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Abstract
We consider a combined soliton equation involving three fourth-order nonlinear terms in
(2+1)-dimensional dispersive waves and determine its lump solutions via symbolic com-
putations. The combined equation is transformed into a Hirota bilinear equation under a
logarithmic transformation and its lump solutions are computed explicitly in two cases of the
coefficients in themodel. Illustrative examples are presented, togetherwith three-dimensional
plots and contour plots of two specific lump solutions.

1 Introduction

Soliton theory provides effective methods to solve nonlinear partial differential equations
(PDEs) [1,2], including soliton equations generated fromzero curvature equations. TheHirota
bilinear method is particularly powerful in constructing soliton solutions [3,4]. Those solu-
tions are analytic and exponentially localized. Let a polynomial P determine a Hirota bilinear
differential equation

P(Dx , Dy, Dt ) f · f = 0
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in (2+1)-dimensions, where Dx , Dy and Dt are Hirota’s bilinear derivatives [3]. The cor-
responding PDE with a dependent variable u is usually determined through one of the
logarithmic transformations: u = 2(ln f )x or u = 2(ln f )xx . Based on the Hirota bilin-
ear form, the N -soliton solution is formulated as follows:

f =
∑

μ=0,1

exp

⎛

⎝
N∑

i=1

μiξi +
∑

i< j

μiμ j ai j

⎞

⎠ ,

where
∑

μ=0,1 denotes the sum over all possibilities for μ1, μ2, . . . , μN taking either 0 or
1, and the wave variables and the phase shifts are given by

ξi = ki x + li y − ωi t + ξi,0, 1 ≤ i ≤ N ,

and

eai j = − P(ki − k j , li − l j , ω j − ωi )

P(ki + k j , li + l j , ω j + ωi )
, 1 ≤ i < j ≤ N ,

in which ki , li and ωi , 1 ≤ i ≤ N , satisfy the corresponding dispersion relation and ξi,0,
1 ≤ i ≤ N , are arbitrary phase shifts.

Lump solutions are rational solutions, which are analytic and localized in all directions
in space (see, e.g., [5–7]), and they can often be obtained from computing long wave limits
of soliton equations (see, e.g., [8]). Various recent studies on (2+1)-dimensional soliton
equations show the striking richness of lump solutions (see, e.g., [5,6]), which describe
various dispersive wave phenomena. The KPI equation possesses diverse lump solutions
(see, e.g., [9]), and special lump solutions are derived from soliton solutions [10]. Other
soliton equations which possess lump solutions contain the three-dimensional three-wave
resonant interaction [11], the BKP equation [12,13], the Davey-Stewartson II equation [8],
the Ishimori-I equation [14], the KPI equation with a self-consistent source [15] and the
mKPI equation [16]. A crucial step in constructing lump solutions is to determine positive
quadratic function solutions toHirota bilinear equations [5]. Then lump solutions to nonlinear
PDEs are generated through the logarithmic transformations from positive quadratic function
solutions.

In this paper, we would like to consider a combined fourth-order soliton equation in
(2+1)-dimensional dispersive waves and determine its abundant lump solution structures.
The Hirota bilinear form plays a key role in our discussion (see, e.g., [5,6,17,18]). We will
formulate a combined fourth-order soliton equation including three fourth-order nonlinear
terms and all second-order linear terms. To present lump solutions with Maple symbolic
computations, we will discuss two cases of the combined model. Illustrative examples of the
considered model will be presented and some three-dimensional plots and contour plots will
be made for two particular lump solutions by using Maple. A conclusion and some remarks
will be given at the end of the paper.

2 A combined soliton equation

We would like to consider a general combined fourth-order soliton equation as follows:

P(u) = α(6uxuxx + uxxxx ) + β[3(uxut )x + uxxxt ] + γ [3(uxuy)x + uxxxy]
+ δ1uyt + δ2uxx + δ3uxt + δ4uxy + δ5uyy + δ6utt = 0, (2.1)
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where the constants α, β and γ are not all zero, but the constants δi , 1 ≤ i ≤ 6, are all
arbitrary. This equation contains three fourth-order nonlinear terms and all second-order
linear terms, and it generalizes the standard KP equation.

