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Abstract In this work, we perform the Hamilton–Jacobi analysis of a modified gravity
action, the so-called Freidel–Starodubtsev model. The complete set of involutive Hamilto-
nians that guarantee the system’s integrability is obtained. The generalized Poisson brackets
are calculated in the metric phase by means of a suitable constraint matrix inversion. We
also present a discussion about the metric and non-metric degrees of freedom. From the
fundamental differential we recover the equations of motion and explicitly obtain the gener-
ators of local Lorentz transformations and also diffeomorphisms for the tetrad and the spin
connection fields.

1 Introduction

The BF formulation has been employed to describe gravity from D = 1 + 1 to D = 3 + 1
dimensions [1–3]. The lower dimensional models [4] do not have any local degrees of freedom
and constitutes a kind of laboratory to understand the four-dimensional gravity, for which
BF theory has been used, for example, in the context of spin foam quantization [5,6]. The
bidimensional case, a generalization of the Jackiw–Teitelboim action [7,8], is formulated
by means of an auxiliary field and a curvature written in terms of a generalized connection
that envolves a rotational and also a translational part. It can be visualized as connecting
the different tangent spaces by rolling a ball through the manifold [9]. Those sectors are
associated with the spin connection and the tetrad field, respectively. Unfortunately, canonical
analysis reveals that they do not transform exactly as those geometric objects, because they
are formulated as a generalized connection whose internal dimensionality is bigger than
the space–time one but do not decompose exactly as local Poincaré internal group. If one
employs the Inönu–Wigner contraction, the Killing metric vanishes and it is not possible
to build the action [10]. The three-dimensional case has the B-field being interpreted as a
tetrad and a gauge curvature associated with the spin connection. The problem now is the fact
that there is freedom for additional shift symmetry [11]. Then, this extra symmetry avoids
the complete identification of the aforementioned fields with the tangent space geometric
variables. Moreover, this complicate symmetry structure turn, for example, its covariant
quantization at least peculiar since it present couplings between different kinds of ghosts.
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Although it happens, it is possible to furnish an elegant one-loop exact quantization [12] and
also a path integral one, that allows to discuss topological transition amplitudes [13].

Those BF models are highly symmetric such that their fields may be gauged away locally,
see [14,15] for the four-dimensional case. So, a BF description of gravity would demand
a reduction in internal symmetry. We may cite the Plebanski formulation [16] which has
the presence of an extra scalar field that imposes a constraint on the B-field allowing its
description in terms of tetrads. Its quantization may reveal a possible fluctuation between
a metrical and a topological phase due to radiative corrections to the mentioned constraint
[17]. On the 70s, the Mac-Dowell action was proposed [18,19], what consisted in a four-
dimensional BF model with a five-dimensional SO(1, 4) internal structure with a term
that breaks it down to SO(1, 3). It can be written in terms of geometrical fields and its
equation of motion recovers the Einstein’s ones without cosmological constant. The Freidel–
Starodubtsev (FS) model [3,20], which is the modified gravity action we want to analyse
here, is a generalization of this last one, now with the addition of a cosmological constant
term.

This action has some very desirable features as the fact that it is formulated in terms
of an extremely small dimensional parameter (which sounds well when one thinks about
renormalizability), and also provide several topological invariant terms that although do
not contribute to the equations of motion, guarantee the finiteness of Noether charges [21]
without the need to add ad-hoc extra boundary terms such as the Gibbons–Hawking one.
The BF structure also provides a Gaussian kinetic term which may be useful for a further
quantization, see [22] for the BF formulation of QCD. Since it is written in terms of Cartan
variables, it may admit the possibility of the unbroken phase, a situation contemplated in
string theory that has vanishing tetrad average [23]. Now, after introducing some facts about
the model to be studied, we focus on our specific paper analysis.

We want to give a precise canonical formulation to the Freidel–Starodubtsev model. Usu-
ally, this procedure is made with the Hamiltonian Dirac formalism [24–26]. The Hamiltonian
analysis of Plebanski theory has been made in [27], the Freidel–Starodubtsev in [28], the
two-dimensional polynomial BF in [29] and the topological BF with cosmological term
in [30]. In this article, we want to employ the Hamilton–Jacobi analysis to investigate the
Freidel–Starodubtsev model. Although the (FS) model were previously analysed in [28],
here we intend to present it by another method. Also, we give a clear counting of its degrees
of freedom in the metric and non-metric phases, and we do not skip to derive explicitly the
reduced phase space generalized brackets. In [28], they applied the constraints in the strong
form without constructing the Dirac brackets, which is not the most rigorous procedure. We
must point out that the Hamilton–Jacobi method is mathematically consistent. It also do
not need an ad-hoc procedure such as the Castelani one [31] to find local symmetries since
(HJ) integrability requirement furnishes the generators of all canonical transformations of
the system and, of course, its subset was represented by the Lagrangian symmetries. We
also call attention to the fact that there are examples in which the Castellani method cannot
be employed [32]. So, we are going to show, using (HJ) integrability, that the (FS) model
indeed presents the right symmetries that allow a correspondence between the theory’s fields
and the spin connection and tetrad variables.

