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Abstract Two problems with a free boundary for the Navier–Stokes equations are consid-
ered. In the first problem, the fluid occupies a horizontal strip whose lower boundary is a
motionless wall and whose upper boundary is a straight-line free boundary parallel to the
wall. In the second problem, the fluid motion is rotationally symmetric. Here, the flow domain
is a horizontal layer bounded by a solid plane and a parallel flat free surface. In both problems,
the vertical velocity and pressure are independent of the longitudinal coordinates. In the first
problem, there are three modes of motion: stabilization to a quiescent state with increasing
time, blowup of the solution within a finite time, and intermediate self-similar mode in which
the layer thickness unlimitedly increases with time. The same situation occurs in the second
problem if the solid surface bounding the layer does not move. However, its rotation can
prevent the solution collapse.

1 Introduction

Theory of free boundary problems for the Navier–Stokes equations is developed intensely
during last 50 years. Formation of singularities in viscous flows with a free boundary has a
special interest. Monograph [1] contains a number of examples of such kind, where the flow
domain changes its topology with time. Corresponding solutions are described by invariant
solutions of the Navier–Stokes equations. At the same time, there is another scenario for
arising of singularity: Flow domain expands indefinitely at finite time. This phenomenon
is studied in present paper on the base of partially invariant solutions to the Navier–Stokes
equations.

2 Strip deformation

Plane motion of a viscous incompressible fluid is considered. In what follows, x and y are
the Cartesian coordinates, u = (ux , uy) is the velocity vector, p is the pressure, ν is the
kinematic viscosity, and ρ is the fluid density. The parameters ν and ρ are assumed to be
positive constants. It is also assumed that there are no external body forces. The functions
u, p satisfy the Navier–Stokes equations
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ut + u · ∇u = −ρ−1∇ p + ν�u, ∇ · u = 0. (1)

It is known (see [1,2] and the references therein) that system (1) has solutions of the form

ux = −xv(y, t), uy =
∫ y

0
v(z, t) dz, p = q(y, t). (2)

It turned out that class (2) of solutions of system (1) can be used to describe the motion
of a viscous fluid in a strip ωT = {x, y, t : x ∈ R, 0 < y < s(t), 0 < t < T } whose lower
boundary is a solid wall and whose upper boundary is free. Indeed, if the function v satisfies
the condition

v(0, t) = 0, t ∈ [0, T ], (3)

then the no-slip condition u = 0 is satisfied on the line y = 0. In accordance with the
kinematic condition on the free boundary, the velocity of its motion in the external normal
direction coincides with the normal velocity of the fluid. This condition is satisfied if the
following equality is valid:

ds

dt
=

∫ s

0
v(y, t) dy, 0 ≤ t ≤ T . (4)

The condition of the absence of shear stresses on the free boundary yields the relation

vy(s, t) = 0, 0 ≤ t ≤ T . (5)

Finally, the condition of the absence of normal stresses reduces to the equality q(s, t) = 0.
It can be satisfied a posteriori because the pressure in the solution of system (1) of the form
(2) is determined with accuracy to the additive function of time.

Let us use l to determine the initial thickness of the layer and introduce dimensionless
variables by choosing l, l2ν−1, νl−1, ρ, and ν2l−2 as scales of length, time, velocity, and
pressure. Let the new variables retain their previous notations. Then, by virtue of Eqs. (1)
and (2), the function v in the strip ωT satisfies the equation

vt = vyy + v2 − vy

∫ y

0
v(z, t) dz. (6)

The boundary conditions (3)–(5) in the new variables retain the previous form. We also
add the initial conditions

v(y, 0) = v0(y), 0 ≤ y ≤ 1, s(0) = 1. (7)

As a result, we obtain a problem formulation with an unknown boundary: We have to find
a function s(t) and a solution v(y, t) of Eq. (6) in the domain ωT satisfying the boundary
conditions (3)–(5) and the initial condition (7).

The problem with a free boundary for the Navier–Stokes equations (3)–(7) was first
formulated in [3], where self-similar solutions of this problem were also found. The effect of
solution blowup was numerically discovered in [4]. This effect is manifested as follows: The
free boundary moves to infinity within a finite time. Similar solutions of ideal fluid equations
were obtained by Ovsiannikov [5] and by Longuet-Higgins [6]. In these solutions, the strip
width is described by a simple formula

s = s0

1 − kt
, (8)

where k = const. If k < 0, then the problem solution exists for all t > 0, and the strip width
tends to zero as t → ∞. If k > 0, the solution fails within a finite time. In this case, the
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Fig. 1 Asymptotic tending of the viscous fluid strip width when approaching the catastrophe instant to the
Ovsiannikov solution for an ideal fluid

solution lifetime is 1/k. It turned out that the inviscid asymptotic yields the principal term of
the singularity in the behavior of the function s(t) when approaching the catastrophe instant
[4]. Figure 1 shows the plot of 1/s′(t) for the initial function v0(y) = 0.8 sin(πy/2), and the
dotted curve is the Ovsiannikov solution for an ideal fluid.

