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Abstract We present the constructions of consistent interactions among the Abelian gauge
field and matter fields in the higher derivative systems. Based on the order reduction technique,
we are able to gauge the higher derivative models in the BV formalism. Inserting the equations
of motion of the auxiliary fields into the antighost number zero part in the deformed master
action, we will recover the resulting theory in the Lagrangian density form with extra higher
derivative interaction terms. Furthermore, we investigate the problems of stabilities both
in the free and coupling higher derivative dynamics using a series of additional bounded
integrals of motion. In this way, we show that the 00-component of the energy–momentum
tensors could be positive definite and therefore the higher derivative systems are all stable
before and after the deformation procedures.

1 Introduction

It is well known that most theories in physics are described by second-order ordinary or
partial differential equations while in fact, theories with higher-order Lagrangians have been
explored along the evolution of physics. Originally, the initial interest in such theories due
to the emergence of the powerful techniques of dealing with ultraviolet divergences [1,2]
and this idea has been shown to be quite successful in the study of general relativity; for
instance, adding higher derivative terms may improve the renormalizability of the gravity
or even asymptotically free [3,4]. The method to construct Hamiltonian formulation for
such higher derivative systems was firstly proposed by Ostrogradsky [5]. In particular, the
Hamiltonian obtained in such a way contains term linear in momenta which indicates that the
energy of the system is unbounded from below and generically reveals instability in classical
mechanics. At the quantum level, the presence of the linear terms naturally gives rise to the
negative norm states, commonly known as ghost states which imply negative probabilities
when the quantization procedure is considered and therefore the theory is not unitary. In
view of these fatal defects and for the purpose of curing the Ostrogradsky instability, various
attempts are put forward to modify the quantization scheme in higher derivative field theories.
One of the most influential idea is to formulate these unstable theories as a PT -symmetric
quantum mechanics involving non-Hermitian Hamiltonians [6–9], that is to say, the original
system is symmetric under combined parity reflection and time reversal. In this manner, the
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higher derivative model determines its own Hilbert space and associated positive-definite
inner product which is distinct from the usual one to eliminate the ghost states. Moreover, the
indefinite metric Dirac–Pauli quantization [10] has been applied into the Lee–Wick theories
[11,12] in order to circumvent the Ostrogradsky ghost issues. Such instabilities also can
be suppressed by complexification of the higher derivative field theories [13], where the
physical meaning of the complex theories is not yet clear. Recently, Kaparulin, Lyakhovich
and Sharapov consider a wide class of higher derivative systems in which the operators of the
equations of motion have the factorable structure [14–19]. For the models of this type, they
construct a positive integral of motion explicitly that is different from the canonical energy,
while the latter is unbounded in general due to the existence of higher derivative term. In
addition, utilizing the concept of a Lagrange anchor [14,20,21], they demonstrate that it is
possible to connect these bounded conserved quantities of motion with the time-translation
invariance which can be used to ensure the classical stability of the higher derivative dynamics.
All of these quite different approaches predict a positive spectrum of the Hamiltonian and
therefore, following the general spirits of quantization, it is not difficult to illustrate that the
higher derivative theories are the fully acceptable quantum-mechanical theories that exhibit
unitary time evolutions.

On the other hand, since the healthy theories with higher derivative terms have extra
degrees of freedom that are ghost like, these theories are necessarily constrained systems.
Furthermore, there may exist gauge symmetry in the higher derivative theories analogous to
the usual systems which is an essential component for interesting and appealing theories in
modern theoretical physics. There is no doubt that the most suitable and powerful tool to
deal with the constrained systems equipped with gauge symmetry is the BRST formulation
developed by Becchi et al. [22–24]. In this way, one of the core issues is how to construct
consistent interactions in general gauge theories within the framework of the local BRST-
cohomology [25,26]. As expounded in [27,28], a consistent deformation of the classical
action and the corresponding gauge invariance induce a consistent deformation of the master
action which meanwhile is preserved by the master equation. Generally speaking, there
are two methods to explore these deformations, the Hamiltonian BRST formalism and the
Lagrangian BV formalism. In the former one, we start with a free theory with BRST charge
and BRST-invariant Hamiltonian [29]; then we require that the nilpotency of the BRST
charge and the commutativity between the Hamiltonian and BRST charge are preserved after
the deformations [30,31]. Through solving a set of recursive equations coming from the
perturbative expansion order by order and with the analysis of the local BRST-cohomology
[32–34], it makes possible for us to derive the consistent deformations in general reducible or
irreducible gauge systems. Adding all these deformed quantities up, we can identify the first-
class Hamiltonian with the interacting gauge theory and the deformed gauge transformations
are close on-shell in such resulting system.

While in the framework of Lagrangian consistent deformations, we should double the
classical fields, the ghost fields and auxiliary fields by introducing a collection of antifields
with opposite statistics compared to their partners [35]. The antibracket is defined between
two local functionals on this extended phase space which is symmetric if both functionals
are Grassmann-even and antisymmetric in all other cases. In this field-antifield formalism,
the central role is the master action S0 that encodes all of the necessary information about
the original gauge theory including gauge transformations, the equations of motion and the
Noether’s identities. The master action S0 is a functional of ghost number 0 which is in
principle completely determined by requiring (S0, S0) = 0 and this is the so-called master
equation [36–38]. On the other hand, the construction of such solution starts with the classical
action as its boundary condition while the higher-order terms are added by assigning antifields
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an irreducible generating set of gauge transformations with gauge parameters replaced by
ghosts. The generalized BRST transformations on the whole fields space can in general
be read directly from this antibracket together with the master action [39]. Thus it follows
from the above assumption that the deformed quantity should still fulfill the master equation
and in this manner, it is not hard for us to receive and deal with the deformation equations
by means of the perturbative expansion [40–44]. Combining all of the pieces together, we
will get the total master action and if extracting the antighost number zero part, there is no
difficulty in obtaining the desired interacting theory which coincides with the one derived in
the Hamiltonian formalism as we can expect.

The outline of this paper is as follows. In Sect. 2, we simply illustrate the Ostrogradsky
ghost problem in the free higher derivative massless real scalar field theory and handle
the issue of stability utilizing a proper complexification. Then we quickly review the basic
ingredients in the framework of BRST deformation procedure and show the cohomological
derivation of the consistent interactions in this higher derivative model. In the same way,
we address the problem of the stability in the resulting Lagrangian with coupling terms. The
constructions of consistent deformations of the massive complex scalar field and Dirac spinor
field are developed in Sects. 3 and 4; also with the help of a series of conserved quantities
including the canonical energy, the explanations of the stability of higher derivative complex
systems are presented. The final section of this paper is devoted to conclusion and discussion.

