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Abstract We study the possibility of constructing thin-shell wormhole (TSW) in a particular
f (R)-gravity model with nonconstant Ricci scalar and coupled minimally with nonlinear
electromagnetic fields. In doing so, first we give a new static spherically symmetric solution of
the theory. Then we apply the cut-and-paste method to construct the TSW. As f ′′′ (R) �= 0 we
use the specific junction conditions to match the two spacetimes. We find the exact equilibrium
radius of the shell from non-black hole solution and show that a linear perturbation leaves
the TSW stable.

1 Introduction

In Einstein’s general theory of relativity described by the Einstein–Hilbert (EH) action sup-
plemented by an energy-momentum, which is in general exotic, construction of thin-shell
wormholes (TSWs) has turned almost into a routine process [1–3]. The original idea by Visser
[1–3] was to localize the nonphysical source on a thin-layer, leaving the rest of the bulk with
a physical source. Similar constructions of TSWs in modified, highly nonlinear theories have
also been attempted [4–7]. Among those modified theories f (R) theory [8–10] has already
been much popular during recent decades. In this approach, the action of EH is modified into
an arbitrary function of the Ricci scalar R denoted by f (R) -theory. In general, such a theory
may attain the EH limit or not. For physical requirements, however, the f (R) theory must
reproduce all the experimental tests that Einstein’s theory has successfully passed. Besides,
the stability criterion, as well as the absence of ghosts conditions, must be satisfied before the
f (R)-theory is considered feasible [11,12]. In this paper our aim is restricted by construction
of TSWs in a particular f (R)-theory given by f (R) = R + 2α

√
R + R0 + R1 [13,14],

in which α, R0 and R1 are dimensionful constant parameters of the theory. For α = 0, the
theory reduces to the EH form in which R1 acts as a cosmological constant. Our choice of
f (R) relies on an exact solution in the presence of nonlinear electromagnetism. The extended
source of our f (R) is provided by a Lagrangian of nonlinear electrodynamics (NED) of the
form L = − 1

4π

(F + 2β
√−F)

, in which F = 1
4 FμνFμν is the electromagnetic invariant
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and β is a constant parameter. In this approach, our NED is powered by a pure electric
field without a magnetic component so that from the outset, our problem is assumed static.
Once obtain an exact solution of the model our next step is to search for the proper junction
conditions required in the construction of TSWs. We reviewed that the junction conditions
valid for general relativity proposed long ago by Israel [15–17], does not apply in the present
problem without modifications. We searched for an extension of those conditions and arrived

at the conditions [18], applicable whenever we have f ′′′ = d3 f
dR3 �= 0. To construct TSWs

we employ the exact solutions for black holes or nonblack holes. Our finding in the present
problems is that although we obtain black hole solution it’s event horizon lies outside the
possible radius/ throat of the TSW. Since this is not admissible for such passage through
the throat from one universe to the other we had to abandon the black hole solution and be
satisfied only with the nonblack hole solution with a naked singularity. As a matter of fact
this is the case that we encountered first: usually, in other models, it was possible to choose
the radius of the shell arbitrary outside the event horizon of the available black hole. Now we
face a situation that the thin-shell cannot be located arbitrarily. The possible location of the
shell which is determined by the theory contains a naked singularity at the center instead of
a black hole. Once we fix our thin-shell appropriately to serve as a throat our next task is to
perturb the resulting TSW. We do and find out that for stability to be effective a non-barotropic
equation of state must be imposed at the throat after the perturbation. This implies that the
pressure p and the surface energy density σ on the shell are related by p = P (a, σ ) where
a stands for the time-dependent radius of the shell. Such a type of variable equation of state
was proposed a before as a possibility [19,20] but here it arises in a natural way which can
be considered an interesting result. Naturally, if our TSW was not stable it would collapse at
the slightest perturbation to the central naked singularity. Fortunately, this does not happen
for a tuned set of parameters we obtain a harmonic oscillatory motion about the equilibrium
radius of our TSW.