The problem of deformation of a viscous strip with two free boundaries was also considered
in [3], where sufficient conditions both for the existence of the solution for all t > 0 and
for solution blowup within a finite time were formulated. The structure of the collapsing
solutions of this problem was considered by Galaktionov and Vazquez [7].

3 Self-similar solution

Let us assume that the initial function v0 satisfies the conditions of smoothness and consis-
tency

v0(y) ∈ C2+β [0, 1], 0 < β < 1; v0(0) = 0, v′
0(1) = 0. (9)

(In Eq. (9), the symbol C2+β [0, 1] indicates the class of functions having continuous
derivatives up to the second-order inclusive, which satisfy the Hölder condition with the
index β). Then, problem (3)–(7) has the only classical solution in the domain ωT if T is
sufficiently small. This statement is proved by the method described in the monograph [8];
it is not presented here.

The sufficient conditions of solvability of the problem as a whole in the course of time
are provided below; here, we give an example of its exact solution possessing this property.
Equation (6) and the boundary conditions remain unchanged under the action of the stretching
transformation y = cȳ, t = c2 t̄ , v = c−2v̄, s = cs̄ (c = const). This fact allows us to seek
for the self-similar solutions of the problem

v = t−1ψ(ξ), s = κt1/2, (10)

where ξ = y/
√
t, κ = const > 0, and the function ψ(ξ) satisfies the equation

d3ψ

dξ3 +
(

ξ

2
− ψ

)
d2ψ

dξ2 +
(

d2ψ

dξ2

)2

+ dψ

dξ
= 0, 0 < ξ < κ (11)
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Fig. 2 Numerical solution of problem (11)–(13)

and the boundary conditions

ψ = dψ

dξ
= 0, ξ = 0;

d2ψ

dξ2 = 0, ξ = κ. (12)

The variable κ is also to be sought; it is determined from the relation

ψ(κ) = κ

2
. (13)

The existence of the self-similar solution of problem (3)–(6) was established in [3]. Obvi-
ously, solution (10) is determined for all t > 0. The numerical solution of problem (11)–(13)
(Fig. 2) yields the value κ ≈ 1.315.

4 Blowup of the solution

Here, we formulate the sufficient conditions of blowup of the solution of problem (3)–(7).
Our formulation is based on the properties of the Lyapunov functional

Lt [v] =
s(t)∫

0

(
v3

3
− v2

y

2

)
dy, (14)

associated with its solution. (Here, the subscript t marks the dependence of the functional Lt

on time.)

Statement 1. Let us assume that there exists a classical solution of problem (3)–(7) in the
domain ωT . Let the following conditions be satisfied:

v0 ≥ 0, y ∈ [0, 1];
1∫

0

(
v3

0

3
− (v′

0)
2

2

)
dy ≡ L0 > 0. (15)

Then, the functional Lt is a non-decreasing function of t on the segment [0, T ].
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To prove this fact, we calculate the derivative dLt/dt and take into account that the
inequality v ≥ 0 is satisfied everywhere in the domain ωT by virtue of the maximum principle
[9] and the first condition of (15). We have

dLt

dt
=

s∫

0

(
v2vt − vyvyt

)
dy + s′

3
v3(s, t)

=
s∫

0

⎛
⎝v4 + v2vyy − v2vy

y∫

0

v(z, t) dz

−vyvyyy − vv2
y + vyvyy

y∫

0

v(z, t) dz

⎞
⎠ dy = s′

3
v3(s, t)

−1

3
v3(s, t)

s∫

0

v(y, t) dy +
s∫

0

[
v4 + v2vyy + v2

yy

+1

3
v4 − vv2

y + 1

2
(v2

y)y

y∫

0

v(z, t) dz

⎤
⎦ dy

=
s∫

0

[
v4 + 2v2vyy + v2

yy + 1

3
v4 − v2vyy − 3

2
vv2

y

]
dy

=
s∫

0

[(
v2 + vyy

)2 + 1

3
v4 + 1

2
vv2

y

]
dy ≥ 0. (16)