Upon taking α = 0, β = 1 and γ = 0, and δ1 = δ2 = 1 and the other δi ’s as zero,
we obtain an integrable (2 + 1)-dimensional extension of the Hirota-Satsuma equation [3],
namely the Hirota-Satsuma-Ito (HSI) equation in (2+1)-dimensions [19]:

3(uxut )x + uxxxt + uyt + uxx = 0, (2.2)

which satisfies the Hirota three-soliton condition and possesses a Hirota bilinear form under
the logarithmic transformation u = 2(ln f )x :

(D3
x Dt + DyDt + D2

x ) f · f = 0. (2.3)

This equation is called the bilinear HSI equation.
Upon taking α = 0, β = 0 and γ = 1, and δ3 = δ5 = 1 and the other δi ’s as zero, we

obtain a generalized Calogero–Bogoyavlenskii–Schiff equation [20]:

3(uxuy)x + uxxxy + uxt + uyy = 0, (2.4)

which also possesses a Hirota bilinear form

(D3
x Dy + Dx Dt + D2

y) f · f = 0, (2.5)

under u = 2(ln f )x , and whose lump solutions have been computed in [20].
Upon taking α = 1, β = 0 and γ = 1, and δ2 = δ3 = δ5 = 1 and the other δi ’s as zero,

we obtain a generalized Bogoyavlensky–Konopelchenko equation [21]:

6uxuxx + uxxxx + 3(uxuy)x + uxxxy + uxt + uxx + uyy = 0, (2.6)

whose Hirota bilinear form is given by

(D4
x + D3

x Dy + Dx Dt + D2
x + D2

y) f · f = 0, (2.7)

under u = 2(ln f )x . It has lump solutions as well [21].
The general combined soliton equation (2.1) also presents a generalization of the nonlinear

soliton equation in [22], and it has a Hirota bilinear form

B( f ) = (αD4
x + βD3

x Dt + γ D3
x Dy + δ1DyDt + δ2D

2
x

+ δ3Dx Dt + δ4Dx Dy + δ5D
2
y + δ6D

2
t ) f · f = 0, (2.8)

under the logarithmic transformation

u = 2(ln f )x = 2 fx
f

. (2.9)

In fact, we have the relation between the nonlinear and bilinear equations: P(u) = (
B( f )
f 2

)x ,

when u and f satisfy the link (2.9).

3 Lump solutions

In this section, we would like to determine lump solutions to the combined fourth-order
soliton equation (2.1) in (2+1)-dimensions, through symbolic computations with Maple.
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Let us begin with positive quadratic solutions to the combined Hirota bilinear equation
(2.8):

f = (a1x + a2y + a3t + a4)
2 + (a5x + a6y + a7t + a8)

2 + a9, (3.1)

where the constant parameters ai , 1 ≤ i ≤ 9, are to be determined, to present lump solutions
to the combined fourth-order soliton equation (2.1). This is a general ansatz on lump solutions
in (2+1)-dimensions, generated from quadratic functions [9].

3.1 The case of ı6 = 0

Let us first consider the case of δ6 = 0 for the combined soliton equation (2.1). A direct
symbolic computation determines a set of solutions for the parameters, where

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

a3 = − b1
(a2δ1 + a1δ3)2 + (a6δ1 + a5δ3)2

,

a7 = − b2
(a2δ1 + a1δ3)2 + (a6δ1 + a5δ3)2

,

a9 = − 3 (a21 + a25)(αb3 − βb4 + γ b5)

(a1a6 − a2a5)2(δ21δ2 − δ1δ3δ4 + δ23δ5)
,

(3.2)

and all other ai ’s are arbitrary. The involved five constants bi , 1 ≤ i ≤ 5, are given by
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b1 = [(a21a2 + 2 a1a5a6 − a2a25)δ2 + a1(a22 + a26)δ4 + a2(a22 + a26)δ5]δ1
+[a1(a21 + a25)δ2 + a2(a21 + a25)δ4 + (a1a22 + 2 a2a5a6 − a1a26)δ5]δ3,

b2 = [(−a21a6 + 2 a1a2a5 + a25a6)δ2 + a5(a22 + a26)δ4 + a6(a22 + a26)δ5]δ1
+[a5(a21 + a25)δ2 + a6(a21 + a25)δ4 + (−a22a5 + 2 a1a2a6 + a5a26)δ5]δ3,

b3 = (a21 + a25)[(a1δ3 + a2δ1)2 + (a5δ3 + a6δ1)2],
b4 = (a21 + a25)(a1a2 + a5a6)(δ1δ2 + δ3δ4) + (a21 + a25)(a

2
2 + a26)δ1δ4

+(a21 + a25)
2δ2δ3 + (a22 + a26)(a1a2 + a5a6)δ1δ5

+[(a1a2 + a5a6)2 − (a1a6 − a2a5)2]δ3δ5,
b5 = (a1a2 + a5a6)[(a2δ1 + a1δ3)2 + (a6δ1 + a5δ3)2].