The Hamilton–Jacobi formalism we present here comes from the approach of Güler [33],
which is an extension of Caratheodory’s equivalent Lagrangian method in the calculus of
variations [34]. This formalism is characterized by a set of Hamilton–Jacobi differential
equations called Hamiltonians. The dynamical evolution of the system is given in terms of
a fundamental differential which depends on the time and other linear independent arbitrary
parameters related to the involutive Hamiltonians [35,36], obtained from the Frobenius’
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integrability condition. The canonical transformations are obtained immediately from this
fundamental differential when just the dynamics described by those arbitrary parameters are
considered. Furthermore, the gauge transformations are the subgroup of those transformations
that leave the Lagrangian invariant as mentioned in the previous paragraph. Therefore, we
claim again that the Hamilton–Jacobi formalism is a way to illuminate the canonical origin
of the gauge structure of the (FS) model. This approach was used to study several examples
of gauge systems such as topologically massive theories [37], gravity models [38,39], and
the two-dimensional, three-dimensional and four-dimensional BF theories [40–42]. This
formalism were also extended to higher-order Lagrangians and Berezinian systems [43–45].

The paper is organized as follows. In Sect. 2 we introduce the Hamilton–Jacobi formalism.
Section 3 is devoted to present the gravitational interpretation of the Freidel–Starodubtsev
model. Section 4 has the Hamilton–Jacobi analysis of the model’s canonical structure, degree
of freedom counting and the obtainment of the involutive and the non-involutive Hamil-
tonians. In Sect. 5, we derive explicitly the Poisson bracket in the reduced phase space
restricted by the non-involutive Hamiltonians. In the next section, the generator of the internal
Lorentz SO(1, 3) symmetry, resulting from the breaking of the pentadimensional symmetry
is obtained and we show that it indeed generate the right transformations for the tetrad and
the spin connection. Finally, in Sect. 7, we set down our conclusions.

2 The Hamilton–Jacobi formalism

In this section, we develop the Hamilton–Jacobi formalism for constrained systems, which
are defined as the ones whose Lagrangian do not satisfy the Hessian condition.

Let us consider a physical system whose Lagrangian has the form L = L(xi , ẋ i , t)
where the Latin indices run from 1 to n, which is the dimension of the configuration space.
The system is called constrained or singular if it does not satisfy the Hessian condition

det Wi j �= 0 with the matrix Wi j given by Wi j = ∂2L
∂ ẋ i ∂ ẋ j . If the Hessian condition is satisfied,

the transformation that leads the configuration space to the phase space is invertible. If it is
not, some of the conjugated momenta pi = ∂L

∂ ẋ i
are not invertible on velocities and we are led

to equations of the form �(q, p) = 0 which constrains the phase space. Now, if we consider
k non-invertible momenta and m = n − k invertible momenta, we have

pz − ∂L

∂ ẋ z
= 0, (1)

where z = 1, . . . , k. Then, the above equation defines the primary constraints of the theory.
By using the definition Hz ≡ − ∂L

∂ ẋ z we can rewrite the above equation as

H ′
z ≡ pz + Hz = 0. (2)

These constraints are called Hamiltonians. If we define p0 ≡ ∂S
∂t , the Hamilton–Jacobi

equation can be written as

H ′
0 ≡ p0 + H0 = 0. (3)

The canonical Hamiltonian function H0 = pa ẋa + pz ẋ z − L with a = 1, . . . ,m, is
independent of the non-invertible velocities ẋ z if the constraints are implemented. The unified
notation is given by

H ′
α ≡ pα + Hα, (4)
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where α = 0, . . . , k. The Cauchy’s method [34] is employed to find the characteristic equa-
tions related to the above first-order equations

dxa = ∂H ′
α

∂pa
dtα, dpa = −∂H ′

α

∂xa
dtα, dS = (padxa − Hαdtα). (5)

The differentials written above depend on tα = (t0, t z ≡ xz) independent variables or
parameters. The name Hamiltonians used for the constraints is now justified, once that Hz

generates flows parameterized by t z in analogy with the temporal evolution generated by H0.
From the characteristic equations one can use the Poisson brackets defined on the extended
phase space (xa, tα, pa, pα) to express in a concise form the evolution of any function
f = f (xa, tα, pa, pα):

d f =
{
f, H ′

α

}
dtα. (6)

This is the fundamental differential, from where we identify the Hamiltonians as the gener-
ators of the dynamical evolution of the phase space functions.

Let us define the operator

Xα[ f ] =
∑
I

{
γ I , H ′

α

} δ f

δγ I
; γ I = (xa, tα, pa, pα), (7)

where Xα[∗] can be interpreted as k vectors whose 2(n + 1) components are {γ I , H ′
α}. The

fundamental differential can be expressed in terms of this operator as

d f = Xα[ f ]dtα. (8)

The Frobenius’ integrability condition (IC) ensures the system of equations (8) is integrable.
The IC can be expressed as

[
Xα, Xβ

]
(xa, pa) ≡ Xα[xa]Xβ [pa] − Xβ [xa]Xα[pa] = −

{
H ′

α, H ′
β

}
= 0. (9)

The above condition can be generalized to
{
H ′

α, H ′
β

}
= Cγ

αβH
′
γ , (10)

where Cγ
αβ are structure coefficients. Therefore, the IC ensures that the Hamiltonians close

an involutive algebra. In terms of the fundamental differential (6), the IC (10) can be written
as

dH ′
α =

{
H ′

α, H ′
β

}
dtβ = Cγ

αβH
′
γ dtβ = 0. (11)

The Hamiltonians that satisfy the IC are called involutives. However, not all Hamiltonians
from a physical system satisfy this condition identically. Therefore, we must define new
Hamiltonians.