2 Massless real scalar field

2.1 Stability

We consider the free Maxwell electrodynamics with higher-order derivative scalar field φ in
(1+3)-dimensional spacetime with metric gμν = diag(1,−1,−1,−1), and the Lagrangian
is described by

L = −1

4
FμνFμν + 1

2

(
∂μφ∂μφ + 1

m2 ∂μφ�∂μφ

)
(2.1)

here the field strength is defined as Fμν = ∂μAν −∂ν Aμ and m is some constant. We suppose
that the real scalar field possesses only the global symmetry and hence the above Lagrangian
is invariant under the local gauge transformation for Aμ and rigid transformation for φ as
follows

�Aμ = ∂μλ, �φ = ξ (2.2)

here the ξ is a constant. Varying the action gives us the equation of motion of the scalar field

�(� + m2)φ = 0 (2.3)

In the classical regime, there is no straightforward transition from the Lagrangian (2.1)
to the Hamiltonian formalism and Ostrogradsky generalized the usual construction of the
Hamilton function to give a canonical description of the higher derivative systems. The main
disadvantage of the Ostrogradsky’s approach is that the Hamiltonian is necessarily unbounded
from below due to the appearance of linear function of some momenta. Furthermore, this
undesired phenomenon generally cannot be cured by trying to do any alternative canonical
transformations. To be more specific, in Ostrogradsky’s formalism, the time derivative of
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field is regarded as independent dynamic variable. Therefore we define

Q = ∂0φ (2.4)

as canonical coordinate in the extended phase space. The corresponding conjugate momenta
are given by

πμ = ∂L
∂(∂0Aμ)

, θ = ∂L
∂(∂0φ)

=
(

1 + �
m2

)
∂0φ, P = ∂L

∂(∂0Q)
= − �

m2 φ (2.5)

with the aid of these expressions, we are thus led to the following canonical Hamiltonian
HOstro(Ai , πi ;φ, θ; Q, P)

HOstro = Ȧμπμ + φ̇θ + Q̇P − L

= 1

2
πiπi + 1

4
Fi j F

i j − A0∂
iπi + θQ − 1

2
m2P2 + ∂i P∂ iφ − 1

2
Q2 − 1

2
∂iφ∂ iφ

(2.6)

it is obvious to see that the Hamiltonian (2.6) is linear in the canonical momentum θ , which
implies that the energy can be lowered without any bound by increasing the momentum to
large positive or negative values and hence the system is unstable.

In order to avoid the Ostrogradsky ghosts, recently Raidal and Veermae discussed that, at
least in the Pais–Uhlenbeck oscillator case, these ghosts could be reinterpreted as physical
particles through a canonical way. The essential point of their work is that for the purpose
of the energy spectrum of the theory be bounded, the ghost degrees of freedom should be
necessarily complex [13]. Therefore after a proper complexification, the complex higher
derivative system can be consistently quantized using the rules of canonical quantization and
the resulting system possesses all good properties of the known quantum physics including
positive definite Hamiltonian which yields a stable and unitary quantum correspondence,
the standard probabilistic interpretation, and no Ostrogradsky instability. On the other hand,
it is well known that any higher derivative Lagrangian could be reduced to a normal one
through new dynamical variables. In the present situation, this can be achieved by means of
an auxiliary field Z

L̃ = −1

4
FμνF

μν + 1

2
∂μφ∂μZ + 1

8
m2φφ + 1

8
m2Z Z − 1

4
m2φZ (2.7)

in which the equations of motion become
(

1 + 2
�
m2

)
φ = Z ,

(
1 + 2

�
m2

)
Z = φ (2.8)

after substituting these coupled equations into (2.7), it is direct to show that the above reduced
Lagrangian turns out to be (2.1) and this equivalent ordinary Lagrangian now possesses new
degrees of freedom. Based on this, through the following decomposition or complexification
[13,45]

φ = X + iY, Z = X − iY (2.9)

we are capable of converting the Lagrangian into the form of

L̃ = −1

4
FμνF

μν + 1

2
∂μX∂μX + 1

2
∂μY ∂μY − 1

2
m2Y 2 (2.10)
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consequently, there is no difficulty in asserting that the energy of (2.10) is positive and in
this sense, the unitarity is preserved and the original higher derivative massless scalar field
theory (2.1) is quite an acceptable physical system.

2.2 Consistent interactions

Now let us turn the attentions to the BV deformations of the higher derivative Lagrangian
or in other words, gauging the higher derivative free scalar field theory. Firstly, noting that
(2.7) is equipped with the following symmetry transformations

�Aμ = ∂μλ, �φ = ξ, �Z = ξ (2.11)

from the Noether’s theorem, the on-shell conserved matter current Jμ is determined from
the above global transformations of scalar field φ, Z as

∂μ J
μ + δL̃

δφ
+ δL̃

δZ
= 0 (2.12)

to be more precise, in our situation

δL̃/δφ = −1

2
�Z + 1

4
m2φ − 1

4
m2Z , δL̃/δZ = −1

2
�φ + 1

4
m2Z − 1

4
m2φ (2.13)

through a simple calculation it follows that

Jμ = 1

2
(∂μφ + ∂μZ) (2.14)

Within the framework of standard BV formalism, we denote all these fields collectively
as φA = (Aμ, φ, Z , η) with the ghost field η arising from the irreducible generator of
the Abelian local gauge symmetry. Also we introduce antifields for all of them by φ∗

A =
(A∗μ, φ∗, Z∗, η∗) and these fields have opposite statistics compared to the original ones.
The necessary ingredients of Grassmann parities, antighost, pure ghost and ghost numbers
of the whole fields are listed as follows

ε(Aμ, φ, Z) = 0, ε(A∗μ, φ∗, Z∗) = 1, ε(η) = 1, ε(η∗) = 0,

agh(Aμ, φ, Z) = 0, agh(A∗μ, φ∗, Z∗) = 1, agh(η) = 0, agh(η∗) = 2,

pgh(Aμ, φ, Z) = 0, pgh(A∗μ, φ∗, Z∗) = 0, pgh(η) = 1, pgh(η∗) = 0,

gh(Aμ, φ, Z) = 0, gh(A∗μ, φ∗, Z∗) = −1, gh(η) = 1, gh(η∗) = −2

(2.15)

in this manner, one obtains a space constituted by the local functionals of the whole fields
which is naturally endowed with an odd Poisson bracket ( , ), called antibracket and
hence this resulting field/antifield space acquires an odd phase space structure. Concretely,
for arbitrary two local functionals F(φA, φ∗

A),G(φA, φ∗
A), the antibracket is given by [35]

(F,G) =
∫
M

(
δr F

δφA

δlG

δφ∗
A

− δrG

δφA

δl F

δφ∗
A

)
dnx (2.16)

here the summation over A is understood and the l, r superscripts on the functional derivatives
denote that they are taken from the left or from the right, respectively. In such a way, the
fields φA and antifields φ∗

B behave as coordinates and momenta and we can regard them as
conjugate variables. To say more, the antibracket satisfies graded commutation, distribution
and Jacobi relations as we can imagine, and in particular, the antibracket has ghost number 1.
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On the other hand, in this large configuration space, the minimal solution of the master
action for the Lagrangian (2.7) is constructed by [35,36]

S0 =
∫

d4x(L̃ + A∗
μ∂μη) (2.17)

as we pointed out previously, the BRST transformations on the extended phase space (φA, φ∗
A)

determined from the master action as well as the BV-antibracket are provided by s = (S0, ·)
which generally can be divided into two parts s = δ+γ ; here δ is the Koszul–Tate differential
and γ is the exterior longitudinal derivative associated to the constraint surface and gauge
orbits [35,36]. More specifically, the action of these operators on the generators of the BRST
complex are given by