(3.3)

The expressions of a3 and a7 present diverse dispersion relations in (2+1)-dimensional
dispersive waves.

3.2 The case of ı5 = 0

Let us second consider the case of δ5 = 0 for the combined nonlinear equation (2.1). A
similar direct symbolic computation determines a set of solutions for the parameters, where

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

a2 = − c1
(a3δ1 + a1δ4)2 + (a7δ1 + a5δ4)2

,

a6 = − c2
(a3δ1 + a1δ4)2 + (a7δ1 + a5δ4)2

,

a9 = − 3 (a21 + a25)(αc3 − γ c4 + βc5)

(a1a7 − a3a5)2(δ21δ2 − δ1δ3δ4 + δ24δ6)
,

(3.4)
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and all other ai ’s are arbitrary. The involved five constants ci , 1 ≤ i ≤ 5, are given by
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c1 = [(a21a3 + 2 a1a5a7 − a3a25)δ2 + a1(a23 + a27)δ3 + a3(a23 + a27)δ6]δ1
+[a1(a21 + a25)δ2 + a3(a21 + a25)δ3 + (a1a23 + 2 a3a5a7 − a1a27)δ6]δ4,

c2 = [(−a21a7 + 2 a1a3a5 + a25a7)δ2 + a5(a23 + a27)δ3 + a7(a23 + a27)δ6]δ1
+[a5(a21 + a25)δ2 + a7(a21 + a25)δ3 + (−a23a5 + 2 a1a3a7 + a5a27)δ6]δ4,

c3 = (a21 + a25)[(a1δ4 + a3δ1)2 + (a5δ4 + a7δ1)2],
c4 = (a21 + a25)(a1a3 + a5a7)(δ1δ2 + δ3δ4) + (a21 + a25)(a

2
3 + a27)δ1δ3

+(a21 + a25)
2δ2δ4 + (a23 + a27)(a1a3 + a5a7)δ1δ6

+[(a1a3 + a5a7)2 − (a1a7 − a3a5)2]δ4δ6,
c5 = (a1a3 + a5a7)[(a3δ1 + a1δ4)2 + (a7δ1 + a5δ4)2].

(3.5)

All the above expressions for wave frequencies and wave numbers in (3.2), (3.3), (3.4)
and (3.5) have been obtained with some direct simplifications with Maple. Based on those
solution expressions, we need two basic conditions:

δ21 + δ23 �= 0, (3.6)

in the case of δ6 = 0, and
δ21 + δ24 �= 0, (3.7)

in the case of δ5 = 0, to present lump solutions.
In the case of δ5 = 0, to check when the set of the resulting parameters presents lumps,

we work out

a1a6 − a2a5

= (a1a7 − a3a5)[(a21 + a25)(δ1δ2 − δ3δ4) − (a23 + a27)δ1δ6 − 2(a1a3 + a5a7)δ4δ6]
(a3δ1 + a1δ4)2 + (a7δ1 + a5δ4)2

.

Therefore, we can see that the condition a1a6 − a2a5 �= 0, which guarantees the existence of
lumps, holds if and only if besides (3.7), the following two additional conditions are satisfied:

{
a1a7 − a3a5 �= 0,
(a21 + a25)(δ1δ2 − δ3δ4) − (a23 + a27)δ1δ6 − 2(a1a3 + a5a7)δ4δ6 �= 0.

(3.8)

Together with a9 > 0, these three conditions ensure that the corresponding set of the param-
eters will lead to lump solutions.

4 Illustrative examples of the combinedmodel

We present diverse examples of the considered combined soliton equation, on the base of the
presented solution expressions above in the two cases of solutions.

4.1 The case of ı1 = ı2 = 1

Let δ1 = δ2 = 1 and the other δi ’s be zero. Then the combined Hirota bilinear equation (2.8)
becomes

(αD4
x + βD3

x Dt + γ D3
x Dy + DyDt + D2

x ) f · f = 0. (4.1)
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The subcase of α = β = 0 and γ = 1 gives the dimensionally reduced Jimbo–Miwa
equation with z = x [23].

