ

′
1 is invariant and contains elements with W (t) = W1 and � = 0, i.e.,

WϕNϕU1

W1N1U
= WϕUϕ

W1U
= WϕMϕU1

W1M1U
= UϕM1

U1M
= MϕN1

M1N
= 1, (21)

for all t ∈ [0, κ]. If W (t) = W1, then from Eq. (21), we get U (t) = U1, M(t) = M1 and
N (t) = N1. Then, ϒ ′

1 = {-D1} and -D1 is G.A.S using LaSalle’s invariance principle. �	
Theorem 3 Suppose that 
1 > 1, then -D2 is G.A.S.

Proof Define a function �2(W,U, M, N , P) as:

�2 = W2�

(
W

W2

)

+ 1

H1
U2�

(
U

U2

)

+ W2 (bη1H3 + εη3)

ε (a + μP2)
M2�

(
M

M2

)

+ η1W2

ε
N2�

(
N

N2

)

+ μW2 (bη1H3 + εη3)

σε (a + μP2)
P2�

(
P

P2

)

+ η1W2N2

H1

κ1∫

0

H̄1(ϕ)

t∫

t−ϕ

�

(
W (�)N (�)

W2N2

)

d�dϕ

+ η2W2U2

H1

κ1∫

0

H̄1(ϕ)

t∫

t−ϕ

�

(
W (�)U (�)

W2U2

)

d�dϕ

+ η3W2M2

H1

κ1∫

0

H̄1(ϕ)

t∫

t−ϕ

�

(
W (�)M(�)

W2M2

)

d�dϕ

+ λW2 (bη1H3 + εη3)U2

ε (a + μP2)

κ2∫

0

H̄2(ϕ)

t∫

t−ϕ

�

(
U (�)

U2

)

d�dϕ

+ bη1W2M2

ε

κ3∫

0

H̄3(ϕ)

t∫

t−ϕ

�

(
M(�)

M2

)

d�dϕ.

We calculate d�2
dt as:

d�2

dt
=
(

1 − W2

W

)

(ρ − αW − η1WN − η2WU − η3WM)

123
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+ 1

H1

(

1 − U2

U

)
⎡

⎣

κ1∫

0

H̄1(ϕ)Wϕ

(
η1Nϕ + η2Uϕ + η3Mϕ

)
dϕ − (λ + γ )U

⎤

⎦

+ W2 (bη1H3 + εη3)

ε (a + μP2)

(

1 − M2

M

)
⎡

⎣λ

κ2∫

0

H̄2(ϕ)Uϕdϕ − aM − μPM

⎤

⎦

+ η1W2

ε

(

1 − N2

N

)
⎡

⎣b

κ3∫

0

H̄3(ϕ)Mϕdϕ − εN

⎤

⎦+ μW2 (bη1H3 + εη3)

σε (a + μP2)

(

1 − P2

P

)

× (σ PM − π P) + η1W2N2

H1

κ1∫

0

H̄1(ϕ)

[
WN

W2N2
− WϕNϕ

W2N2
+ ln

(
WϕNϕ

WN

)]

dϕ

+ η2W2U2

H1

κ1∫

0

H̄1(ϕ)

[
WU

W2U2
− WϕUϕ

W2U2
+ ln

(
WϕUϕ

WU

)]

dϕ

+ η3W2M2

H1

κ1∫

0

H̄1(ϕ)

[
WM

W2M2
− WϕMϕ

W2M2
+ ln

(
WϕMϕ

WM

)]

dϕ

+ λW2 (bη1H3 + εη3)U2

ε (a + μP2)

κ2∫

0

H̄2(ϕ)

[
U

U2
− Uϕ

U2
+ ln

(
Uϕ

U

)]

dϕ

+ bη1W2M2

ε

κ3∫

0

H̄3(ϕ)

[
M

M2
− Mϕ

M2
+ ln

(
Mϕ

M

)]

dϕ. (22)