δAμ = 0, γ Aμ = ∂μη, γ A∗μ = 0, δA∗μ = ∂νF
μν,

δφ = 0, γ φ = 0, γ φ∗ = 0, δφ∗ = 1

2

(
�Z − 1

2
m2φ + 1

2
m2Z

)
,

δZ = 0, γ Z = 0, γ Z∗ = 0, δZ∗ = 1

2

(
�φ − 1

2
m2Z + 1

2
m2φ

)
,

δη = 0, γ η = 0, γ η∗ = 0, δη∗ = −∂μA
∗μ

(2.18)

now if we do the deformation by the introduction of parameter g and express the deformed
master action in terms of the parameter as [40–43]

S = S0 + gS1 + g2S2 + · · · · · · (2.19)

then it follows from the above assumption that the deformed quantity should still fulfill the
master equation; thus, by expanding and comparing the power series of g order by order, it
is not hard for us to obtain the following deformation equations of the master action [44]

1 : (S0, S0) = 0, g1 : 2(S0, S1) = 0, g2 : 2(S0, S2) + (S1, S1) = 0,

g3 : (S0, S3) + (S1, S2) = 0, ......
(2.20)

Let us solve these deformation master equations and in the beginning, we concentrate on
the first-order deformation term in (2.20) which in general takes the form of S1 = ∫

d4xω1

and satisfies the functional equation [42–44]

0 = sS1 =
∫

d4xsω1 (2.21)

here ω1 is a local functional and we see that the first-order deformation of the master action
is s-cocycle modulo the total derivative d at ghost number zero. Using the decomposition of
s = δ + γ , the above s-exact equation is equivalent to

sω1 = δω1 + γω1 = ∂μk
μ
1 (2.22)

here kμ
1 is a local current functional and to find out the solution of (2.22), let us expand the

ω1 according to the antighost number [42,44]

ω1 = ω
(0)
1 + ω

(1)
1 + · · · + ω

(I )
1 (2.23)

here the antighost number of ω
(i)
1 is i and from (2.15), (2.18), we realize that the Koszul-Tate

differential δ lowers the antighost number while the exterior longitudinal derivative γ keeps
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the antighost number. In this way, comparing the antighost number on both sides of (2.22),
the equality thus leads to a series of recursive equations

γω
(I )
1 = ∂μk

μ(I )
1 , δω

(I )
1 + γω

(I−1)
1 = ∂μk

μ(I−1)
1 , δω

(i+1)
1 + γω

(i)
1 = ∂μk

μ(i)
1 (2.24)

for i = 0, . . . , I−2 and the terms in (2.23) are determined successively from these equations.
As explained in [34,42], the highest antighost number I term should be strictly satisfied
γω

(I )
1 = 0 and the general form is given by

ω
(I )
1 = bI (η)I (2.25)

due to the fermonic nature of η, we can assume that the first-order deformation ω1 is truncated
at the ω

(1)
1 , or in other words we have

ω = ω
(0)
1 + ω

(1)
1 (2.26)

and the (2.24) turns out to be

γω
(1)
1 = 0, δω

(1)
1 + γω

(0)
1 = ∂μk

μ(0)
1 (2.27)

with ω
(1)
1 = b1η, here b1 belongs to H1(δ|d) [32–34,42] that can be solved as

ω
(1)
1 = φ∗η + Z∗η (2.28)

which in addition gives rise to

δω
(1)
1 = −δL̃

δφ
η − δL̃

δZ
η = 1

2
(�φ + �Z)η = ∂μ J

μη (2.29)

then we pick up the solution

ω
(0)
1 = JμAμ (2.30)

and it is simple to check

δω
(1)
1 + γω

(0)
1 = ∂μ(Jμη) (2.31)

therefore we obtain

S1 =
∫

d4x((φ∗ + Z∗)η + 1

2
(∂μφ + ∂μZ)Aμ) (2.32)

next making using of the canonical relations

(φ(x), φ∗(y)) = (φ∗(y), φ(x)) = −δ4(x − y),

(Z(x), Z∗(y)) = (Z∗(y), Z(x)) = −δ4(x − y) (2.33)

and applying the partial integration, we achieve

(S1, S1) =2
∫

d4xη∂μAμ = −s

(∫
d4x AμAμ

)
(2.34)

that resulting in

S2 = 1

2

∫
d4x AμAμ (2.35)

it is easy to verify (S1, S2) = 0 which of course produces S3 = 0, and moreover the other
higher-order deformations can be chosen Si = 0 for i ≥ 4 that the deformation equations in
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(2.20) are satisfied automatically. In final, the total solution S = S0 + S1 + S2 is described
by

S =
∫

d4x

(
−1

4
FμνFμν + 1

2
∂μφ∂μZ + 1

8
m2φφ + 1

8
m2Z Z − 1

4
m2φZ + A∗

μ∂μη

+g((φ∗ + Z∗)η + 1

2
(∂μφ + ∂μZ)Aμ) + 1

2
g2AμAμ

)
(2.36)

Based on the above result, the explicit formula of the antighost number zero part in the
deformed master action admits the form of

L′ = −1

4
FμνF

μν + 1

2
(∂μφ + gAμ)(∂μZ + gAμ) + 1

8
m2φφ + 1

8
m2Z Z − 1

4
m2φZ

(2.37)

in this expression, it is not difficult to derive the equations of motion for real scalar field φ

and auxiliary field Z(
1 + 2

�
m2

)
φ − 2g

m2 ∂μAμ = Z ,

(
1 + 2

�
m2

)
Z − 2g

m2 ∂μAμ = φ (2.38)

by substituting the algebraic solution of Z back into (2.37) and modulo the total derivative
terms, we finally arrive at the following equivalent form

L̃′ = − 1

4
FμνF

μν + 1

2
(∂μφ − gAμ)(∂μφ − gAμ) + 1

2m2 (∂μφ − gAμ)�(∂μφ − gAμ)

(2.39)

It fairly obvious to see that such Lagrangian is invariant under the following transforma-
tions

Aμ → A′
μ = Aμ + ∂μλ, φ → φ′ = φ + gλ (2.40)

for arbitrary real function λ. By a comparison of (2.2) with (2.40), we then conclude that
after the deformation procedure, the system containing consistent interactions modifies the
symmetry transformation but preserves the number of the gauge symmetry. Indeed, it is
exactly the Stueckelberg-like couplings [27,42] between Abelian gauge and real scalar fields
and the deformed model can be understood in the sense of gaugings of the relevant global
shift symmetry from the original free theory in the derivative terms of the matter field.

To this end, we proceed to deal with the Ostrogradsky instability of the resulting system
and by the same token, making using of the choice (2.9), one simply obtains

L′ = − 1

4
FμνF

μν + 1

2
(∂μX + gAμ)(∂μX + gAμ) + 1

2
∂μY ∂μY − 1

2
m2Y 2 (2.41)

this demonstrates that the coupling system is stable.