Let us introduce the notations

η = y

s(t)
, w(η, t) = v(y, t), I (t) =

1∫

0

w2(η, t) dη, I0 = I (0). (17)

Thus, we have

Statement 2. Let us assume that conditions (15) are satisfied. Then, the lifetime t∗ of the
solution of problem (3)–(7) is estimated from above as 3I−1/2

0 .
The proof of Statement 2 is based on the inequality Lt [v] > 0 at 0 < t < T , which

follows from Eqs. (14) to (16), and on the identity to which the solution of problem (3)–(7)
satisfies:

d

dt

s∫

0

v2 dy =
s∫

0

(3v3 − 2v2
y) dy, 0 < t < T .

By virtue of definition (14) of the functional Lt [v], the last identity can be rewritten as

d

dt

s∫

0

v2 dy = 5

3

s∫

0

v3 dy + 4Lt [v], 0 < t < T .
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Passing here to the variables η and w by formulas (17) and taking into account the definition
of the functional I and equality (4), we obtain

dI

dt
= 5

3

1∫

0

w3 dη −
⎛
⎝

1∫

0

w dη

⎞
⎠

⎛
⎝

1∫

0

w2 dη

⎞
⎠ + 4Lt [v].

Owing to Statement 2, we have Lt [v] ≥ L0 > 0 for all t ∈ [0, T ]. Using the property
of nonnegativeness of the function w and the Hölder inequality, we derive the differential
inequality

dI

dt
>

2

3
I 3/2, t ∈ [0, T ].

Integrating this inequality, we obtain the desired estimate of t∗ < 3I−1/2
0 .

5 Compression of the strip

Let us now consider the case where the function v0(y) is non-positive, v0 = −u0, and
0 ≤ u0 ≤ a, y ∈ (0, 1]. Let us pass to the new sought function u = −v in problem (3)–(7):

ut = uyy − u2 + uy

∫ y

0
u(z, t) dz, (y, t) ∈ ωT , (18)

u(0, t) = 0,
ds

dt
= −

∫ s

0
u(y, t) dy, uy(s, t) = 0, 0 ≤ t ≤ T, (19)

u(y, 0) = u0(y), 0 ≤ y ≤ 1. (20)

As the function u0 is nonnegative, the solution of problem (18)–(20) possesses the same
property. This fact follows from the maximum principle applicable to Eq. (18) [9]. Moreover,
the following estimates are valid: 0 ≤ u ≤ a, (y, t) ∈ ωT . The solution of problem (18)–(20)
describes the process of strip compression, which goes on for an infinite time. It is assumed
that the function u0 = −v0 satisfies the conditions of smoothness and consistency (9). Under
these conditions, the following statement is valid.

Statement 3. For an arbitrary value T > 0, there exists the only classical solution (u, s) of
problem (18)–(20), with s(t) ≥ exp(−8a/π3) for t > 0, where a = max u0(y), y ∈ [0, 1].

The two-sided estimate of the function u allows one to use the method described in [8] to
prove the solvability of the problem. The layer thickness can be estimated by the inequality

u ≤ û = a exp

(
−π2t

4

)
sin

(πy

2s

)
.

In turn, this inequality is based on the theorem of comparison [9] of the function û and the
solution of problem (18)–(20). The resultant estimate is of principal importance. It follows
from this estimate that the limiting thickness of the strip is positive as t → ∞ owing to
the action of viscosity. This is the difference between the problem considered here from the
problem of inviscid strip deformation, where its thickness tends to zero with increasing t
[5,6].
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Fig. 3 Time evolution of the layer thickness: stabilization to the quiescent state (c = 0.6) (curve 1), solution
failure (c = 0.75) (curve 2), and self-similar solution (curve 3)

6 Numerical solution

The results of the numerical solution of problem (3)–(7) are presented below. Let us introduce
a new spatial variable ζ (Lagrangian coordinate) and a new sought function V by the relations

yt =
y∫

0

v(z, t)dz, t > 0; y = ζ, t = 0; V (ζ, t) = v[y(ζ, t)]. (21)

Then, the domain ωT transforms to the rectangle T = {ζ, t : 0 < ζ < 1, 0 < t < T }, and
the original problem transforms to

Vt = λ−1(λ−1Vζ )ζ + V 2, λt = λV, (ζ, t) ∈ T , (22)

V (ζ, 0) = v0(ζ ), λ(ζ, 0) = 1, 0 ≤ ζ ≤ 1, (23)