The subcase of β = 1 and α = γ = 0 gives us the original HSI equation in (2+1)-
dimensions (2.2). The two solution classes in this case are equivalent to each other. The
function f by (3.1) with (3.2) and (3.3) presents a class of lump solutions to the HSI equation
(2.2), where ⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

a3 = −a21a2 + 2a1a5a6 − a2a25
a22 + a26

,

a7 = a21a6 − 2a1a2a5 − a25a6

a22 + a26
,

a9 = 3(a21 + a25)
2(a1a2 + a5a6)

(a1a6 − a2a5)2
,

(4.2)

and all other ai ’s are arbitrary; and the function f by (3.1) with (3.4) and (3.5) presents
another class of lump solutions to the HSI equation (2.2), where [24]

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

a2 = −a21a3 + 2a1a5a7 − a3a25
a23 + a27

,

a6 = a21a7 − 2a1a3a5 − a25a7

a23 + a27
,

a9 = −3(a21 + a25)(a
2
3 + a27)(a1a3 + a5a7)

(a1a7 − a3a5)2
.

(4.3)

Obviously, we see that

a1a3 + a5a7 = − (a21 + a25)(a1a2 + a5a6)

a22 + a26
, (4.4)

and

a1a6 − a2a5 = (a21 + a25)(a1a7 − a3a5)

a23 + a27
. (4.5)

Therefore, the conditions of

a1a2 + a5a6 > 0, a1a6 − a2a5 �= 0, (4.6)

under which f by (3.1) with (4.2) will present lump solutions to (2.2), are equivalent to the
conditions of

a1a3 + a5a7 < 0, a1a7 − a3a5 �= 0, (4.7)

under which f by (3.1) with (4.3) will present lump solutions to (2.2). To conclude, the
two classes of lump solutions presented in the two solution cases are the same. They can be
derived from each other.

4.2 The case of ı3 = ı5 = 1

Let δ3 = δ5 = 1 and the other δi ’s be zero. Then the combined Hirota bilinear equation (2.8)
becomes

(αD4
x + βD3

x Dt + γ D3
x Dy + Dx Dt + D2

y) f · f = 0. (4.8)
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The subcase of α = β = 1 and γ = 0 provides a new model, for which a specific lump will
be presented in the next section. The subcase of α = β = 0 and γ = 1 is the generalized
Calogero–Bogoyavlenskii–Schiff equation discussed previously in [20].

4.3 The case of ı4 = ı6 = 1

Let δ4 = δ6 = 1 and the other δi ’s be zero. Then the combined Hirota bilinear equation (2.8)
becomes

(αD4
x + βD3

x Dt + γ D3
x Dy + Dx Dy + D2

t ) f · f = 0. (4.9)

The condition a1a6 − a2a5 �= 0 for the existence of lumps requires

a1a7 − a3a5 �= 0, a1a3 + a5a7 �= 0; (4.10)

and thus, a9 > 0 requires

α(a21 +a25)
2 +β(a1a3 +a5a7)(a

2
1 +a25)+γ [(a1a7 −a3a5)

2 − (a1a3 +a5a7)
2] < 0. (4.11)

Therefore, we see that if β = γ = 0, we need to require α < 0 to present lumps. A specific
lump in the subcase of α = β = γ = 1 will be computed and plotted in the next section.

4.4 The case of ı1 = ı3 = ı4 = 1

Let δ1 = δ3 = δ4 = 1 and the other δi ’s be zero. Then the combined Hirota bilinear equation
(2.8) becomes

(αD4
x + βD3

x Dt + γ D3
x Dy + DyDt + Dx Dt + Dx Dy) f · f = 0, (4.12)

which generate two new combined soliton equations possessing lump solutions, when α =
β = 1 and γ = 0 or when β = 0 and α = γ = 1.

Two classes of lump solutions determined by (3.2) with (3.3) and (3.4) with (3.5) are
essentially equivalent to each other. In other words, one can be generated from the other as
in the first case. The first class of parameters by (3.2) with (3.3) reads

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

a3 = −a1(a22 + a26) + a2(a21 + a25)

(a1 + a2)2 + (a5 + a6)2
,

a7 = −a5(a22 + a26) + a6(a21 + a25)

(a1 + a2)2 + (a5 + a6)2
,

a9 = 3(a21 + a25)(αb3 − βb4 + γ b5)

(a1a6 − a2a5)2
,

(4.13)

where ⎧
⎪⎪⎨

⎪⎪⎩

b3 = (a21 + a22)[(a1 + a2)2 + (a5 + a6)2],
b4 = (a21 + a25)[(a1a2 + a5a6) + (a22 + a26)],
b5 = (a1a2 + a5a6)[(a1 + a2)2 + (a5 + a6)2].