3 Massive complex scalar field

3.1 Stability

We consider the following Lagrangian density between the Abelian gauge field and a complex
massive scalar field (ϕ, ϕ̄) with higher derivative term

L = −1

4
FμνFμν + ∂μϕ∂μϕ̄ − 1

m2 �ϕ�ϕ̄ − M2ϕϕ̄ (3.1)
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here m, M are some real constants. Firstly let us find out whether the spectrum is still
unbounded from below and as was also the case in the previous example, due to the presence
of higher derivatives, the phase space should involve extra canonical coordinates and we
introduce the following two independent new dynamic variables

Q = ∂0ϕ, Q̄ = ∂0ϕ̄ (3.2)

together with the canonical conjugate momenta

θ = ∂L
∂(∂0ϕ)

=
(

1 + �
m2

)
∂0ϕ̄, P = ∂L

∂(∂0Q)
= − �

m2 ϕ̄,

θ̄ = ∂L
∂(∂0ϕ̄)

=
(

1 + �
m2

)
∂0ϕ, P̄ = ∂L

∂(∂0 Q̄)
= − �

m2 ϕ (3.3)

after a standard Legendre transformation, the canonical Hamiltonian HOstro can be brought
in the form of

HOstro = Ȧμπμ + ϕ̇θ + ˙̄ϕθ̄ + Q̇P + ˙̄QP̄ − L

= 1

2
πiπi + 1

4
Fi j F

i j − A0∂
iπi + θQ + θ̄ Q̄ + m2P P̄

+∂i P∂ iϕ + ∂i P̄∂ i ϕ̄ − QQ̄ − ∂iϕ∂ i ϕ̄ + M2ϕϕ̄ (3.4)

it is evident to see that the Hamiltonian is linear in terms of the momenta θ, θ̄ which is worse
and terrible.

Compared to the real scalar field theory, in the present complex case, it is suitable to apply
a more general scheme to investigate the problem of the stability of the higher derivative
system by using the concept of Lagrangian anchors. More specifically, this new method
mainly provides an extension of the usual Noether theorem to produce a class of conserved
quantities associated with a given symmetry [14,17–19]. Following this way, the Lagrangian
anchor connects conserved quantities to symmetries for any system of field equations whether
they are Lagrangian or not. Especially, for the time translation invariance, this approach will
result in different conserved quantities which could be identified with a Hamiltonian and more
importantly, some of them would recover the stability of higher derivative dynamics. For a
given system, the Lagrangian anchor is not necessarily unique and if the theory possesses
multiple Lagrangian anchors, the same symmetry can be connected to different conserved
quantities. Under this framework, it allows us to add consistent interactions into field equa-
tions of motion by means of the proper deformation scheme for any given Lagrange anchors.
In addition, if the anchor connects the symmetry with the bounded quantity, the system
remains stable upon inclusion of interactions which can be seen clearly in [19,46].

In our situation, at first, the equations of motion for the complex fields ϕ, ϕ̄ are given by

�2ϕ + m2�ϕ + m2M2ϕ = 0, �2ϕ̄ + m2�ϕ̄ + m2M2ϕ̄ = 0 (3.5)

noting that these expressions have the factorable structure with the operators P and Q

P = � + m2
1

m2
1 − m2

2

, Q = � + m2
2

m2
2 − m2

1

(3.6)

where

m2
1 = m2 + √

m4 − 4m2M2

2
, m2

2 = m2 − √
m4 − 4m2M2

2
(3.7)
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with the following properties

P + Q = 1, [P,Q] = 0, PQϕ = 0, PQϕ̄ = 0 (3.8)

here we suppose m > 2M and in this assumption, m2
1,m

2
2 are different real numbers. Sub-

sequently, with the help of the above factorization we introduce

ξ = Qϕ, η = Pϕ, ξ̄ = Qϕ̄, η̄ = Pϕ̄ (3.9)

in terms of these new dynamical fields, we construct an alternative action functional as
follows

S1[ξ(x), ξ̄ (x); η(x), η̄(x)] =
∫

(ξ̄Pξ + η̄Qη)d4x (3.10)

together with the equations of motion

Pξ = 0, Qη = 0, P ξ̄ = 0, Qη̄ = 0 (3.11)

taking advantage of (3.9), one recovers the dynamic equations in (3.8). It is not difficult to
check that the relations (3.9) establish a one-to-one correspondence between the solutions
of systems (3.1) and (3.10) (we ignore the pure gauge part since it has no influence for
our discussion). Therefore, these two systems are equivalent and may be thought of as two
different representations of the same theory which are usually called (ξη, ξ̄ η̄)- and ϕϕ̄-
representations. It is worth mentioning here that, in this picture, the factorization (3.8) would
provide an efficient and useful tool to illustrate the issues of the stability in the higher
derivative dynamic systems as will be discussed below.

Now let us focus on the (ξη, ξ̄ η̄)- system and it is well known from the Noether theorem
that, if the action (3.10) is invariant with respect to the spacetime translations xμ → xμ −εμ,
then the system will admit two independent conserved currents Jμ(ξ, ξ̄ ) and Jμ(η, η̄)

∂μ J
μ(ξ, ξ̄ ) = −εμ∂μξ

δS1

δξ
− εμ∂μξ̄

δS1

δξ̄
, ∂μ J

μ(η, η̄) = −εμ∂μη
δS1

δη
− εμ∂μη̄

δS1

δη̄

(3.12)

which can be expressible in the form of

Jμ(ξ, ξ̄ ) = − 1

m2
1 − m2

2

(∂μξ̄∂νξεν − ∂σ ξ∂σ ξ̄εμ + ∂μξ∂ν ξ̄εν + m2
1ξ ξ̄εμ),

Jμ(η, η̄) = 1

m2
1 − m2

2

(∂μη̄∂νηεν − ∂σ η∂σ η̄εμ + ∂μη∂νη̄εν + m2
2ηη̄εμ)

(3.13)

in such a way, the canonical energy–momentum tensors are defined by the rule

Jμ(ξ, ξ̄ ) = �μ
ν (ξ, ξ̄ )εν, Jμ(η, η̄) = �μ

ν (η, η̄)εν (3.14)

more explicitly, we simply have

�μ
ν (ξ, ξ̄ ) = − 1

m2
1 − m2

2

(∂μξ̄∂νξ − δμ
ν ∂σ ξ∂σ ξ̄ + ∂μξ∂ν ξ̄ + δμ

ν m
2
1ξ ξ̄ ),

�μ
ν (η, η̄) = 1

m2
1 − m2

2

(∂μη̄∂νη − δμ
ν ∂σ η∂σ η̄ + ∂μη∂νη̄ + δμ

ν m
2
2ηη̄)

(3.15)

as explained in [14,18,19], every symmetry of primary theory will give rise to the n-
parametric series of symmetries of the higher derivative theory together with a series of
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independent bounded-conserved quantities which is a linear combination of the above expres-
sions

�μ
ν = β1�

μ
ν (ξ, ξ̄ ) + β2�

μ
ν (η, η̄) (3.16)

here β1, β2 are some real constants. In this formalism, the component �0
0 has the sense of

the energy density of the theory and by this reason, the total energy of the system is provided
by the integral

E =
∫

d3x�0
0 (3.17)

using the metric gμν = (1,−1,−1,−1) we have

�0
0 = − β1

m2
1 − m2

2

(
∂0

(
�ϕ̄ + m2

2ϕ̄

m2
2 − m2

1

)
∂0

(
�ϕ + m2

2ϕ

m2
2 − m2

1

)

+∂i

(
�ϕ + m2

2ϕ

m2
2 − m2

1

)
∂i

(
�ϕ̄ + m2

2ϕ̄

m2
2 − m2

1

)
+m2

1

(
�ϕ̄ + m2

2ϕ̄

m2
2 − m2

1

) (
�ϕ + m2

2ϕ

m2
2 − m2

1

))

+ β2

m2
1 − m2

2

(
∂0

(
�ϕ + m2

1ϕ

m2
1 − m2

2

)
∂0

(
�ϕ̄ + m2

1ϕ̄

m2
1 − m2

2

)

+∂i

(
�ϕ + m2

1ϕ

m2
1 − m2

2

)
∂i

(
�ϕ̄ + m2

1ϕ̄

m2
1 − m2

2

)
+ m2

2

(
�ϕ + m2

1ϕ

m2
1 − m2

2

) (
�ϕ̄ + m2

1ϕ̄

m2
1 − m2

2

))

(3.18)

thus it is obvious to assert that its 00-component is bounded and positive if

− β1

m2
1 − m2

2

> 0,
β2

m2
1 − m2

2

> 0 (3.19)

with this choice in hand, we assert the previous higher derivative complex system is stable,
though the canonical energy is unbounded from below.