V (0, t) = 0, Vζ (1, t) = 0, 0 ≤ t ≤ T . (24)

The additional sought function λ has the meaning of deformation: λ = xζ . The strip

thickness s is expressed by the formula s(t) = ∫ 1
0 λ(ζ, t)dζ . Problem (22)–(24) is solved

by the finite difference method. The calculations were performed with the initial function
v0 = c sin(πζ/2), c = const. Figure 3 demonstrates the plots of s(t) for c = 0.6 (curve 1)
and c = 0.75 (curve 3). In the first case, the motion becomes stabilized to the quiescent state
with time despite the fact that the initial function v0 is positive. The second case demonstrates
solution blowup. Curve 2 separating these two plots corresponds to the self-similar solution
of problem (10), where t is replaced by t + 1. In this solution, s = κ(t + 1)1/2. The original
problem (3)–(7) was also solved by the Galerkin method. The approximate solution was
sought in the form

VN =
N∑

k=1

ak(t) sin [π(2k − 1)y/s(t)] , N = 1, 2, . . . (25)
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(a) (b)

Fig. 4 Initial function v0 (a) and the corresponding plot of the free boundary (b)

The functions s and ak (k = 1, 2, . . . , N ) form the solution of the dynamic system. This
system is presented below for the case N = 3:

da1

dt
= −77a1a2

30π
− 107a1a3

210π
− π2a1

4s2

+3a2
1

π
− 430a2a3

189π
+ 9a2

2

2π
+ 25a2

3

6π
,

da2

dt
= 263a1a2

70π
− 865a1a3

252π
− a2

1

6π

+1351a2a3

220π
− 9π2a2

4s2 + a2
2

π
+ 25a2

3

12π
,

da3

dt
= −5a1a2

756π
+ 259a1a3

66π
− a2

1

30π

+961a2a3

1092π
− 9a2

2

20π
− 25π2a3

4s2 + 3a2
3

5π
,

ds

dt
= 2s (a1 + a2/3 + a3/5)

π
.

It turned out that acceptable accuracy can be provided by taking solution (25) with N = 3.
The numerical solutions obtained by the Galerkin method and by the finite difference method
agree well with each other.

Thus, we can conclude that the effect of solution blowup within a finite time has a threshold
character. The sufficient conditions of solution blowup in Statement 2 are not necessary.
The condition of nonnegativeness of the initial function v0 is not necessary either for the
existence of the solution of problem (3)–(7) for all t > 0. This is demonstrated by calculations
illustrated in Fig. 4. The initial function v0 is plotted in Fig. 4a, and the behavior of the free
boundary is illustrated in Fig. 4b. We have v0(x) = 3 sin(πx/2) in the first case, v0(x) =
2 sin(πx/2)− sin(3πx/2) in the second case, and v0(x) = 2 sin(πx/2)+ sin(5πx/2) in the
third case. It is seen that neither nonnegativeness of the initial function in the second case
nor the absence of monotonicity in the third case prevents solution collapse within a finite
time; these factors only slightly change the time of this event.

In addition to the mode where the strip width tends to a positive constant as t → ∞,
there is a close-to-self-similar mode with the asymptotic behavior of the strip width s =
κt1/2 + O(t−1/2). This mode has a moderate reserve of stability. Figure 5 illustrates the
behavior of the strip width obtained for the case where the initial value is the self-similar
solution or a small perturbation of this solution. It is seen that the predicted strip thickness
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(a) (b)

Fig. 5 Perturbation of the initial conditions with respect to the self-similar solution (a) and the resultant
position of the free boundary with respect to the self-similar law (b)

coincides with the self-similar law only if the perturbation applied to the initial function is
symmetric with respect to the self-similar solution. In other cases, the strip thickness either
tends to a constant or passes to infinity within a finite time.

7 Rotation of the layer

In what follows, r, ϕ, and z are the cylindrical coordinates, andu = (ur , uϕ, uz) is the velocity
vector. In this section, we study the rotationally symmetric solutions of the Navier–Stokes
equations

ut + u · ∇u = −∇ p + �u, ∇ · u = 0 (26)

in the layer QT = {r, z, t : r > 0, 0 < z < s(t), 0 < t < T }. System (26) is written
in dimensionless variables. They are chosen in the same way as those in Sect. 1, but l now
means the initial thickness of the layer. It is known that system (26) admits solutions of the
form

ur = −r f (z, t), uϕ = rg(z, t), uz = 2
∫ z

0
f (y, t) dy, p = q(z, t). (27)