Collecting terms of Eq. (22), we derive

d�2

dt
=
(

1 − W2

W

)

(ρ − αW ) + η2W2U + η3W2M − λ + γ

H1
U − η1

H1

κ1∫

0

H̄1(ϕ)
WϕNϕU2

U
dϕ

− η2

H1

κ1∫

0

H̄1(ϕ)
WϕUϕU2

U
dϕ − η3

H1

κ1∫

0

H̄1(ϕ)
WϕMϕU2

U
dϕ

+ λ + γ

H1
U2 − aW2 (bη1H3 + εη3)

ε (a + μP2)
M − λW2 (bη1H3 + εη3)

ε (a + μP2)

κ2∫

0

H̄2(ϕ)
UϕM2

M
dϕ

+ aW2 (bη1H3 + εη3)

ε (a + μP2)
M2 + μW2 (bη1H3 + εη3)

ε (a + μP2)
PM2 − bη1W2

ε

κ3∫

0

H̄3(ϕ)
MϕN2

N
dϕ

+ η1W2N2 − μπW2 (bη1H3 + εη3)

σε (a + μP2)
P − μW2 (bη1H3 + εη3)

ε (a + μP2)
P2M

+ μπW2 (bη1H3 + εη3)

σε (a + μP2)
P2 + η1W2N2

H1

κ1∫

0

H̄1(ϕ) ln

(
WϕNϕ

WN

)

dϕ

123
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+ η2W2U2

H1

κ1∫

0

H̄1(ϕ) ln

(
WϕUϕ

WU

)

dϕ + η3W2M2

H1

κ1∫

0

H̄1(ϕ) ln

(
WϕMϕ

WM

)

dϕ

+ λW2H2 (bη1H3 + εη3)

ε (a + μP2)
U + λW2 (bη1H3 + εη3)U2

ε (a + μP2)

κ2∫

0

H̄2(ϕ) ln

(
Uϕ

U

)

dϕ

+ bH3η1W2

ε
M + bη1W2M2

ε

κ3∫

0

H̄3(ϕ) ln

(
Mϕ

M

)

dϕ. (23)

Using the equilibrium conditions for -D 2:

ρ = αW2 + η1W2N2 + η2W2U2 + η3W2M2,

η1W2N2 + η2W2U2 + η3W2M2 = λ + γ

H1
U2,

λH2U2 = (a + μP2) M2, M2 = π

σ
, N2 = bH3

ε
M2.

Further,

η1W2N2 + η3W2M2 = W2 (bη1H3 + εη3)

ε
M2 = λW2H2 (bη1H3 + εη3)

ε (a + μP2)
U2.

Therefore, we obtain

d�2

dt
=
(

1 − W2

W

)

(αW2 − αW ) + (η1W2N2 + η2W2U2 + η3W2M2)

(

1 − W2

W

)

− η1W2N2

H1

κ1∫

0

H̄1(ϕ)
WϕNϕU2

W2N2U
dϕ − η2W2U2

H1

κ1∫

0

H̄1(ϕ)
WϕUϕ

W2U
dϕ

− η3W2M2

H1

κ1∫

0

H̄1(ϕ)
WϕMϕU2

W2M2U
dϕ + η1W2N2 + η2W2U2 + η3W2M2

− η1W2N2 + η3W2M2

H2

κ2∫

0

H̄2(ϕ)
UϕM2

U2M
dϕ + η1W2N2 + η3W2M2

− η1W2N2

H3

κ3∫

0

H̄3(ϕ)
MϕN2

M2N
dϕ + η1W2N2 + η1W2N2

H1

κ1∫

0

H̄1(ϕ) ln

(
WϕNϕ

WN

)

dϕ

+ η2W2U2

H1

κ1∫

0

H̄1(ϕ) ln

(
WϕUϕ

WU

)

dϕ + η3W2M2

H1

κ1∫

0

H̄1(ϕ) ln

(
WϕMϕ

WM

)

dϕ

+ η1W2N2 + η3W2M2

H2

κ2∫

0

H̄2(ϕ) ln

(
Uϕ

U

)

dϕ + η1W2N2

H3

κ3∫

0

H̄3(ϕ) ln

(
Mϕ

M

)

dϕ.