(4.14)
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The second class of parameters by (3.4) with (3.5) reads
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

a2 = −a1(a23 + a27) + a3(a21 + a25)

(a1 + a3)2 + (a5 + a7)2
,

a6 = −a5(a23 + a27) + a7(a21 + a25)

(a1 + a3)2 + (a5 + a7)2
,

a9 = 3(a21 + a25)(αc3 − γ c4 + βc5)

(a1a7 − a3a5)2
,

(4.15)

where ⎧
⎪⎪⎨

⎪⎪⎩

c3 = (a21 + a25)[(a1 + a3)2 + (a5 + a7)2],
c4 = (a21 + a25)[(a1a3 + a5a7) + (a23 + a27)],
c5 = (a1a3 + a5a7)[(a1 + a3)2 + (a5 + a7)2].

(4.16)

These two classes of parameters are the same, since they can be solved from each other.
Moreover, one has

a1a7 − a3a5 = − (a21 + a25)(a1a6 − a2a5)

(a1 + a2)2 + (a5 + a6)2
,

and therefore, two classes present the exactly same set of values for the parameters.

4.5 The case of ı1 = ı3 = ı5 = 1

Let δ1 = δ3 = δ5 = 1 and the other δi ’s be zero, Then the combined Hirota bilinear equation
(2.8) becomes

(αD4
x + βD3

x Dt + γ D3
x Dy + DyDt + Dx Dt + D2

y) f · f = 0. (4.17)

Observe that a1a6 − a2a5 �= 0 leads to (a1 + a2)2 + (a5 + a6)2 �= 0, which ensures that
a3 and a7 in (3.2) are well defined. Therefore, besides a1a6 − a2a5 �= 0, the condition for
guaranteeing lumps is

α(a21 + a25)[(a1 + a2)
2 + (a5 + a6)

2]
− β[(a22 + a26)(a1a2 + a5a6) + (a1a2 + a5a6)

2 − (a1a6 − a2a5)
2]

+ γ (a1a2 + a5a6)[(a1 + a2)
2 + (a5 + a6)

2] < 0, (4.18)

which guarantees that a9 defined in (3.2) is positive.

4.6 The case of ı1 = ı4 = ı6 = 1

Let δ1 = δ4 = δ6 = 1 and the other δi ’s be zero. Then the combined Hirota bilinear equation
(2.8) becomes

(αD4
x + βD3

x Dt + γ D3
x Dy + DyDt + Dx Dy + D2

t ) f · f = 0. (4.19)

Observe that a1a7 − a3a5 �= 0 leads to (a1 + a3)2 + (a5 + a7)2 �= 0, which ensures that a2
and a6 in (3.4) are well defined. Also, it is easy to see that in this case, we have

a1a6 − a2a5 = (a1a7 − a3a5)[(a23 + a27) + 2(a1a3 + a5a7)]
(a1 + a3)2 + (a5 + a7)2

.
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Therefore, the conditions for guaranteeing lumps are

a1a7 − a3a5 �= 0, (a23 + a27) + 2(a1a3 + a5a7) �= 0, (4.20)

and

[α(a21 + a25) + β(a1a3 + a5a7)][(a1 + a3)
2 + (a5 + a7)

2]
− γ [(a23 + a27)(a1a3 + a5a7) + (a1a3 + a5a7)

2 − (a1a7 − a3a5)
2] < 0. (4.21)

This guarantees, together with the first condition in (4.20), that a9 defined in (3.4) is positive.