3.2 Consistent interactions

In order to construct the consistent interactions in original free Lagrangian (3.1), firstly we
notice that such system is invariant under the following symmetry transformations

�Aμ = ∂μλ, �ϕ = −iϕξ, �ϕ̄ = i ϕ̄ξ (3.20)

here ξ is a global constant. Similarly, by introducing a pair of complex auxiliary scalar fields
(Z , Z̄), the above Lagrangian can be recast as equivalently

L̃ = − 1

4
FμνF

μν + 1

2
(∂μϕ∂μ Z̄ + ∂μϕ̄∂μZ) + 1

4
m2ϕϕ̄ + 1

4
m2Z Z̄

− 1

4
m2(ϕ Z̄ + ϕ̄Z) − M2ϕϕ̄ (3.21)

with the equations of motion(
1 + 2

�
m2

)
ϕ = Z ,

(
1 + 2

�
m2

)
ϕ̄ = Z̄ ,

(2� + m2)Z = (m2 − 4M2)ϕ, (2� + m2)Z̄ = (m2 − 4M2)ϕ̄

(3.22)
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It is immediately seen that this Lagrangian density also possesses two independent sym-
metries, the local gauge transformation and the rigid transformation

�Aμ = ∂μλ, �ϕ = −iϕξ, �ϕ̄ = i ϕ̄ξ, �Z = −i Zξ, �Z̄ = i Z̄ξ (3.23)

by analogy with the discussion of the real scalar field, it follows from (3.23) that the conser-
vation law for complex scalar fields is

∂μ J
μ + δL̃

δϕ
(−iϕ) + δL̃

δϕ̄
(i ϕ̄) + δL̃

δZ
(−i Z) + δL̃

δ Z̄
(i Z̄) = 0 (3.24)

in the present case, there is no difficulty in computing

δL̃
δϕ

= −1

2
�Z̄ + 1

4
m2ϕ̄ − 1

4
m2 Z̄ − M2ϕ̄,

δL̃
δZ

= −1

2
�ϕ̄ + 1

4
m2 Z̄ − 1

4
m2ϕ̄,

δL̃
δϕ̄

= −1

2
�Z + 1

4
m2ϕ − 1

4
m2Z − M2ϕ,

δL̃
δ Z̄

= −1

2
�ϕ + 1

4
m2Z − 1

4
m2ϕ

(3.25)

together with the conserved current

Jμ = 1

2
i(∂μZ ϕ̄ − ∂μ Z̄ϕ + ∂μϕ Z̄ − ∂μϕ̄Z) (3.26)

as a result, from (2.28) and (2.30) we obtain

S1 =
∫

d4xi((ϕ̄∗ϕ̄ − ϕ∗ϕ + Z̄∗ Z̄ − Z∗Z)η + 1

2
(∂μZ ϕ̄ − ∂μ Z̄ϕ + ∂μϕ Z̄ − ∂μϕ̄Z)Aμ)

(3.27)

furthermore, in the consideration of the second-order deformation, a direct calculation shows

(S1, S1) =
∫

d4x(Z∂μ(ϕ̄Aμ) + ∂μZ ϕ̄Aμ + Z̄∂μ(ϕAμ) + ∂μ Z̄ϕAμ

+ ϕ∂μ(Z̄ Aμ) + ∂μϕ Z̄ Aμ + ϕ̄∂μ(Z Aμ) + ∂μϕ̄Z Aμ)η

= − s

(∫
d4x(Z ϕ̄ + Z̄ϕ)AμA

μ

)
(3.28)

and we claim that

S2 = 1

2

∫
d4x(Z ϕ̄ + Z̄ϕ)AμA

μ (3.29)

it is clear to see that (S1, S2) = 0 which then yields Si = 0 for i ≥ 3. Consequently, the
solution of the deformation master equations, consistent to all orders of the deformation
parameter g can be written as

S =
∫

d4x

(
−1

4
FμνF

μν + 1

2
(∂μϕ∂μ Z̄ + ∂μϕ̄∂μZ) + 1

4
m2ϕϕ̄ + 1

4
m2Z Z̄

−1

4
m2(ϕ Z̄ + ϕ̄Z) − M2ϕϕ̄ + g(i(ϕ̄∗ϕ̄ − ϕ∗ϕ + Z̄∗ Z̄ − Z∗Z)η

+1

2
i(∂μZ ϕ̄ − ∂μ Z̄ϕ + ∂μϕ Z̄ − ∂μϕ̄Z)Aμ) + 1

2
g2(Z ϕ̄ + Z̄ϕ)AμA

μ

)
(3.30)
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with the help of the covariant derivative

Dμ = ∂μ − igAμ, D̄μ = ∂μ + igAμ (3.31)

we are able to extract the antighost number zero part in the deformed master action in a
precise way

L′ = − 1

4
FμνF

μν + 1

2

[
(Dμϕ)(D̄μ Z̄) + (D̄μϕ̄)(DμZ)

] + 1

4
m2ϕϕ̄ + 1

4
m2Z Z̄

− 1

4
m2(ϕ Z̄ + ϕ̄Z) − M2ϕϕ̄ (3.32)

taking advantage of the equations of motion of auxiliary fields Z , Z̄

Z = ϕ + 2

m2 D
μDμϕ, Z̄ = ϕ̄ + 2

m2 D̄
μ D̄μϕ̄ (3.33)

along with the fact that for arbitrary functions f, g, the identities∫
d4x f Dμg = −

∫
d4xgD̄μ f (3.34)

hold, we show that the above system is equivalent to

L̃′ = − 1

4
FμνF

μν + 1

2
(Dμϕ)

(
D̄μϕ̄ + 2

m2 D̄
μ D̄ν D̄

ν ϕ̄

)
+ 1

2
(D̄μϕ̄)(Dμϕ

+ 2

m2 D
μDνD

νϕ) + 1

m2 (D̄ν D̄
ν ϕ̄)(DμD

μϕ) − M2ϕϕ̄

= − 1

4
FμνF

μν + (Dμϕ)(D̄μϕ̄) − 1

m2 (D̄ν D̄
ν ϕ̄)(DμD

μϕ) − M2ϕϕ̄ (3.35)

clearly, this Lagrangian is invariant under the following local gauge transformations

Aμ → A′
μ = Aμ + ∂μλ, ϕ → ϕ′ = e−igλϕ, ϕ̄ → ϕ̄′ = eigλϕ̄ (3.36)

a simple observation then tells us that the consistent interactions added in the resulting
Lagrangian can be received from the original theory just through replacing the ordinary
partial derivative ∂μ by the covariant derivatives Dμ, D̄μ both in first and higher derivative
terms. Certainly, this interacting theory describes the couplings between the Abelian gauge
field and complex scalar field and the gauge symmetry (3.36) originates from the gaugings
of the rigid invariance of the matter fields.