123



554 Page 10 of 12 Eur. Phys. J. Plus (2020) 135:554

The class of these solutions was discovered by Karman [10]. The functions f and g form a
closed system of equations

ft = fzz + f 2 − g2 − 2 fz

∫ z

0
f (y, t) dy,

gt = gzz + 2 f g − 2gz

∫ z

0
f (y, t) dy (28)

System (28) is supplemented with the following boundary and initial conditions:

f (0, t) = 0, g(0, t) = �(t), 0 ≤ t ≤ T, (29)
ds

dt
= 2

∫ s

0
f (z, t) dz, fz(s, t) = 0, gz(s, t) = 0, 0 ≤ t ≤ T, (30)

f (z, 0) = f0(z), g(z, 0) = g0(z), 0 ≤ z ≤ 1, s(0) = 1. (31)

Here, �, f0, and g0 are specified smooth functions of their arguments. The solution of prob-
lem (28)–(31) describes the fluid motion in a layer of thickness QT whose upper boundary
is free and whose lower boundary is a solid plane rotating with an angular velocity �(t).

In a particular, case with f0 = 0, problem (28)–(31) was considered in [11], where its local
solvability at small values of T was established. The theorem of existence and uniqueness
of this problem “as a whole” in time was derived in [1]. It should be noted that this problem
has engineering applications (see [12] and references therein). Lavrent’eva [13] studied self-
similar and steady-state solutions of problem (28)–(31) with f0 = 0. In her co-authored
paper with Volkova ([14], see also [1]), they derived a numerical solution of this problem for
different forms of the dependence of � on t and found the asymptotic curve of the solution
for � → const as t → ∞. Another particular case of problem (28)–(31) occurs if it is
assumed that � = 0 and g0 = 0. Then, it is necessary that g = 0, and the motion becomes
axisymmetric. The axisymmetric case of this problem was considered in [15]. The results of
that study are in good qualitative agreement with the results of the analysis of the problem of
strip deformation described in Sect. 1 of the present paper. Let us assume that the function f0
is positive on the interval (0, 1] and “sufficiently large.” If g0 = 0 and � = 0 (i.e., rotation
is absent), then the layer starts to expand, and its thickness turns to infinity at a certain time
instant. The specific features of the arising collapse are caused by the presence of the free
boundary, while there is no energy concentration inside the flow domain.

The situation becomes qualitatively different if the plane starts to rotate. At a certain time
instant, expansion of the layer transforms to its compression. One can see that plane rotation
can prevent the collapse of the solution of problem (28)–(31). Figure 6 shows the function s(t)
in the absence of rotation (curve 1) and in the presence of rotation (curve 2). The results were
obtained for identical initial data: f0(z) = 0.9 sin(π z/2), g0(z) = 0, �(t) = 4−4/(1+ t2),
except for the angular velocity �(t), which is equal to zero in the first case.

Figure 7a shows the function f (z, t) without (curve 1) and with (curve 2) rotation at the
time t = 1. It is at this time that the layer thickness for these two cases becomes different. It
is seen that rotation leads to principal changes in the character of the vertical component of
the velocity vector: There even arises a counterflow region near the rotation axis. Figure 7b
shows the function g(z, 1). Clearly, this function is equal to zero if there is no rotation. It
characterizes the angular velocity and naturally decreases with distance from the rotation
axis.
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Fig. 6 Function s(t) without (curve 1) and with (curve 2) rotation

Fig. 7 Functions f (z, t) and g(z, t) without (curve 1) and with (curve 2) rotation at the time t = 1

8 Conclusions

Both solutions considered in the present study have a group-theoretical nature: They are par-
tially invariable (in the sense of Ovsiannikov [16]) solutions of the Navier–Stokes equations
[1,2]. A method of constructing invariant and partially invariant solutions of the Navier–
Stokes equations a priori consistent with the conditions on the free surface, which is an
invariant manifold of the corresponding group admitted by these equations, was developed
in [11]. It is also possible to find other solutions of the Navier–Stokes equations, which
describe motions with flat free surfaces. The plane bounding the flow can perform transla-
tional or rotational motions. It can be permeable; moreover, the density of sources or sinks
should be independent of the longitudinal coordinates, but can depend on time. The fluid
may be affected by the gravity force in the vertical direction. In this case, the function p(z, t)
determining the pressure should be supplemented with the term ρg(s(t) − z), where g is the
acceleration due to gravity.

Funding This work was supported by the Russian Foundation for Basic Research, Project No. 19-01-00096.
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