Let us suppose we have a set of non-involutive Hamiltonians H ′̄
a . Then

dH ′̄
a =

{
H ′̄
a, H

′
0

}
dt +

{
H ′̄
a, H

′̄
b

}
dxb̄. (12)

Once that we impose dH ′̄
a = 0, we can define a matrix with components Māb̄ ≡

{
H ′̄
a, H

′̄
b

}
.

If this matrix is invertible, we can write dxb̄ = −M−1
āb̄

{
H ′̄
a, H

′
0

}
dt , i.e. there is a depen-

dence between the parameters related to the non-involutive Hamiltonians. Replacing in the
fundamental differential, we have
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dF =
[{

F, H ′
0

}
−

{
F, H ′̄

a

}
M−1

āb̄

{
H ′̄
b
, H ′

0

}]
dt. (13)

Therefore, we can define generalized brackets (GB) as:
{
A, B

}∗ ≡
{
A, B

}
−

{
A, H ′̄

a

}(
M−1

)
āb̄

{
H ′̄
a, B

}
, (14)

which redefine the dynamic of the constrained system reducing its phase space, once that

dF =
{
F, H ′

0

}∗
dt . This procedure is the result of the integrability condition and, as shown

in [35], it allows the possibility that the matrix Mab is non-invertible, or that the system has
involutive and non-involutive Hamiltonians as well.

The dynamical evolution described by the resulting arbitrary parameters can be understood
as canonical transformations, with the involutive Hamiltonians as generators. To understand
this, we need to check that the variation δγ I = δtαXα[γ I ] is generated by g = 1 + δtαXα ,
also preserves the symplectic structure dxa ∧ dpa + dtα ∧ dpα + dHα ∧ dtα . with fixed dt0.
In order to relate canonical transformations with the gauge ones, we need to restrict the study
to fixed times dt0 = 0. Then, the transformation on any variable γ I is

δγ I =
{
γ I , H ′

z

}∗
δt z . (15)

The Hamiltonians must be involutives, then
{
H ′
x , H

′
y

}∗ = Cz
xy H

′
z . However, the IC ensures

that
{
H ′
x , H

′
y

}∗ = C0
xy H

′
0 +Cz

xy H
′
z . To conciliate these equations, we must consider whether

C0
xy = 0 or H ′

0 = 0. The condition C0
xy = 0 is almost never satisfied. On the other hand, the

condition H ′
0 = 0 constrains the phase space. Under this assumption, we define the generator

of gauge transformations as

Gcan ≡ H ′
zδt

z, (16)

since δγ I =
{
γ I ,Gcan

}∗
. More details on the role of involutive Hamiltonians in the HJ

formalism can be found in [36].

3 The gravitational interpretation of the model

As previously mentioned, the Freidel–Starodubtsev model can be formulated as a BF theory
with explicit internal symmetry breaking. The internal symmetry is broken from SO(1, 4)

down to the SO(1, 3) group , while the action is given in a four-dimensional space–time
manifold. The theory is formulated by means of 2 form field B = 1

2 B
I J
μν dxμ∧dxνMI J , where

MI J are the generators of the SO(1, 4) group and a curvature F = 1
2 F

I J
μν dxμ ∧ dxνMI J

written in terms of a 1-form field A = AI J
μ dxμMI J as F ≡ dA+ A∧ A. The action is given

below [3,20]

SFS = 1

16π

∫ (
F I J ∧ BI J − β

2
BI J ∧ BI J − α

4
εabcd4Bab ∧ Bcd

)
;

I = 0, . . . , 4 ; a = 0, . . . , 3 (17)

where the internal indices run from I = 0, . . . , 4 and a = 0, . . . , 3. The symmetry breaking
term is proportional to α since it has a five-dimensional Levi-Civitta symbol with a fixed
4 coordinate. With regard to the α and β constants, they are defined as G�

3(1+γ 2)
, γG�

3(1+γ 2)
,

respectively, and γ denotes the Imirizi parameter that appears in the definition of Ashtekar
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variables [46]. Its value is estimated by loop quantum gravity numerical simulations as
0.2 < γ < 0.3, [47].