Let us add that TSW in f (R)-gravity has already been considered in the literature. In
[21], E. F. Eiroa and G. F. Aguirre have constructed TSWs in the spherically symmetric
bulk solution in the quadratic f (R)-gravity coupled with linear Maxwell field and constant
curvature, i.e., R = R0. Furthermore, in [22] the authors considered charged thin-shell
wormholes in black string solutions in f (R)-gravity. The current work is somehow in the
same line as of the Ref. [21] with different f (R)-gravity whose Ricci scalar is not constant
and with f ′′′ (R) �= 0.

The paper is organized as follows. In Sect. 2 we introduce our model of f (R)-gravity cou-
pled with nonlinear electrodynamics and derive exact solutions. In Sect. 3 we construct TSW
in the bulk solution and study its stability against linear radial perturbations. We summarize
the paper in Sect. 4 with the conclusion.

2 TSW in a model of f (R)-gravity with nonlinear electromagnetism

The action of the f (R) modified theory of gravity coupled with a NED Lagrangian, is given
by

I =
∫ √−gd4x

(
f (R)

2κ
+ L(F)

)
, (1)

in which L(F) is NED Lagrangian given in (we choose κ = 8π and G = 1)

L(F) = − 1

4π

(
F + 2β

√−F
)

, (2)
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where F = 1
4 FμνFμν is the Maxwell invariant, β is a constant parameter and our f (R) is

f (R) = R + 2α
√
R + R0 + R1. (3)

Herein, α, R0 and R1 are dimensionful constants and Fμν is the electromagnetic field tensor
defined through

F = 1

2
Fμνdxμ ∧ dxν . (4)

Variation of the action (1) with respect to the metric tensor gμν yields the Einstein’s field
equations given by

f ′(R)Rν
μ +

(
� f ′(R) − 1

2
f (R)

)
δν
μ − ∇ν∇μ f ′(R) = κT ν

μ , (5)

in which f ′(R) = d f
dR , and �ψ = 1√−g

∂μ(
√−g∂μ)ψ . Furthermore, the energy momentum

tensor T ν
μ is given by

T ν
μ = L(F)δν

μ − FμλF
νλ ∂L(F)

∂F . (6)

In this study we choose the spacetime to be spherically symmetric and static whose line
element is given by

ds2 = −ψ(r)dt2 + dr2

ψ(r)
+ r2 (

dθ2 + sin2 θdφ2) . (7)

The NED field equations are also found by the variation of the action with respect to Aμ, the
vector potential, and is given by the exterior algebraic notation

d

(
F̃

∂L(F)

∂F

)
= 0, (8)

in which F̃ is the dual of F. The Maxwell field used in this study is a pure electric field given
by the 2−form

F = E(r)dt ∧ dr, (9)

whose dual 2−form field is obtained to be

F̃ = E (r) r2 sin θdθ ∧ dφ. (10)

The NED’s equation, then becomes

d

(
Er2 ∂L

∂F sin θdθ ∧ dφ

)
= 0 (11)

which upon the choice E = E (r) yields

E(r)
∂L
∂F r2 = C (12)

where, C is an integration constant. On the other hand, we find

F = 1

4
FμνF

μν = −1

2
E2 (13)

and since
∂L
∂F = − 1

4π

(
1 − β√−F

)
, (14)
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upon substitution into the NED Eq. (11) yields

E = √
2β + Q

r2 (15)

where C is identified as C = −Q, the electric charge. Let’s note that the NED’s Lagrangian
(2), at the limit β → 0, reduces to the linear Maxwell Lagrangian, i.e.,

lim
β→0

L(F) = − 1

4π
F (16)

Hence, expectedly the electric field found in (15), reduces to the classical electric field Q
r2 in

the limit β → 0 . Having the closed form of the electric field and the Maxwell’s invariant
F = − 1

2 E
2 one finds from (6)

T r
r = T t

t = 1

4π
(L − 2FLF ) , (17)

and

T θ
θ = T φ

φ = 1

4π
L. (18)

Explicitly, one finds

T t
t = T r

r = − 1

8π

(√
2β + Q

r2

)2

, (19)

and

T θ
θ = T φ

φ = − 1

8π

(
2β2 − Q2

r4

)
. (20)

We note that, considering this energy momentum tensor as a perfect fluid, i.e., T ν
μ =

diag
[−ρ, Pr , Pθ , Pφ

]
, one can see that in order to satisfy the weak energy conditions includ-

ing ρ ≥ 0 and ρ + Pi ≥ 0 with i = r, θ, φ, one must impose β ≥ 0.