(24)
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Using the equalities given by (17) in case of n = 2, we get

d�2

dt
= −α

(W − W2)
2

W
− (η1W2N2 + η2W2U2 + η3W2M2)

[
W2

W
− 1 − ln

(
W2

W

)]

− η1W2N2

H1

κ1∫

0

H̄1(ϕ)

[
WϕNϕU2

W2N2U
− 1 − ln

(
WϕNϕU2

W2N2U

)]

dϕ

− η2W2U2

H1

κ1∫

0

H̄1(ϕ)

[
WϕUϕ

W2U
− 1 − ln

(
WϕUϕ

W2U

)]

dϕ

− η3W2M2

H1

κ1∫

0

H̄1(ϕ)

[
WϕMϕU2

W2M2U
− 1 − ln

(
WϕMϕU2

W2M2U

)]

dϕ

− η1W2N2 + η3W2M2

H2

κ2∫

0

H̄2(ϕ)

[
UϕM2

U2M
− 1 − ln

(
UϕM2

U2M

)]

dϕ

− η1W2N2

H3

κ3∫

0

H̄3(ϕ)

[
MϕN2

M2N
− 1 − ln

(
MϕN2

M2N

)]

dϕ. (25)

Eq. (25) can be rewritten as follows:

d�2

dt
= −α

(W − W2)
2

W
− η1W2N2

H1

κ1∫

0

H̄1(ϕ))

[

�

(
WϕNϕU2

W2N2U

)

+ �

(
W2

W

)]

dϕ

− η2W2U2

H1

κ1∫

0

H̄1(ϕ)

[

�

(
WϕUϕ

W2U

)

+ �

(
W2

W

)]

dϕ

− η3W2M2

H1

κ1∫

0

H̄1(ϕ)

[

�

(
WϕMϕU2

W2M2U

)

+ �

(
W2

W

)]

dϕ

− η1W2N2 + η3W2M2

H2

κ2∫

0

H̄2(ϕ)�

(
UϕM2

U2M

)

dϕ

− η1W2N2

H3

κ3∫

0

H̄3(ϕ)�

(
MϕN2

M2N

)

dϕ.

Hence, if 
1 > 1, then d�2
dt ≤ 0 for all W,U, M, N , P > 0 with equality holding when

W = W2 and � = 0. The solutions of system (3) tend to ϒ
′
2 the largest invariant subset of

ϒ2 =
{
(W,U, M, N , P) : d�2

dt = 0
}

. The set ϒ
′
2 contains elements with W (t) = W2 and

� = 0, i.e.,

WϕNϕU2

W2N2U
= WϕUϕ

W2U
= WϕMϕU2

W2M2U
= UϕM2

U2M
= MϕN2

M2N
= 1, (26)
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Table 2 Some values of the parameters of model (27)

Parameter Value Parameter Value Parameter Value Parameter Value

ρ 10 a 0.5 μ 0.2 �3 0.3

α 0.01 γ 0.2 ε 2 ϕ1 Varied

η1 Varied λ 0.2 σ Varied ϕ2 Varied

η2 Varied b 5 �1 0.1 ϕ3 Varied

η3 Varied π 0.1 �2 0.2

for all t ∈ [0, κ]. If W (t) = W2, then from Eq. (26), we get U (t) = U2, M(t) = M2 and
N (t) = N2. Substituting in the third equation of system (3), we obtain

0 = Ṁ(t) = λU2 − aM2 − μP(t)M2,

which yields P(t) = P2 for all t. Therefore, ϒ
′
2 = {-D2}. LaSalle’s invariance principle

implies that -D2 is G.A.S.
�	

6 Numerical results

In this section, we illustrate the results of Theorems 1-3 by performing numerical simulations.
We address the influence of antiviral drugs efficacy, CTC transmission and time delays on
the dynamical behavior of the system. For numerical purposes, we transform the distributed-
time delay model (3) to a discrete-time delay one by choosing a Dirac delta function D(.) as
a special form of the kernel �i (.) as [9]:

�i (x) = D (x − ϕi ) , ϕi ∈ [0, κi ] , i = 1, 2, 3.