Since the 2 form field BI J provides a polynomial constraint to the curvature F I J , the
action may be rewritten just in terms of the 1-form AI J = AI J

μ dxμ generalized connection.
According to the internal action symmetry breaking, we decompose this field in a rotational
sector, related to the four-dimensional residual Lorentz symmetry, and a translational one due
to the remaining broken generators. So, in analogy to the BF representation of the Jackiw–
Teitelboim model [7], we have the 1 form decomposition in terms of the tetrad and the spin
connection

Aa4
μ ≡ 1

l
eaμ (18)

Aab
μ ≡ ωab

μ (19)

Accordingly, the curvature F = dA + A ∧ A is divided as

Fab = dωab + ωac ∧ ω b
c + ea ∧ eb

l2
= Rab + ea ∧ eb

l2

Fa4 = 1

l
dea + ωac ∧ ec = T a

l
(20)

where the first equation refers to a Riemman curvature associated with a cosmological con-
stant term and the second one to the torsion. The l parameter has length dimension and is
related to the cosmological constant as �

3 = − 1
l2

.
The B field furnishes the following curvature polynomial constraints

Fa4 = βBa4 (21)

Fab =
(
βab

cd + α

2
εabcd

)
Bcd (22)

This constraint may be solved by the inversion of the matrix1
(
βab

cd + α
2 εabcd

)
:

Bab = 1(
α2 + β2

)
(
βFab − α

2
εabcd F

cd
)

(23)

By plugging this result to the action, we can represent it by means of the geometrical
fields:

32πGS(F−S) =
∫

Rab ∧ ec ∧ edεabcd + 1

2l2

∫
ea ∧ eb ∧ ec ∧ edεabcd

+ 2

γ

∫
Rab ∧ ea ∧ eb

+ l2

2

∫
Rab ∧ Rcdεabcd − l2γ

∫
Rab ∧ Rab

+ 2

(
γ 2 + 1

)

γ

∫ (
T a ∧ Ta − Rab ∧ ea ∧ eb

)

The generalization due to this model is related to the addition of topological boundary
terms that do not affect the equations of motion but improve the action renormalizing prop-
erties. Namely, its Noether charges [21] are totally finite, differently from the conventional

1 Where ab
cd ≡ (δac δbd−δbc δad )

2 .

123



Eur. Phys. J. Plus (2020) 135:470 Page 7 of 16 470

approach. The topological terms are the Holst, the Euler, the Pontryagin and the Nieh-Yan
topological invariants

H = Rab ∧ eb ∧ ea, E4 = Rab ∧ Rcdεabcd,

P4 = Rab ∧ Rab, NY4 = T a ∧ Ta − Rab ∧ ea ∧ eb (24)

Since the topological invariant terms do not change the equations of motion, the Einstein’s
equations with vanishing torsion are derived from it

0 =
(
Rab ∧ ec + 1

l2
ea ∧ eb ∧ ec

)

0 = dea + ωac ∧ ec (25)

4 The Hamilton–Jacobi analysis

In order to apply the Hamilton–Jacobi formalism to the Freidel–Starodubtsev (FS) model we
foliate the space–time as M = R × M3 with M3 being a constant time hipersurface. The
Lagrangian density becomes

L = 1

2
εμναβ

(
BI JμνF

I J
αβ − β

2
BI J

μν Bαβ I J − α

4
ε4I J K L B

I J
μν B

KL
αβ

)
(26)

where F I J
μν = ∂μAI J

ν − ∂ν AI J
μ + f I JK LMN AK L

μ AMN
ν and the SO(1, 4) structure constants

are defined by means of its generators M J
I commutator

[MI J , MKL ] = ηI L MJK − ηI K MJ L + ηJ K MI L − ηJ LMI K ≡ 2 f MN
I J K L MMN (27)

With ηI K being an internal five-dimensional Minkowski metric.
The Euler–Lagrange equations are given below

0 = εμναβ

(
F I J

αβ − βBI J
αβ − α

2
ε4I J

K L B
K L
αβ

)
(28)

0 = εμναβDνB
I J
αβ (29)

The covariant derivative is defined as DνBI J
αβ = ∂νBI J

αβ + f I J MNK L AMN
ν BKL

αβ .

The canonical momenta π I J
μ , �I J

μν conjugated to the fields AI J
μ e BI J

μν are given by

π
μ
I J ≡ ∂L

∂(∂0AI J
μ )

= ε
0μ
αβB

αβ
I J (30)

�
μν
I J ≡ ∂L

∂(∂0BI J
μν )

= 0 (31)

Those canonical momenta do not depend on the velocities ∂0AI J
μ e ∂0BI J

μν , so they generate
constraints in the phase space. The canonical Hamiltonian is given by a Legendre transform

H0 = −ε0μνβ

(
DμB

I J
νβ A0I J + BI J

0μ Fνβ I J − βBI J
0μ Bνβ I J − α

2
ε4I J K L B

I J
0μ BKL

νβ

)
(32)

According to the Hamilton–Jacobi (HJ) formalism, we may define π ≡ ∂0S where S is
the action of the system. This definition allows us to write all the (HJ) partial differential
equation in an unified form

H′ ≡ π + H = 0 (33)
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A0′
I J ≡ π0

I J = 0 (34)

Ak′
I J ≡ πk

I J − ε0k
αβB

αβ
I J = 0 (35)

Bμν′
I J ≡ �

μν
I J = 0 (36)

The first Hamiltonian is related to the dynamical evolution parameterized by the time
t ≡ x0, while the remaining ones will be related to generators of canonical transformations
or to the definition of a generalized Poisson brackets, depending on their nature.