2.1 Black hole solution

In this section we use the energy momentum tensor’s components found above to solve
the Einstein’s field Eq. (5). We start with the t t, and rr components of the Einstein’s field
equations, which read

f ′(R)Rt
t +

(
� f ′(R) − 1

2
f

)
− ∇ t∇t f

′(R) = κT t
t (21)

and

f ′(R)Rr
r +

(
� f ′(R) − 1

2
f

)
− ∇r∇r f

′(R) = κT r
r . (22)

Herein,

Rt
t = Rr

r = −rψ ′′ + 2ψ ′

2r
(23)

in which a prime denotes derivative with respect to r . Subtracting (21) from (22) one gets

∇ t∇t f
′(R) = ∇r∇r f

′(R) (24)

and since we have, Rt
t = Rr

r and T t
t = T r

r this implies

ψ f ′
,r,r = 0 (25)
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or equivalently f ′
,r,r = 0. This suggests that the second derivative of f ′(R) with respect to r

must be zero. Hence, a general solution for f ′(R) is found to be

f ′(R) = c0 + c1r, (26)

in which c0 and c1 are two integration constants. On the other hand , f (R) is given in (3),
therefore

d

dR
(R + 2α

√
R + R0 + R1) = c0 + c1r. (27)

Hence, we can solve the latter equation to find R, which amounts to

R = −R0 + α2

(c1r + c0 − 1)2 . (28)

For the sake of simplicity we set c0 = 1, such that the Ricci scalar becomes

R = −R0 + α2

c2
1r

2
. (29)

Moreover, the explicit form of the Ricci scalar in terms of the metric function ψ is given by

R = −r2ψ ′′ + 5rψ ′ + 2(ψ − 1)

r2 . (30)

Equating (29) and (30) gives a second-order DE which can be solved for ψ. The solution is
given by

ψ = 1 − 6α2

c2
1

+ R0

12
r2 + c2

r
+ c3

r2 , (31)

in which c2 and c3 are new integration constants. Let’s add that the metric function found in
(31) has to satisfy all the gravitational field equations and through those we find the nature
of the parameters and integration constants. Once more we look at the t t and rr components
of the Einstein’s field equations. Knowing f ′(R) = 1 + c1r one finds

(1 + c1r)R
t
t +

(
c1

r
(2ψ + rψ ′) − 1

2
f

)
− c1

2
ψ ′ = κ

(
− 1

8π

) (√
2β + Q

r2

)2

. (32)

To find the closed form of f in terms of r we apply the chain rule, i.e.,

d f

dR
=

d f
dr
dR
dr

= 1 + c1r. (33)

Having R given in (29) one finds

d f

dr
= − (1 + c1r)

2α2

c2
1r

3
(34)

which admits a solution for f (r) given by

f = α2

c2
1r

2
+ 2α2

c1r
+ c4 (35)

where c4 is an integration constant. Comparing (35) with (3) reveals that c4 = R1 − R0.

Finally, satisfying Eq. (32) reveals the following relations between the constant parameters,

2β2 − R0

4
= c4

2
, (36)

123



440 Page 6 of 14 Eur. Phys. J. Plus (2020) 135:440

c2
1 − α2 = 0, (37)

4
√

2Qβc2
1 + 3c2c

3
1 − α2 = 0, (38)

and
Q2 − c3 = 0. (39)

Imposing, c1 = α, c2 = 1−4
√

2βQ
3α

, c3 = Q and c4 = 4β2 − R0
2 yields

ψ(r) = 1

2
+ R0

12
r2 − 4

√
2βQ − 1

3αr
+ Q2

r2 , (40)

and

f (R) = 1

r2 + 2α

r
+ 4β2 − R0

2
. (41)

Rewriting f (R) in terms of R, one finds

f (R) = R + 2α
√
R + R0 + 4β2 + R0

2
, (42)

which upon comparison with the original form given in (3) yields

R1 = 4β2 + R0

2
. (43)