5 Two particular lumps

Let us first take

α = 1, β = 1, γ = 0, δ3 = δ5 = 1, δ1 = δ2 = δ4 = δ6 = 0, (5.1)

which leads to a special combined soliton equation

uxxxx + 6uxuxx + uxxxt + 3(uxut )x + uxt + uyy = 0. (5.2)

This has a Hirota bilinear form

(D4
x + D3

x Dt + Dx Dt + D2
y) f · f = 0,

under the logarithmic transformation (2.9). Upon further taking

a1 = 2, a2 = −6, a4 = 1, a5 = 2, a6 = −5, a8 = 2, (5.3)

the transformation (2.9) with (3.1) presents a lump solution to the special combined soliton
equation (5.2):

u1 = 2(−120t + 16x − 44y + 12)

(− 71
4 t + 2x − 6y + 1)2 + (− 49

4 t + 2x − 5y + 2)2 + 2496
. (5.4)

Three-dimensional plots and contour plots of this lump solution at three different times are
made by using Maple in Fig. 1.

Let us second take

α = 1, β = 1, γ = 1, δ4 = δ6 = 1, δ1 = δ2 = δ3 = δ5 = 0, (5.5)

which leads to another special combined soliton equation

uxxxx + 6uxuxx + uxxxt + 3(uxut )x + uxxxy + 3(uxuy)x + uxy + utt = 0. (5.6)

It has a Hirota bilinear form

(D4
x + D3

x Dt + D3
x Dy + Dx Dy + D2

t ) f · f = 0,

under the logarithmic transformation (2.9). Upon further taking

a1 = 2, a3 = −6, a4 = 5, a5 = 2, a7 = −8, a8 = 3, (5.7)

the transformation (2.9) with (3.1) gives a lump solution to the special combined soliton
equation (5.6):
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Fig. 1 Profiles of u1 when t = 0, 10, 20: 3d plots (top) and contour plots (bottom)

Fig. 2 Profiles of u2 when x = 0, 60, 120: 3d plots (top) and contour plots (bottom)

u2 = 2(−56t + 16x − 192y + 32)

(−6t + 2x − 17y + 5)2 + (−8t + 2x − 31y + 3)2 + 1392
. (5.8)

Three three-dimensional plots and contour plots of this lump solution at three different values
of x are made through Maple in Fig. 2.
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6 Conclusion and remarks

With Maple symbolic computations, we have formulated a combined fourth-order soliton
equation in (2+1)-dimensions and determined its lump solutions in terms of the coefficients
in the combined model. The presented results supplement the existing lumps and solitons
in dispersive waves. Some three-dimensional plots and contour plots of two particular lump
solutions were made by using Maple.

We remark that all exactly presented solutions add valuable insights into related studies on
soliton solutions and dromion-type solutions in the continuous and discrete cases, achieved
through effective techniques such as the generalized bilinear method (see, e.g., [25]), the
Wronskian technique (see, e.g., [26,27]), Darboux transformations (see, e.g., [28,29]), the
Riemann-Hilbert approach (see, e.g., [30]), the multiple-wave expansion method (see, e.g.,
[31,32]), symmetry reductions (see, e.g., [33,34]), and symmetry constraints (see, e.g., [35,
36] for the continuous case and [37,38] for the discrete case). The combined equation has
theoretical interest itself, and is an essential step to obtain a significantmodel inmultiple-scale
and singular perturbation theory close to integrable equations [39].

We also remark that many nonlinear equations possess lump solutions, which include
generalizedKP,BKP,KP-Boussinesq, Sawada-Kotera,Calogero–Bogoyavlenskii–Schiff and
Bogoyavlensky–Konopelchenko equations in (2+1)-dimensions [20,21,40–43]. Moreover,
recent studies exhibit the remarkable richness of lump solutions to linear PDEs [32,44,45]
and nonlinear PDEs in (2+1)-dimensions (see, e.g., [46–50]) and (3+1)-dimensions (see, e.g.,
[23,51–56]). A new kind of lumps with higher-order rational dispersion relations has been
discovered as well [57]. Abundant lump solutions amend the existing theories of solutions
through different kinds of combinations (see, e.g., [58–61]), and can generate interesting
Lie-Bäcklund symmetries by taking derivatives with respect to the involved parameters.
These symmetries can also be used to formulate conservation laws by pairs of symmetries
and adjoint symmetries [62–64], and classify lump solutions based on an idea of determining
optimal systems of solutions [65,66]. Moreover, diverse interaction solutions [42,67,68] have
been constructed for different soliton equations in (2+1)-dimensions, including homoclinic
interaction solutions (see, e.g., [69–71]) and heteroclinic interaction solutions (see, e.g., [72–
75]). Based on the Hirota bilinear form and the generalized bilinear forms, some general
formulations have been presented for lump solutions [5,6,76].
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