So, in order to characterize them as involutive or non-involutive we must first define the
fundamental Poisson brackets of the theory

{
AI J

μ (x), πν
K L (y)

}
= δν

μI J
K Lδ3(x − y) (37)

{
BI J

μν (x),�αβ
K L (y)

}
= I J

K L
μν
αβδ3(x − y) (38)

where I J
K L ≡ 1

2

(
δ IK δ JL − δ ILδ JK

)
and 

μν
αβ = 1

2

(
δ
μ
α δν

β − δ
μ
β δν

α

)
.

The fundamental differential furnishes the evolution of all phase space variable f (x)
parameterized by the time and the canonical transformation local parameters

d f (x) =
∫ ({

f (x),H′(y)
}

dt +
{
f (x),Aμ′

I J (y)
}
dλI J

μ (y)

+
{
f (x),Bμν′

I J (y)
}
dβ I J

μν (y)

)
d3y (39)

The Hamiltonians whose Poisson brackets with itself and with all the remaining ones
are vanishing or a linear combination of them are called involutive. It means that it is not
necessary to impose constraints between the evolution parameters of the theory to ensure its
integrability conditions. In the present case, the involutive ones areA0′

I J andB0k
I J . To guarantee

the integrability of the remaining set of Hamiltonians, relations between the parameters
must be imposed which means that the phase space is governed by a generalized Poisson

brackets constructed by means of the matrix MAB
I J K L(x, y) =

{
hA
I J (x), h

B
K L (y)

}
, where, in

this case, the A and B indices run from 1 to 6 since they count the number of non-involutive
Hamiltonians. The hxI J are defined as

�12
I J ≡ h1

I J ; �13
I J ≡ h2

I J ; �23
I J ≡ h3

I J ;
π1
I J − 2B23

I J ≡ h4
I J ; π2

I J + 2B13
I J ≡ h5

I J ; π3
I J − 2B12

I J ≡ h6
I J (40)

The matrix built by the Poisson brackets of the Hamiltonians is given below

MAB
I J K L(x, y) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 2
0 0 0 0 −2 0
0 0 0 2 0 0
0 0 −2 0 0 0
0 2 0 0 0 0
−2 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

δ3(x − y)I J
K L (41)
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The inverse matrix is

[M−1(x, y)]ABI J K L =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 −1
0 0 0 0 1 0
0 0 0 −1 0 0
0 0 1 0 0 0
0 −1 0 0 0 0
1 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

δ3(x − y)

2
I J

K L (42)

The generalized Poisson brackets (GPB) between two-phase space functions are defined
as

{
f (x), g(y)

}∗ =
{
f (x), g(y)

}
−

∫ {
f (x), hI J

a (z)
}
[M−1(z, w)]abI J K L

{
hK L
b (w), g(y)

}
d3z d3w (43)

The non-vanishing fundamental (GPB) are

{
Ai
I J (x), B

KL
lm (y)

}∗ = I J
K L

δ3(x − y)

2
εilm (44)

{
Aμ
I J (x), π

K L
ν (y)

}∗ =
{
Aμ
I J (x), π

K L
ν (y)

}
(45)

{
B0k
I J (x),�

K L
0i (y)

}∗ =
{
B0k
I J (x),�

K L
0i (y)

}
(46)

The fundamental differential can be written in terms of the generalized brackets as:

d f (x) =
∫ ({

f (x),H′(y)
}∗

dt +
{
f (x),A0′

I J (y)
}∗
dλI J

0 (y)

+
{
f (x),B0k′

I J (y)
}∗
dβ I J

0k (y)

)
d3y (47)

Now, we find the integrability conditions for the involutive Hamiltonians A0′
I J (y) and

B0k
I J (y). We see that in order to impose dA0′

I J (y) = 0 and dB0k
I J (y) = 0 is necessary to

introduce the following new Hamiltonians

C I J ≡ ε0ki j Dk B
I J
i j (48)

DkI J ≡ ε0ki j
(
F I J
i j − βBI J

i j − α

2
ε4I J

K L B
K L
i j

)
(49)

It is possible to write the canonical Hamiltonian in terms of them

H0 = −AI J
0 CI J − BI J

0k Dk
I J (50)

To classify the Hamiltonians CI J and Dk
I J as involutive or non-involutive we should

calculate their (GPB)
{
Dk

I J (x), D
m
MN (y)

}∗ = αεkmi
(
f I J RSLK ARS

i ε LK
MN + fMN BAOP A

BA
i ε OP

I J

)
δ3(x − y)

(51)

where the definition ε0kln ≡ εkln is used throughout.
The (GPB) between CI J (x) and Dk

MN (y) is given below
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{
CI J (x), D

k
MN (y)

}∗ = f I J MNOP D
OPk − α

2
εkmn

(
f I J OPLK ε OP

MN BLK
mn − f I J MNOPεOP

RS B
RS
mn

)
(52)

To finish, we calculate
{
C I J (x),CKL(y)

}∗

{
CI J (x),CMN (y)

}∗ = f OP
I JMN COP δ3(x − y) (53)

We see that different from the topological four-dimensional BF theory, those Hamiltoni-
ans are not all involutive and the difference from its results, besides the internal symmetry
dimensionality, is due to the parameter α which is extremely small but guarantee the (FS)
model gravitational interpretation.