The last two equations to be checked are the θθ and φφ components of the Einstein’s field
equations. Due to the symmetry θθ and φφ components of the Einstein’s equation are iden-
tical. Let’s concentrate on θθ component. From (5) we find

f ′Rθ
θ +

(
� f ′ − 1

2
f

)
− ∇θ∇θ f

′ = κT θ
θ , (44)

in which we have

∇θ∇θ f
′ = ψ

r
f ′
,r . (45)

Explicitly, we obtain

(1 + αr)Rθ
θ +

(
α

r
(2ψ + rψ ′) − 1

2
f

)
− αψ

r
= − κ

8π

(
2β2 − Q2

r4

)
. (46)

Putting ψ and f from (40) and (41), respectively, and considering

Rθ
θ = −rψ ′ − 1 + ψ

r2 . (47)

one finds that (44) is satisfied. Let’s add that the solution for ψ(r) given in (40) whose Ricci
scalar becomes

R = 1

r2 − R0 (48)

is singular at r = 0. Moreover, R0
12 in ψ(r) plays the role of an effective cosmological

constant. In the sequel we set R0 = 0 such that the solution becomes rather simpler

ψ = 1

2
− μ

3αr
+ Q2

r2 , (49)

in which μ = 4Q
√

2β − 1 and

f (R) = R + 2α
√
R + 4β2, (50)
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with the NED Lagrangian given in (2). The solution for ψ(r) given in (49) admits, black hole
with two horizons or a single double horizon, and naked singularity, depending on whether(

18α2Q2

μ2

)
is less than, equal to or greater than one, respectively. The two horizons are given

by

r± = μ

3α

⎛

⎝1 ±
√

1 − 18α2Q2

μ2

⎞

⎠ . (51)

while the double horizon is found to be at

rD = μ

3α
. (52)

Note also that if μ2 < 18α2Q2 there is no horizon at all, and the solution becomes naked
singular.

3 TSW in f (R) = R + 2α
√
R + 4β2 gravity

Let’s start with the line element (7) with ψ(r) given in (49) where the solution of the f (R)-
gravity (50) is coupled with the nonlinear electrodynamics (2). Using the standard method of
cut-and-paste introduced by Matt Visser in [1–3] and applying the generalized Israel junction
conditions, in this chapter we construct a TSW. First, we cut-out the region r < a(τ ) from
the bulk spacetime (7) and make two identical copies of the rest of the manifold and call
themM+ andM−.M± are individually incomplete but after we paste them at their identical
boundary r = a(τ ), the resultant Manifold M = M+ ∪ M− is a complete manifold.
The two submanifolds M+ and M− are connected with a thin-shell (timelike) defined by
r = a(τ ) . This spherical timelike thin-shell is called the throat between the two submanifolds.
In other words, assume a traveler is going toward the center of the spacetime M+. When
she reaches at r = a, without noticing, enters the second spacetime M−. Hence r = a(τ )

which is a timelike hypersurface plays the role of a gate (or throat). In principle we chose
a(τ ) > rh in which rh is the event horizon of the bulk spacetime. Therefore, the traveler never
encounters a horizon in her journey from M+ toward M− or in opposite. The hypersurface
�± := r± − a(τ ) = 0, is one of the boundary of each submanifold and we glue them at
� = r − a(τ ) = 0. In each submanifold one writes

ds2± = −ψ(r±)dt2 + dr2±
ψ(r±)

+ r2±
(
dθ2± + sin2 θ±dφ2±

)
. (53)

Following, the Israel junction conditions in f (R) -gravity [11, 14], the first boundary con-
dition is to have the induced metric continuous across the throat. Using the definition of the
induced metric for M+ and M− one finds;

h±
ij = g±

αβ

∂xα±
∂ξ i±

∂xβ
±

∂ξ
j
±

, (54)

in which α, β = {t, r, θ, φ} while i, j = {t, θ, φ}. Explicitly, this means that, r± =
a (τ ) , θ± = θ, φ± = φ and

ṫ2± = ṫ2 = 1

ψ(a)

(
1 + ȧ2

ψ(a)