Let κi tends to ∞, then the properties of D(.) imply that:

∞∫

0

� j (ς)dς = 1, H j =
∞∫

0

D
(
ς − ϕ j

)
e−� jς dς = e−� jϕ j , j = 1, 2, 3.

Thus, model (3) becomes:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ẇ = ρ − αW − η1WN − η2WU − η3WM,

U̇ = e−�1ϕ1Wϕ1

(
η1Nϕ1 + η2Uϕ1 + η3Mϕ1

)− (λ + γ )U,

Ṁ = λe−�2ϕ2Uϕ2 − aM − μPM,

Ṅ = be−�3ϕ3 Mϕ3 − εN ,

Ṗ = σ PM − π P.

(27)

For model (27), the threshold parameters are given by:


0 = W0e−�1ϕ1
[
aεη2 + λe−�2ϕ2

(
bη1e−�3ϕ3 + εη3

)]

aε (γ + λ)
, 
1 = λσe−�2ϕ2U2

aπ
. (28)

To solve system (27) numerically, we fix the values of some parameters (see Table 2)
and the others will be varied. We have chosen the values of parameters of the model just
to perform the numerical simulations. This is indeed because the difficulty of getting real
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(a) (b)

(c) (d)

(e)

Fig. 1 The behavior of solution trajectories of system (27) in case of 
0 ≤ 1

data from HIV infected patients; however, if one has real data, then the parameters of the
model can be estimated and the validity of the model can be established. We note that the
stability of the three equilibria is controlled by two threshold parameters 
0 and 
1. We
can see that 
0 depends on the incidence rate constants η1, η2 and η3. These parameters can
significantly affected by the antiviral drug therapy as will be shown below. On the other hand,
the proliferation rate constant for effective HIV-specific CTLs σ can significantly change the
parameter 
1. Therefore, to verify the results of Theorems 1-3 we vary the parameters η1,
η2, η3 and σ . In addition, to address the effect of the time delays on the HIV dynamics we
vary the delays parameters ϕ1, ϕ2 and ϕ3.

6.1 Stability of the equilibria

We consider the values ϕ1 = 3, ϕ2 = 2, ϕ3 = 1 and choose the following three different
initial conditions for model (27):
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(a) (b)

(c) (d)

(e)

Fig. 2 The behavior of solution trajectories of system (27) in case of 
1 ≤ 1 < 
0

IV-1 : (W (ϕ),U (ϕ), M(ϕ), N (ϕ), P(ϕ)) = (500, 5, 0.8, 0.8, 3), (Solid lines in the fig-
ures),

IV-2: (W (ϕ),U (ϕ), M(ϕ), N (ϕ), P(ϕ)) = (650, 4, 0.6, 0.6, 2), (Dashed lines in the
figures),

IV-3: (W (ϕ),U (ϕ), M(ϕ), N (ϕ), P(ϕ)) = (800, 3, 0.4, 0.4, 1), (Dotted lines in the fig-
ures), where ϕ ∈ [−3, 0]. Choosing selected values of η1 , η2, η3 and σ under the mentioned
initial conditions leads to the following cases:

Stability of -D0. η1 = 0.0003, η2 = 0.00001, η3 = 0.0001 and σ = 0.002. With these
parameters, we have 
0 = 0.34 < 1. Figure 1 displays that the trajectories initiating with
IV-1, IV2 and IV-3 reach the equilibrium -D0 = (1000, 0, 0, 0, 0). This shows that -D0 is
G.A.S according to Theorem 1. In this case, the HIV particles will be cleared from the body.