In order to identify which are the involutive and non-involutive Hamiltonians, we focus
just on the contributions proportional to α and use the explicit form of the structure constant

{
CI J (x),CMN (y)

}∗ = f OP
I JMN COP δ3(x − y)

{
Dk

I J (x), D
m
MN (y)

}∗

= −αεkmi
(

εMN JK4A
K
i I − εMN I K4A

K
i J + εI J N P4A

P
i M − εI J MP4A

P
i N

)
δ3(x − y)

{
CI J (x), D

k
MN (y)

}∗

= f OP
I JMN Dk

OP δ3(x − y) − α

2
εkmn

(
εMNL I4B

L
Jmn − εMNL J4B

L
Imn

)
δ3(x − y)

+ α

4

(
ηI N εJMRS4 − ηI MεJ N RS4 + ηJMεI N RS4 − ηJ N εI MRS4

)
BRS
mn εkmn δ3(x − y)

(54)

It can be decomposed into the involutive sector
{
Cab(x),Ccd(y)

}∗ = f e f
abcd Cef δ

3(x − y) (55)
{
Cab(x), D

k
cd(y)

}∗ = f OP
abcd Dk

OPδ3(x − y) (56)

where the internal indexes a, b run from 0 to 3.
And the non-involutive sector

{
Ca4(x), D

k
cd(y)

}∗ = f e f
a4cd Dk

e f δ
3(x − y) − α

4
εkmn(εcdau4B

u4
mn

)
δ3(x − y) (57)

{
Ca4(x), D

k
b4(y)

}∗ = −α

8
εkmnεabcd4B

cd
mnδ

3(x − y) (58)
{
Di
a4(x), D

j
bc(y)

}∗ = α εabcu4A
u
m 4ε

i jmδ3(x − y) (59)

As we can see, the Cab and Ca4 are the involutive Hamiltonians. The involutive character
of Ca4 is due to the fact that we are considering the physical configuration of the system, so
that the 2-form B field is algebraically related to the torsion and the generalized curvature
and both of them vanishes.

Therefore, these Hamiltonians generate the model’s local canonical transformations. So,
from a given subset of the complete set of generators, we intend to find the correct local lorentz

123



Eur. Phys. J. Plus (2020) 135:470 Page 11 of 16 470

transformations for the tetrad eaμ = l Aa4
μ and the spin connection Aab

μ ≡ ωab
μ and also their

diffeomorphisms. Regarding the others Hamiltonians, since they are non-involutive, their
role is to enter into the definition of a double generalized Poisson bracket (DGPB). Due to
the algebra of Cab and Ca4 with all the other Hamiltonians, we see that the differentials dCab

and dCa4, considering the physical configuration, are proportional to the others Hamiltonians
and it is sufficient to state that they are integrable. So, all the involutive Hamiltonians, the
generators of local transformations, are found.

The system’s degrees of freedom are counted by imposing that the local freedom to
perform canonical transformations must be eliminated in order to have a well-defined time
evolution. In order to break this local freedom it is necessary to impose one extra constraint
for each of the canonical transformation generators in order to turn them into non-involutive
ones defining a new reduced unique phase space.

So, in order to count degrees of freedom, we note that the phase space generated by
(GPB) have 140 degrees of freedom {AI J

μ , π I J
0 , BI J

μν ,�I J
0i }. Regarding the Hamiltonians,

we have 30 non-involutives Dab
i , Da

i and 50 involutive ones {�I J
0i ,Cab,Ca4, π I J

0 }. It must
be emphasized that in the present case with α �= 0 there is no reducibility relations [48]
between the constraints as happened to the topological four-dimensional BF case [42]. So,
the total degrees of freedom are 140 − 2(50) − 30 = 10, a different value that is expected
in the conventional metric gravity. The point is that when the tetrad is not inversible, a
situation that can be naturally contemplated by the (FS) model, the spin connection arises as
an independent variable. For now on, we focus on a given class of solutions characterized
by metric tetrads, the inversible ones. They must obey the following additional 6 relations
eaμe

b
νηab = gμν where gμν is the space–time metric. It gives us 4 phase space degrees of

freedom, the right ones for general relativity.
In order to facilitate the task of obtaining the reduced phase space we, instead of fixing the

Schwinger [49] gauge directly at the Lagrangian level as done in [38], find it more consistent
to consider a class of solutions with e0

i = 0 (exploiting the internal rotational invariance of
the system) but allowing the time tetrad component to have non-vanishing gradients in the
phase space.

5 The obtainment of the reduced phase space

In order to obtain the reduced phase space of the theory, it is necessary to build the non-
involutive Hamiltonian matrix and then invert it. It is convenient to divide them between
their spatial and temporal internal indices.