In what follows, we ignore the pure gauge part in Lagrangian (3.35) and mainly focus the
attentions on the remaining coupling part. In order to analyze the stability of the coupling
system, firstly, we derive the Euler–Lagrange equations of motions from (3.35)

δS

δϕ
= − D̄μ D̄

μϕ̄ − 1

m2 D̄μ D̄
μ D̄ν D̄

ν ϕ̄ − M2ϕ̄ = 0,

δS

δϕ̄
= − DμD

μϕ − 1

m2 DμD
μDνD

νϕ − M2ϕ = 0,

δS

δAμ

= ig(ϕ̄Dμϕ − ϕ D̄μϕ̄)

+ 1

m2 ig(D̄ν D̄
ν ϕ̄Dμϕ − ϕ D̄μ D̄ν D̄

ν ϕ̄ − D̄μϕ̄DνD
νϕ + ϕ̄DμDνD

νϕ) = 0

(3.37)
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in a similar way, we introduce the differential operators P,Q, P̄, Q̄ in the form of

P = DμDμ + m2
1

m2
1 − m2

2

, Q = DμDμ + m2
2

m2
2 − m2

1

,

P̄ = D̄μ D̄μ + m2
1

m2
1 − m2

2

, Q̄ = D̄μ D̄μ + m2
2

m2
2 − m2

1

(3.38)

as well as the fields

ξ = Qϕ, η = Pϕ, ξ̄ = Q̄ϕ̄, η̄ = P̄ϕ̄ (3.39)

as is seen from above, the derivatives of the original fields ϕ, ϕ̄ are absorbed into these new
dynamical variables. Analogously, the equations of motion can be derived from the least
action principle for the action functional

S1[ξ(x), η(x); ξ̄ (x), η̄(x)] =
∫

(ξ̄Pξ + η̄Qη)d4x, (3.40)

and the explicit expressions are given by

δS1

δξ
=P̄ ξ̄ = 0,

δS1

δξ̄
= Pξ = 0,

δS1

δη
= Q̄η̄ = 0,

δS1

δη̄
= Qη = 0,

δS1

δAμ

= ig

m2
1 − m2

2

(ξ D̄μξ̄ − ξ̄Dμξ − ηD̄μη̄ + η̄Dμη) = 0
(3.41)

it is simple to check that the relations (3.39) establish a one-to-one correspondence between
solutions of both the systems by substituting (3.39) into (3.41) and thus the above two systems
are equivalent. In this new set, as demonstrated previously, the conserved energy–momentum
tensors turn out to be

�μ
ν (ξ, ξ̄ ) = − 1

m2
1 − m2

2

(D̄μξ̄Dνξ − δμ
ν Dσ ξ D̄σ ξ̄ + Dμξ D̄ν ξ̄ + δμ

ν m
2
1ξ ξ̄ ),

�μ
ν (η, η̄) = 1

m2
1 − m2

2

(D̄μη̄Dνη − δμ
ν Dσ ηD̄σ η̄ + DμηD̄ν η̄ + δμ

ν m
2
2ηη̄)

(3.42)

if the gauge field Aμ and the scalar fields η, ξ meet the dynamic equations. In this way, the
series of the energy–momentum tensors for the non-linear system can be expressed as

�μ
ν = β1�

μ
ν (ξ, ξ̄ ) + β2�

μ
ν (η, η̄) (3.43)

also the 00-component has the structure of

�0
0 = − β1

m2
1 − m2

2

(
D0

(
D̄τ D̄τ ϕ̄ + m2

2ϕ̄

m2
2 − m2

1

)
D0

(
Dτ Dτ ϕ + m2

2ϕ

m2
2 − m2

1

)

+Di

(
Dτ Dτ ϕ + m2

2ϕ

m2
2 − m2

1

)
Di

(
D̄τ D̄τ ϕ̄ + m2

2ϕ̄

m2
2 − m2

1

)

+m2
1

(
D̄τ D̄τ ϕ̄ + m2

2ϕ̄

m2
2 − m2

1

) (
Dτ Dτ ϕ + m2

2ϕ

m2
2 − m2

1

))

+ β2

m2
1 − m2

2

(
D0

(
D̄τ D̄τ ϕ̄ + m2

1ϕ̄

m2
1 − m2

2

)
D0

(
Dτ Dτ ϕ + m2

1ϕ

m2
1 − m2

2

)
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+Di

(
Dτ Dτ ϕ + m2

1ϕ

m2
1 − m2

2

)
Di

(
D̄τ D̄τ ϕ̄ + m2

1ϕ̄

m2
1 − m2

2

)

+m2
2

(
D̄τ D̄τ ϕ̄ + m2

1ϕ̄

m2
1 − m2

2

) (
Dτ Dτ ϕ + m2

1ϕ

m2
1 − m2

2

))
(3.44)

evidently, it is bounded and positive if

− β1

m2
1 − m2

2

> 0,
β2

m2
1 − m2

2

> 0 (3.45)

this brings us the conclusion that the coupling system (3.35) including the consistent inter-
actions should be stable.

4 Massive Dirac spinor field

4.1 Stability

We consider the following free Lagrangian density between the Abelian gauge field Aμ and
the Dirac spinor fields (ψα, ψ̄α) with higher derivative term

L = −1

4
FμνF

μν + ψ̄α((γ μ∂μ)αβ − Mδα
β )ψβ + (∂μψ̄σ γ μσ

α )((γ ν∂ν)
α
τ (γ μ∂μ)τβ)ψβ

(4.1)

here γ μ is the standard Dirac’s gamma matrices fulfilling {γ μ, γ ν} = 2δμν . The equations
of motion are given by

(γ μ∂μ)3ψ − γ μ∂μψ + Mψ = 0, ψ̄((
←−
∂ μγ μ)3 − ←−

∂ μγ μ − M) = 0 (4.2)

which can be decomposed into

(γ ω∂ω + m1)(γ
μ∂μ + m2)(γ

ν∂ν + m3)ψ = 0,

ψ̄(
←−
∂ ωγ ω − m1)(

←−
∂ μγ μ − m2)(

←−
∂ νγ

ν − m3) = 0
(4.3)

here for the sake of simplicity, we assume that the m1,m2,m3 are three real different roots
of the characteristic polynomial

z3 − z − M = 0 (4.4)

then we define the new dynamic fields

ξ1 =(γ μ∂μ + m2)(γ
ν∂ν + m3)ψ, ξ2 = (γ μ∂μ + m1)(γ

ν∂ν + m3)ψ,

ξ3 =(γ μ∂μ + m1)(γ
ν∂ν + m2)ψ, ξ̄1 = ψ̄(

←−
∂ μγ μ − m2)(

←−
∂ νγ

ν − m3),

ξ̄2 =ψ̄(
←−
∂ μγ μ − m1)(

←−
∂ νγ

ν − m3), ξ̄3 = ψ̄(
←−
∂ μγ μ − m1)(

←−
∂ νγ

ν − m2)