Stability of -D1. η1 = 0.003, η2 = 0.00002, η3 = 0.001 and σ = 0.002. With such a
choice, we get 
1 = 0.10 < 1 < 3.29 = 
0. It is clear that the equilibrium point -D1 exists
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(a) (b)

(c) (d)

(e)

Fig. 3 The behavior of solution trajectories of system (27) in case of 
1 > 1

with -D1 = (303.7, 12.90, 3.46, 6.40, 0). Figure 2 displays that the trajectories initiating with
IV-1, IV2 and IV-3 tend to -D 1. Therefore, the numerical results support Theorem 2. Hence,
a chronic HIV infection with inactivated CTL-mediated immune response is attained.

Stability of -D2. η1 = 0.003, η2 = 0.00002, η3 = 0.001 and σ = 0.2. Then, we calculate

1 = 2.50 > 1. In Fig. 3, we show that -D2 = (747.86, 4.67, 0.5, 0.93, 3.76) exists and it is
G.A.S and this agrees with Theorem 3. Hence, a chronic HIV infection with CTL-mediated
immune response is attained.

6.2 Effect of antiviral drugs

To study the effect of antiviral drugs on the HIV dynamics, we incorporate three types of
antiviral drugs into model (27) as:
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(a) (b)

(c) (d)

(e)

Fig. 4 The influence of antiviral drug efficacy on the behavior of solution trajectories of system (29)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ẇ = ρ − αW − (1 − ξ1)η1WN − (1 − ξ2)η2WU − (1 − ξ3)η3WM,

U̇ = e−�1ϕ1Wϕ1

[
(1 − ξ1)η1Nϕ1 + (1 − ξ2)η2Uϕ1 + (1 − ξ3)η3Mϕ1

]− (λ + γ )U,

Ṁ = λe−�2ϕ2Uϕ2 − aM − μPM,

Ṅ = be−�3ϕ3 Mϕ3 − εN ,

Ṗ = σ PM − π P,

(29)

where ξ1 ∈ [0, 1] is the efficacy of antiviral therapy in blocking infection by VTC mechanism.
Moreover, ξ2 ∈ [0, 1] and ξ3 ∈ [0, 1] are efficacies of therapy in blocking infection by silent
HIV-infected CTC and active HIV-infected CTC mechanisms, respectively [50].

For model (29), the basic HIV reproduction number is given by:


0(29)(ξ1, ξ2, ξ3)

= W0e−�1ϕ1
[
aε(1 − ξ2)η2 + λe−�2ϕ2

{
bη1(1 − ξ1)e−�3ϕ3 + εη3(1 − ξ3)

}]

aε (γ + λ)
.
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(a) (b)

(c) (d)

(e)

Fig. 5 The influence of time delay parameters on the behavior of solution trajectories of system (29)

We let ξ = ξ1 = ξ2 = ξ3, then


0(29)(ξ) = (1 − ξ)
W0e−�1ϕ1

[
aεη2 + λe−�2ϕ2

(
bη1e−�3ϕ3 + εη3

)]

aε (γ + λ)
. (30)

Now, we want to determine the minimum drug efficacy that stabilizes the system around the
infection-free equilibrium and consequently the viruses will be cleared from the body. Let

0(29)(ξ) ≤ 1, then we obtain

1 − ξ ≤ aε (γ + λ)

W0e−�1ϕ1
[
aεη2 + λe−�2ϕ2

(
bη1e−�3ϕ3 + εη3

)]


⇒ ξ ≥ 1 − aε (γ + λ)

W0e−�1ϕ1
[
aεη2 + λe−�2ϕ2

(
bη1e−�3ϕ3 + εη3

)] .
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Since 0 ≤ ξ ≤ 1, then for ξmin
(29)