To build the Hamiltonian matrix we first organize them in a generalized vector �A(x) =(
Dk
āb̄

(x), Dk
ā0(x), D

k
ā4(x), D

k
04(x),

)
. The spatial sector of the internal indexes are being

denoted as ā = 1, 2, 3.
The non-involutive Hamiltonian matrix reads

{
�A(x),�B(y)

}

=

⎛
⎜⎜⎝

0 0 −εklnεāb̄d̄ A
04
n α αεklnεāb̄d̄ A

d̄4
n

0 0 −αεād̄ ēε
kln Aē4

n 0
−αεd̄ c̄āε

lkn A04
n −αεd̄āēε

kln Aē4
n 0 0

−αεlknεd̄ c̄ē A
ē4
n 0 0 0

⎞
⎟⎟⎠ δ3(x − y)

(60)
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Since we are considering a class of solutions with e0
i = 0, the remaining matrix elements

are just the anti diagonal ones. Then, in order to invert this matrix, it is just required to know
the inverse of each of its elements. Denoting the inverse as Gb̄c̄

lm , we get

αεklnεāb̄ē A
ē
nG

b̄c̄
lm = δkmδc̄ā (61)

We must use the useful identity [50]

ε0klnε0āb̄ēe
ē
n = −e

(
e0

0(e
k
āe

l
b̄

− elāe
k
b̄
) − ek0(e

0
āe

l
b̄

− elāe
0
b̄
) + el0(e

0
āe

k
b̄

− ekāe
0
b̄
)
)

(62)

where e is equal to the tetrad determinant.
Then, considering the aforementioned class of solutions and also the projecting tetrad

properties, we get

− αe e0
0(e

k
z̄ G

lc̄
lm − Gkc̄

z̄m) = lδc̄z̄ δ
k
m (63)

where l is the length parameter related to the cosmological constant which enters in the
relation between the 1-form gauge field and the tetrad.

Contracting the tetrad ez̄k with the above expression gives

Glc̄
lm = −l

ec̄m
2αee0

0

(64)

It allows us to find

Gb̄c̄
lm = − l

2αe0
0e

(
− 2ec̄l e

b̄
m + eb̄l e

c̄
m

)
(65)

The matrix Gb̄c̄
lm is the inverse of a quantity that envolves different kind of indexes.

We can show that it is also a left inverse

Gb̄c̄
lmεmngεc̄āēαAe

k = δb̄āδ
n
l (66)

Since we know the inverse of each of the matrix elements, we can invert it

MAB
k l (x, y) ≡

⎛
⎜⎜⎜⎝

0 0 0 Gkl
āb̄

0 0 −Gkl
ād̄

0
0 Gkl

d̄c̄
0 0

−Gkl
d̄c̄

0 0 0

⎞
⎟⎟⎟⎠ δ3(x − y) (67)

where the A, B indexes run from 1 to 4 and counts the number of Hamiltonians involved in
its computation.

Then, the double generalized Poisson brackets (DGPB) related to the spin connection and
the tetrad reads
{
AI J
i (x), AMN

j (y)
}∗∗ = −

∫
d3wd3z

{
AI J
i (x),�A(w)

}∗
MAB

k l (w, z)
{
�B(z), AMN

j (y)
}∗

=
[(

Ô I J
āb̄

Gāb̄
i j Ô

MN
04 − Ô I J

04 G
āb̄
i j Ô

MN
āb̄

)

+
(
Ô I J
ā4 G

āb̄
i j Ô

MN
b̄0

− ÔMN
ā0 Gāb̄

i j Ô
I J
b̄4

)]
(68)

where ÔMN
JK denotes the internal symmetry breaking matrix

ÔMN
JK =

(
βMN

JK + α

2
ε4MN

JK

)
(69)
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6 Characteristic equations and canonical transformations

In this section, we use the previously derived brackets to determine the characteristic equa-
tions and also the canonical transformations by means of the fundamental differential.

6.1 Equations of motion

For obtaining the system’s equations of motion we fix the local parameters and consider just
the time variations. The fact that the Hamiltonian Dk

I J vanishes in the reduced phase space is
also considered and it is equivalent to solve the polynomial constraint, expressing the B-field
in terms of the gauge curvature, as done in Sect. 3. The fundamental differential, in this case,
reads

dF =
∫

d3y
{
F,Hc

}∗∗
dt = −

∫ {
F, AI J

0 CI J

}∗∗
d3ydt (70)

The structure above can be used to find

dAI J
μ = δ

μ
i

[
DμA

I J
0

]
dt (71)

where we have used the fact that since C I J is involutive, we can use the
{
,
}∗

brackets to

compute the equations of motion.
Then, the differential equations for the physical fields (tetrad and spin connection) are

∂0A
I J
μ = δ

μ
i

[
DμA

I J
0

]
(72)

We conclude that AI J
0 do not have dynamics, as it can be inferred by the fact that it appear

as Lagrange multiplier in the canonical Hamiltonian. The equation above makes sense since
it states that the torsion and the dS (de-Sitter.) curvature must vanish, a result in accordance
with the gravitational interpretation of the model given in Sect. 3 in which the polynomial
constraint was solved.