(4.5)

and the corresponding action functional is given by

S =
∫

d4x
[
ξ̄1(γ

μ∂μ + m1)ξ1 + ξ̄2(γ
μ∂μ + m2)ξ2 + ξ̄3(γ

μ∂μ + m3)ξ3
]

(4.6)

which determines the equations of motion of the following form

(γ μ∂μ + mi )ξi = 0, ξ̄i (
←−
∂ μγ μ − mi ) = 0, i = 1, 2, 3 (4.7)
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as pointed out in the previous section, the relations (4.5) establish a one-to-one correspon-
dence between solutions of the systems (4.1) and (4.6). Taking into account of the Noether
theorem, the conserved currents Jμ(ξi , ξ̄i ) can be derived from

∂μ J
μ(ξi , ξ̄i ) = −εμ δS1

δξi
∂μξi − εμ∂μξ̄i

δS1

δξ̄i
(4.8)

which leads to

Jμ(ξi , ξ̄i ) = 1

2
(ξ̄iγ

μ∂νξiε
ν − ∂ν ξ̄iγ

μξiε
ν − ξ̄iγ

σ ∂σ ξiε
μ + ∂σ ξ̄iγ

σ ξiε
μ − 2mi ξ̄iξiε

μ)

(4.9)

together with the energy–momentum tensors

�μ
ν (ξi , ξ̄i ) = 1

2
(ξ̄iγ

μ∂νξi − ∂ν ξ̄iγ
μξi − δμ

ν ξ̄iγ
σ ∂σ ξi + δμ

ν ∂σ ξ̄iγ
σ ξi − 2δμ

ν mi ξ̄iξi )

(4.10)

now the bounded 3-parameter conserved quantity reads

�μ
ν = β1�

μ
ν (ξ1, ξ̄1) + β2�

μ
ν (ξ2, ξ̄2) + β3�

μ
ν (ξ3, ξ̄3) (4.11)

furthermore, modulo a total derivative term which has no influence for the integral, the
00-component is given by

�0
0 = −

3∑
i=

3∑
j=1

βi ξ̄i (γ
j∂ j + mi )ξi (4.12)

this is a standard energy form of the usual low derivative Dirac theory and making choice of
βi < 0,mi > 0, we give the illustration of the stability of the higher derivative system of
spinor fields (4.1).

4.2 Consistent interactions

Now for the purpose of gauging the Dirac spinor fields, it is helpful to introduce the auxiliary
fields Z = (Zα), Z̄ = (Z̄α)T to convert the free Lagrangian (4.1) into the following form

L̃ = −1

4
FμνF

μν − (∂μψ̄γ μ)(γ ν∂ν)Z + Z̄(γ μ∂μ)ψ + ψ̄(γ μ∂μ)ψ + Z̄ Z − Mψ̄ψ

(4.13)

varying the action gives us the equations of motion for (ψ, ψ̄) and the auxiliary fields (Z , Z̄)

(γ μ∂μ)ψ + Z = 0, (γ μ∂μ)(γ ν∂ν)Z + (γ μ∂μ)ψ − Mψ = 0,

(∂μ∂νψ̄)γ μγ ν + Z̄ = 0, ∂μ Z̄γ μ + ∂μψ̄γ μ + Mψ̄ = 0
(4.14)

plugging these equations into (4.13), it is easy to return to the original Lagrangian density
and in this form, the gauge symmetry transformation and rigid one-parameter symmetry are
given by

�Aμ = ∂μλ, �ψα = −iψαξ, �ψ̄α = iψ̄αξ, �Zα = −i Zαξ, �Z̄α = i Z̄αξ,

(4.15)
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respectively, and taking into account of the conservation law

∂μ J
μ + δL̃

δψ
(−iψ) + (iψ̄)

δL̃
δψ̄

+ δL̃
δZ

(−i Z) + (i Z̄)
δL̃
δ Z̄

= 0 (4.16)

here

δL̃
δψ

= −∂μ Z̄γ μ − ∂μψ̄γ μ − Mψ̄,
δL̃
δψ̄

= (γ μ∂μ)(γ ν∂ν)Z + (γ μ∂μ)ψ − Mψ,

δL̃
δZ

= (∂μ∂νψ̄)γ μγ ν + Z̄ ,
δL̃
δ Z̄

= (γ μ∂μ)ψ + Z

(4.17)

we gain the conserved current

Jμ = i
[
(∂νψ̄γ ν)γ μZ − (ψ̄γ μ)(γ ν∂ν Z) − Z̄γ μψ − ψ̄γ μψ

]
(4.18)

as a consequence, the first-order deformation takes the form of

S1 =
∫

d4x(i(ψ̄ψ̄∗ − ψ∗ψ + Z̄ Z̄∗ − Z∗Z)η + i((∂νψ̄γ ν)γ μZ

− (ψ̄γ μ)(γ ν∂ν Z) − Z̄γ μψ − ψ̄γ μψ)Aμ)

(4.19)

from this formula it is readily seen that

(S1, S1) = − 2
∫

d4x((∂νψ̄γ ν)γ μZ Aμ + ψ̄γ νγ μ∂ν(Z Aμ) + (ψ̄γ μ)(γ ν∂ν Z)Aμ

+ ∂ν(ψ̄ Aμ)γ μγ ν Z)η

= − 2s

(∫
d4xψ̄γ νγ μZ AμAν

)
(4.20)

hence we assert

S2 =
∫

d4x(ψ̄γ νγ μZ AμAν) (4.21)

besides, one can examine (S1, S2) = 0 which leads to Si = 0 for i ≥ 3. Assembling all of
these together, we get the total consistent expression of the deformed master action

S =
∫

d4x

(
−1

4
FμνF

μν − (∂μψ̄γ μ)(γ ν∂ν)Z + Z̄(γ μ∂μ)ψ + ψ̄(γ μ∂μ)ψ + Z̄ Z

−Mψ̄ψ + g(i(ψ̄ψ̄∗ − ψ∗ψ + Z̄ Z̄∗ − Z∗Z)η + i((∂νψ̄γ ν)γ μZ

−(ψ̄γ μ)(γ ν∂ν Z) − Z̄γ μψ − ψ̄γ μψ)Aμ) + g2(ψ̄γ νγ μZ AμAν)
)

(4.22)

employing the covariant derivatives, the antighost number zero part can be organized as

L′ = −1

4
FμνF

μν − (D̄μψ̄γ μ)(γ νDν)Z + Z̄(γ μDμ)ψ + ψ̄(γ μDμ)ψ + Z̄ Z − Mψ̄ψ

(4.23)

by variation with respect to Z and Z̄ , we simply deduce the algebraic equations of motion of
auxiliary fields

(γ μDμ)ψ + Z = 0, D̄ν(D̄μψ̄γ μ)γ ν + Z̄ = 0 (4.24)
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and inserting these into (4.23), we immediately obtain the following equivalent Lagrangian
density

L̃′ = −1

4
FμνF

μν + ψ̄(γ μDμ)ψ + (D̄μψ̄γ μ)(γ νDν)(γ
μDμ)ψ − Mψ̄ψ (4.25)

with the local gauge transformations

Aμ → A′
μ = Aμ + ∂μλ, ψ → ψ ′ = e−igλψ, ψ̄ =→ ψ̄ ′ = eigλψ̄ (4.26)

in the same spirit, the above gauge symmetry in the resulting Lagrangian comes from the
rigid invariance of the spinor fields by gaugings and through replacing the ordinary partial
derivative ∂μ by the covariant derivatives Dμ, D̄μ both in first and higher second derivative
terms of the matter field, we are able to acquire the consistent interactions that can be put
into the original theory and are compatible with the BRST deformations procedure.