< ξ ≤ 1, the infection-free equilibrium -D0 of model (29) is
G.A.S, where

ξmin
(29)

= max

{

0, 1 − aε (γ + λ)

W0e−�1ϕ1
[
aεη2 + λe−�2ϕ2

(
bη1e−�3ϕ3 + εη3

)]

}

. (31)

Using the values of the parameters given in Table 2 and choosing the parameters ϕ1 = 3,

ϕ2 = 2, ϕ3 = 1, η1 = 0.003, η2 = 0.00002, η3 = 0.001 and σ = 0.2. We compute ξmin
(29)

as ξmin
(29)

= 0.6963 and then we have the following scenarios:

(i) If 0.6963 ≤ ξ ≤ 1, then 
0(29)(ξ) ≤ 1 and hence -D0 is G.A.S. In this scenario, the
virus particles will be removed from the body due to the strength of antiviral treatment.

(ii) If 0 ≤ ξ < 0.6963, then 
0(29)(ξ) > 1 and thus one of the other equilibria is G.A.S.
This means that the HIV particles cannot be eradicated from the body due to less efficient
treatment.

To study the influence of drug efficacies on the HIV dynamics model (29), we consider
different values of ξ and solve system (29) under the following initial condition:

(W (ϕ),U (ϕ), M(ϕ), N (ϕ), P(ϕ)) = (600, 2.5, 0.5, 4, 0.5), where ϕ ∈ [−3, 0].
The plots given in Fig. 4 show the solution trajectories of the system with different drug
efficacies. We observe that as the drug efficacy is increased, the concentration of healthy
CD4+ T cells is increased, while the concentrations of silent/active HIV-infected cells, free
HIV particles, and HIV-specific CTLs are decreased due to the strength of the usage drugs.

6.3 Effect of time delays on the HIV dynamics

In this part, we vary the delay parameters ϕ1, ϕ2, ϕ3 and fix the parameters η1 = 0.003,

η2 = 0.00002, η3 = 0.001,σ = 0.2 and ξ = 0. Since 
0 given by Eq. (30) depends on ϕ1,

ϕ2 and ϕ3, then changing the parameters ϕ1, ϕ2 and ϕ3 will change the stability of equilibria.
Let us take the following values:

(I) ϕ1 = ϕ2 = ϕ3 = 0,

(II) ϕ1 = 4, ϕ2 = 3 and ϕ3 = 2,

(III) ϕ1 = 5, ϕ2 = 4 and ϕ3 = 3,

(V) ϕ1 = 7, ϕ2 = 6 and ϕ3 = 5.

With these values, we solve system (29) under initial condition IV-3. The numerical
solutions are displayed in Fig. 5. We observe that inclusion of time delays can significantly
increase the concentration of healthy CD4+ T cells and reduce the concentrations of other
compartments.

In Table 3, we present the values 
0(29) for selected values of ϕ1, ϕ2 and ϕ3. It is clear
that, 
0(29) is decreased when ϕ1, ϕ2 and ϕ3 are increased and the stability of -D0 will be
changed. Now, we want to calculate the critical value of the time delay that changes the
stability of -D0. To do so, we fix the parameters ϕ2 and ϕ3 and write 
0(29) as a function of
ϕ1 as:
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Table 3 The variation of 
0(29)
with respect to the delay
parameters

Delay parameters 
0(29)

ϕ1 = ϕ2 = ϕ3 = 0 8.55

ϕ1 = 3, ϕ2 = 2, ϕ3 = 1 3.29

ϕ1 = 5, ϕ2 = 4, ϕ3 = 3 1.13

ϕ1 = 6, ϕ2 = 5, ϕ3 = 4 0.69

ϕ1 = 7, ϕ2 = 6, ϕ3 = 5 0.42


0(29)(ϕ1) = W0e−�1ϕ1
[
aεη2 + λe−�2ϕ2

(
bη1e−�3ϕ3 + εη3

)]

aε (γ + λ)
.