6.2 Canonical transformations

The canonical transformations are generated by the fundamental differential with a fixed time
coordinate and considering just variations with relation to the local arbitrary parameters. By

the proper definition of the involutive Hamiltonians, using the
{

,
}∗

bracket is enough if we

consider the physical configurations and the fact that they are involutive with all the other
Hamitonians, but we must pay attention to the fact that the Hamiltonian Dk

I J (x) should be
considered to strongly vanish. So, the generator of canonical transformations is given below

G =
∫

d3x

[{
Aab
l ,Ccd

}∗
δεcd +

{
Aab
l ,Cc4

}∗
δγc

+
{
Aab
l , π0

I J

}∗
δw I J +

{
Aab
l ,�0i

I J

}∗
δ�I J

i

]
(73)

With regard to the expression above, we have changed the local parameter notation from
dλI J

0 (y) and B0k′
I J (y) to δ�I J

i and δw I J . Moreover, we associate the parameter δεcd to the
involutive Hamiltonian Cab(x) and δγa to Ca4(x).
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From a subset of these canonical transformations with δγa = 0, we may find the local
Lorentz symmetry.

The canonical transformation for the spatial part of the spin connection is given by

δωab
l = −Dlδε

ab (74)

where Dlδε
ab ≡ ∂lδε

ab + ωac
l δε b

c − ωbc
l δε a

c denotes the covariant derivative.
Analogously, for the tetrad field, we obtain

δeai =
∫

d3x{eai ,Ccd}∗δεcd = δεabe
b
i (75)

We have a �= 0 due to the Schwinger gauge.
For the time component for the tetrads and the spin connection, we have

δAI J
0 = δw I J (76)

Having found the canonical transformations, the next step is to obtain its subset that
represent a Lagrangian symmetry. Then, we must impose relations between the arbitrary
local parameters. The form of the δw I J parameters is fixed by the requirement that the fields
must transform as tensors with relation to its internal and space–time symmetries. It gives
wab = D0δεab, δwa4 = δεab Ab4

0 . We show that using this requirement is enough to find the
Lagrangian internal symmetry. They are the local Lorentz transformations

δeaμ = δεabebμ (77)

δωab
μ = ∂μδεab + ωac

μ δε b
c − ωbc

μ δε a
c (78)

The local Lorentz symmetry generator then reads

G =
∫

d3x

[
Ccdδεcd + π0

abD0δε
ab + π0

a4δε
a
b A

b4
0

]
(79)

In order to find the diffeomorphism generator, we must consider a subset of the canonical
transformations obtained by fixing the parameters as [51] εab ≡ βμAab

μ and γa ≡ βμAa4
μ ,

while the others vanish. βμ is a general vector field. It then gives

δAMN
i =

∫
d3x

[{
AMN
i ,Cab

}∗
εab +

{
AMN
i ,Ca4

}∗
γa

]
= D̃i

(
βμAMN

μ

)
≡ Lβ A

MN
i

= βν∂ν A
MN
i + ∂νβi A

MN
ν (80)

where use has been made of the vanishing of the curvature.
The Lβ denotes a Lie derivative with respect to the βμ vector 2 and the equation above

is being considered in the physical configuration. The symbol
[
D̃μ

]I J
MN

≡ ∂μI J
MN +

f I JK LMN AK L
μ denote a covariant derivative with relation to the rotational and also the trans-

lational sectors of the gauge connection.
For the time variable, we have

δAMN
0 =

∫
d3x

{
AMN

0 , π I J
0

}∗
τ I J = Lβ A

MN
0 (81)

with τ I J = Lβ AMN
0 .

2 It acts in a p-form as Lβ� = iβdω + diβ� where iβ is the contraction operator with relation to the vector
βμ and d denotes the exterior derivative.
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The diffeomorphism generator is given below

G =
∫

d3x
[
Cabβ

μAab
μ + Ca4β

μAa4
μ + π0

I J Lβ A
I J
0

]
(82)

7 Conclusions and perspectives

In this article we have furnished a Hamilton–Jacobi analysis of the Freidel–Starodubtsev
model. Section 2 was devoted to introduce the method which was applied in Sect. 4.

We have analysed the physical content of the Freidel–Starodubtsev model in Sect. 3. We
solved the polynomial constraint and then wrote the action just in terms of the physical
fields. Although the model has several renormalizing topological terms, they do not change
the equations of motion and then, the torsionless Einstein’s equations with cosmological
constant were recovered.

We did not skip to find the reduced phase space for the system in Sect. 5. In general,
one fixes a gauge to help in this procedure. The point is that the Schwinger gauge would
turn the involutive Hamiltonians into non-involutive ones and then we could not investigate
the system’s symmetry transformations. We have opted to consider a class of solutions with
e0
i = 0 but allowing this field to have non-vanishing gradients in the phase space. So, that

is different than fixing a gauge. It then helped us to invert the matrix of non-involutive
Hamiltonians and then obtain a simple reduced phase space structure.

In Sect. 6, we found the equations of motion by means of the fundamental differential with
fixed local parameters written in the reduced phase space which was equivalent to solving the
polynomial constraint. The solution was a torsionless system with vanishing dS curvature
which is in accordance with the solution found in Sect. 3. In order to obtain the canonical
transformations generators, the fundamental differential with fixed time variable was used,
of course considering Dk

I J = 0. Considering a given specific relation between the local
parameters we were able to find the local Lorentz symmetry and also the diffeomorphism
generators.

Regarding the future perspectives, we intend to investigate the present model in the pres-
ence of a boundary, namely an asymptotic one, where the Wald mass charge is calculated. We
intend to calculate fluctuations between the mass eigenvalue and the asymptotic configuration
of the fields.
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