Finally, we address the problem of the stability of this higher derivative coupling system
(4.25) along the lines of the previous section. At beginning, after some algebraic manipula-
tions (ignore the pure gauge part), we arrive at the equations of motion

δS

δψ
= −ψ̄(

←−̄
D μγ μ) + ψ̄(

←−̄
D μγ μ)3 − Mψ̄

= ψ̄(γ μ
←−̄
D μ − m1)(γ

μ
←−̄
D μ − m2)(γ

μ
←−̄
D μ − m3) = 0,

δS

δψ̄
= γ μDμψ − (γ μDμ)3ψ − Mψ

= −(γ μDμ + m1)(γ
μDμ + m2)(γ

μDμ + m3)ψ = 0,

δS

δAμ

= ig
[
−ψ̄γ μψ + ψ̄(γ ν←−D ν)

2γ μψ − (D̄ωψ̄)γ ωγ μγ νDνψ

+ψ̄γ μ(γ νDν)
2ψ

] = 0 (4.27)

similarly, the new dynamic fields can be chosen in the form of

ξ1 = (γ μDμ + m2)(γ νDν + m3)ψ, ξ2 = (γ μDμ + m1)(γ νDν + m3)ψ,

ξ3 = (γ μDμ + m1)(γ νDν + m2)ψ, ξ̄1 = ψ̄(
←−̄
Dμγ μ − m2)(

←−̄
D νγ ν − m3),

ξ̄2 = ψ̄(
←−̄
Dμγ μ − m1)(

←−̄
D νγ ν − m3), ξ̄3 = ψ̄(

←−̄
Dμγ μ − m1)(

←−̄
D νγ ν − m2)

(4.28)

then we introduce the following collection of differential operators

P1 = γ μDμ + m1

(m1 − m2)(m1 − m3)
, P2 = γ μDμ + m2

(m2 − m1)(m2 − m3)
,

P3 = γ μDμ + m3

(m3 − m1)(m3 − m2)
,

Q1 = γ μ
←−̄
D μ − m1

(m1 − m2)(m1 − m3)
, Q2 = γ μ

←−̄
D μ − m2

(m2 − m1)(m2 − m3)
,

Q3 = γ μ
←−̄
D μ − m3

(m3 − m1)(m3 − m2)

(4.29)

and the action functional acquires the standard formulation

S1[ξi (x), ξ̄i (x), Aν] =
∫

(ξ̄1P1ξ1 + ξ̄2P2ξ2 + ξ̄3P3ξ3)d
4x (4.30)
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a direct calculation gives rise to the equations of motion

δS1

δξ̄i
= Piξi = 0,

δS1

δξi
= ξ̄iQi = 0, i = 1, 2, 3

δS1

δAμ

= ig

(
ξ̄1γ

μξ1

(m1 − m2)(m1 − m3)
+ ξ̄2γ

μξ2

(m2 − m3)(m2 − m1)

+ ξ̄3γ
μξ3

(m3 − m1)(m3 − m2)

)
= 0

(4.31)

at this stage, taking advantage of the relations

m1 + m2 + m3 = 0, m1m2 + m2m3 + m3m1 = −1, m1m2m3 = M (4.32)

one can guarantee that the above two systems are equivalent and the solutions of the dynamic
equations are related by the formulae (4.28). In the same manner, the conserved currents
Jμ(ξi , ξ̄i ) in this case can be found by the following receipt

Jμ(ξi , ξ̄i ) = 1

2

3∏
j �=i, j=1

1

mi − m j
(ξ̄iγ

μDνξiε
ν − D̄ν ξ̄iγ

μξiε
ν − ξ̄iγ

σ Dσ ξiε
μ

+ D̄σ ξ̄iγ
σ ξiε

μ − 2mi ξ̄iξiε
μ) (4.33)

with the aid of these expressions, we are able to formulate the energy–momentum tensors as

�μ
ν (ξi , ξ̄i ) = 1

2

3∏
j �=i, j=1

1

mi − m j
(ξ̄iγ

μDνξi − D̄ν ξ̄iγ
μξi − δμ

ν ξ̄iγ
σ Dσ ξi

+ δμ
ν D̄σ ξ̄iγ

σ ξi − 2δμ
ν mi ξ̄iξi ) (4.34)

in particular, modulo a total derivative term and by introducing a series of parameters βi , the
00-component of the conserved quantity can be written in the form of

�0
0 = −

3∑
i=1

3∏
j �=i, j=1

βi

mi − m j

3∑
k=1

ξ̄i (γ
k Dk + mi )ξi (4.35)

now under the assumption

−
3∏

j �=i, j=1

βi

mi − m j
> 0, mi > 0, i = 1, 2, 3 (4.36)

we confirm the stability of the coupling system between the gauge field and Dirac spinor
fields with higher derivative term.

5 Conclusion and discussion

In this paper, we investigate the stability of the class of higher derivative matter field the-
ories from the viewpoint of the n-parameter series of conserved quantities, which can be
connected with the spacetime translations by appropriate Lagrange anchor. With the aid of
factorization, it is possible to build up such conserved quantities that might be positive and
bounded while the canonical energy usually is not positive definite for the real, complex
and Dirac free systems. Then we mainly learn the consistent couplings between Abelian
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gauge field and the higher derivative matter fields. In our construction, the key idea is that
by means of the auxiliary fields, we are capable of reducing the higher-order term to the
low one which is more convenient to handle. Following the standard procedure in the BRST
deformations, we acquire the correction terms at different orders by solving the deformation
master equations. Next, extracting the antighost number zero part in the deformed master
action and making use of the equations of motion of the auxiliary fields, we can convert this
action into an equivalent one with higher derivative terms. By a comparison with the original
free Lagrangian, it is easy to obtain the consistent interactions order by order. After that, we
apply the factorization method again to study the classical stability in the higher derivative
coupling systems with consistent interactions and in fact, such stability is still true at the
quantum level. The next generalization of this work is of course the analysis of the stability
and the construction of BRST deformations in the non-Abelian case. More specifically, we
introduce a set of U(1) gauge fields together with a collection of matter fields and now that
the Lagrangian may include the Podolsky’s generalized electrodynamics which is a natural
extension of the ordinary Maxwell’s dynamics. Following the same lines in our discussion
and through the analysis of the local BRST cohomology, we are able to derive the consistent
interactions between gauge and matter fields expressed in terms of the non-Abelian curva-
tures and covariant derivatives in the free systems and the new feature will arise from the
effect of the self-interactions among the gauge fields. Furthermore, the stabilities in these
free and interacting systems can be demonstrated following the discussions of this paper in a
similar way. The main difference comes from an additional nonlinear term included into the
factorization equation which represents the self-interactions of gauge fields. Now as long as
both the free factors in the 00-component of energy–momentum tensors are stable, even if
this self-interaction term is not positive definite, the energy can still have a local minimum in
a neighborhood of zero solution and such theories are also considered as physically accept-
able models. By this reason, the factorization method can still be efficient for keeping track
of stability in the non-Abelian coupling higher derivative dynamics. All of these would be
interesting to exploit in future.
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