When 
0(29) (ϕ1) ≤ 1, we obtain

ϕ1 ≥ ϕmin
1 , where ϕmin

1 = max

{

0,
1

�1
ln

W0
{
aεη2 + λe−�2ϕ2

(
bη1e−�3ϕ3 + εη3

)}

aε (γ + λ)

}

.

Therefore, if ϕ1 ≥ ϕmin
1 , then -D0 is G.A.S. Let ϕ2 = 5 and ϕ3 = 4 and compute ϕmin

1 as
ϕmin

1 = 2.22266. It follows that:

(i) If ϕ1 ≥ 2.22266, then 
0(29)(ϕ1) ≤ 1 and -D0 is G.A.S.
(ii) If ϕ1 < 2.22266, then 
0(29)(ϕ1) > 1 and -D0 will lose its stability and one of the other

equilibria will be G.A.S.

We observe that the time delay has a similar effect as the drug efficacy. This gives some
impression to develop a new class of treatment which causes an increase in the delay period
and then suppress the HIV replication.

6.4 Effects of CTC transmission

Here, we investigate the influence of different modes of transmission on the HIV dynamics
(29). We use the parameters given in Table 2 and choose the values σ = 0.05, ϕ1 = 3,

ϕ2 = 2, ϕ3 = 1 and ξ = 0 with the following initial condition:
IV-4. (W (ϕ),U (ϕ), M(ϕ), N (ϕ), P(ϕ)) = (600, 10, 2, 0.5, 1), where ϕ ∈ [−3, 0].
We choose three sets of parameters η1, η2, η3 and investigate the following illustrative

cases:
Case 1: HIV dynamics with VTC, silent HIV-infected CTC and active HIV-infected

CTC transmissions: Here, we consider the parameters η1 = 0.005, η2 = 0.002 and η3 =
0.003. Figure 6 shows that the solutions of the system approach the equilibrium -D4 =
(151.64, 15.71, 2, 3.70, 2.77).

Case 2: HIV dynamics with VTC, silent HIV-infected CTC and active HIV-infected
CTC transmissions: In this case, we choose the parameters η1 = 0.004, η2 = 0.001 and
η3 = 0.002. We can see from Fig. 6 that the trajectories of the system tend to the equilibrium
-D4 = (232.38, 14.22, 2, 3.70, 2.26).

Case 3:HIV dynamics with both VTC and active HIV-infected CTC transmissions: In this
case, we select the values η1 = 0.003, η2 = 0 and η3 = 0.001. From Fig. 6, we observe that
the solution trajectories converge to the equilibrium -D3 = (432.67, 10.51, 2, 3.70, 1.02).

Case 4: HIV dynamics with only VTC transmission: Here, we consider the values
η1 = 0.002 and η2 = η3 = 0. Figure 6 displays that the solution trajectories approach
the equilibrium -D3 = (574.44, 7.88, 2, 3.70, 0.14).
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(a) (b)

(c) (d)

(e)

Fig. 6 The evolution of HIV dynamics (29) under different modes of transmission

Case 5: HIV dynamics with only VTC transmission: In this situation, we pick the param-
eters η1 = 0.001 and η2 = η3 = 0. It is clear from Fig. 6 that the solution trajectories reach
the equilibrium -D0 = (1000, 0, 0, 0, 0).

From the above discussion, we note that the presence of silent HIV-infected CTC and/or
active HIV-infected CTC transmissions increases the infection rate. As a result, the con-
centration of healthy CD4+ T cells is decreased, while the concentrations of silent/active
HIV-infected cells, free HIV particles and HIV-specific CTLs are increased as shown in
Fig. 6.

7 Conclusion and discussion

In this paper, we formulated and analyzed an HIV dynamics model with CTL-mediated
immunity. We incorporated both VTC and CTC transmissions. We assumed that the CTC
infection has two sources, (i) the contact between healthy CD4+ T cells and silent HIV-
infected cells, and (ii) the contact between healthy CD4+ T cells and active HIV-infected cells.
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We incorporated three types of distributed-time delays into the model. We established that the
model is well posed by proving that the solutions of the model are nonnegative and bounded.
We calculated the three possible equilibria of the model, the infection-free equilibrium, -D0,
the chronic HIV infection equilibrium with inactive CTL-mediated immune response, -D1, and
the chronic HIV infection equilibrium with active CTL-mediated immune response, -D2. The
existence and global stability of the three equilibria are governed by two threshold parameters,

0 (the basic HIV reproduction number) and 
1 (the HIV specific CTL-mediated immunity
reproduction number). The global asymptotic stability of the three equilibria -D0, -D1 and
-D2 was investigated by constructing Lyapunov functionals and utilizing LaSalle’s invariance
principle. To illustrate the theoretical results, we performed some numerical simulations.
We developed the model to take into account three types of antiviral drugs. We showed
that the inclusion of CTC transmission decreases the concentration of healthy CD4+ T cells
and increases the concentrations of infected cells and free HIV particles. On the other side,
the inclusion of time delay can significantly suppress the HIV replication and increase the
concentration of healthy CD4+ T cells.

We observe that the inclusion of silent HIV-infected CTC and active HIV-infected CTC
transmissions into the HIV infection model increases the basic HIV reproduction number

0(29), since 
0(29) = 
01(29) + 
02(29) + 
03(29) > 
01(29). Therefore, neglecting the
CTC transmission will lead to under-evaluated basic reproduction number. When the CTC
is neglected then model (29) leads to the following form:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ẇ = ρ − αW − (1 − ξ)η1WN ,

U̇ = (1 − ξ)e−�1ϕ1η1Wϕ1 Nϕ1 − (λ + γ )U,

Ṁ = λe−�2ϕ2Uϕ2 − aM − μPM,

Ṅ = be−�3ϕ3 Mϕ3 − εN ,

Ṗ = σ PM − π P,

(32)

and the basic HIV reproduction number is given by


0(32)(ξ) = (1 − ξ)
W0λbη1e−(�1ϕ1+�2ϕ2+�3ϕ3)

aε (γ + λ)
.

Then, the infection-free equilibrium -D0 can be stabilized for ξmin
(32)

< ξ ≤ 1, where

ξmin
(32)

= max

{

0, 1 − aε (γ + λ)

W0λbη1e−(�1ϕ1+�2ϕ2+�3ϕ3)

}

. (33)

Comparing Eqs. (31) and (33), we get that ξmin
(32)

≤ ξmin
(29)

. Therefore, if we apply drugs

with ξ such that ξmin
(32)

≤ ξ < ξmin
(29)

, this guarantees that 
0(32)(ξ) ≤ 1 and then -D0

of system (32) is G.A.S, however, 
0(29) > 1 and then -D0 of system (29) is unstable.
Therefore, more accurate drug efficacy which is required to clear the HIV from the body
is calculated by using our proposed model. This shows the importance of considering the
effect of CTC transmission in the HIV dynamics. Consequently, this observation sheds a
light on the great importance of considering the influence of CTC transmission in the HIV
dynamics. Our proposed model (3) can be extended by incorporating age structure of the
infected cells or diffusion [51–54]. Looking ahead to further developments an interesting
perspective would be introducing a stochastic internal variable, as in [55], to account for
virus mutations which generally develops by a stochastic dynamics. Moreover, since the
exact analytical solution of our proposed HIV dynamics model is not known, therefore, we
can only obtain an approximate solution of the model. Therefore, the discrete-time version
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of the model needs to be investigated (see, e.g., [56–58]). These extensions, indeed, require
more investigations; therefore, we leave it for future works.
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