)
. (55)

123
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which yields
ds2± = ds2

� = −dτ 2 + a2(dθ2 + sin2 θdφ2). (56)

where a dot implies derivative with respect to the proper time. From now on we refer to (56),
as the induced metric of the throat in which τ stands for the proper time on the throat. To
apply the other boundary conditions we must introduce the normal four vectors n±

γ on the
throat from both manifolds’ perspective. The standard definition of n±

γ are given by

n±
γ = ±1√

�±
∂�±

∂xγ
, (57)

in which �± := r± − a(τ ) = 0 and �±is the coefficient that makes n±
γ n

±γ = 1. The
positive direction is chosen to be from the throat toward M+ which makes the negative
direction from the throat toward M−. Therefore, one finds

n±
γ = ±

√
ψ + ȧ2

ψ

(
− ȧ

ṫ
, 1, 0, 0

)
, (58)

or using ṫ =
√

ψ+ȧ2

ψ
one may write

n±
γ = ± (−ȧ, ṫ, 0, 0

)
. (59)

The next quantity to be calculated is the second fundamental form K±
ij . According to the

definition

K±
ij = −n±

γ

(
∂2xγ

∂ξ i∂ξ j
+ �

γ
αβ

∂xα

∂ξ i

∂xβ

∂ξ i

)∣∣∣∣±
, (60)

which explicitly yields

K j ±
i = diag

(
ψ ′ + 2ä

2
√

ψ + ȧ2
,

√
ψ + ȧ2

a
,

√
ψ + ȧ2

a

)

. (61)

In f (R)-gravity with f ′′′ (R) �= 0, the following two conditions should be satisfied
[
K i
i

]
= K i+

i − K i−
i = 0, (62)

and
[R] = R+ − R− = 0. (63)

We note that all quantities are evaluated at the throat. The second one is trivially satisfied
because the two submanifolds M+ and M− are identical and therefore R+ = R−. The first
condition, however, implies

ψ ′ + 2ä

2
√

ψ + ȧ2
+ 2

a

√
ψ + ȧ2 = 0. (64)

This condition effectively gives a dynamic equation for the throat’s radius which we shall
consider in the stability analysis. Let’s assume an equilibrium radius for the throat such that
ȧ = ä = 0 and a = a0 where the latter equation becomes

ψ ′(a0)

2
√

ψ(a0)
+ 2

a0

√
ψ(a0) = 0, (65)

or
a0ψ

′(a0) + 4ψ(a0) = 0. (66)

123
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This is a restrictive constraint on the equilibrium radius which gives the location of the throat
uniquely. Finally we apply the last junction condition given by

κS j
i = − f ′(R)[K j

i ] + f ′′(R)
[
nγ ∇γ R

]
δ
j
i , (67)

in which S j
i = (−σ, p, p) is the matter energy-momentum tensor on the throat. Explicitly, we

find [nγ ∇γ R] = 2
√

ψ + ȧ2R′ (a) and upon considering (67), we obtain (κ = 8πG,G = 1)

σ = 1

8π

(

f ′ ψ ′ + 2ä

2
√

ψ + ȧ2
− 2 f ′′

√
ψ + ȧ2R′

)

(68)

and

p = 1

8π

(

−2 f ′
√

ψ + ȧ2

a
+ 2 f ′′

√
ψ + ȧ2R′

)

. (69)

For the specific f (R)-gravity under consideration one finds

f ′ = 1 + α√
R

and f ′′ = −α

2(R)
3
2

. (70)

with R = 1
a2 it yields

R′ = −2

a3 , f ′ = 1 + αa, f ′′ = −α

2
a3, (71)

and consequently

σ = 1

8π

(1 + αa)(ψ ′ + 2ä)
√

ψ + ȧ2
− α

4π

√
ψ + ȧ2 (72)

with

p = − 1

a

√
ψ + ȧ2

4π
. (73)

Furthermore, imposing (64) to (72) implies

σ = −
(

2

a
+ 3α

) √
ψ + ȧ2

4π
. (74)

Therefore, from (73) and (74), the equation of state (EoS) of the matter on the shell is found
to be

p = ωσ (75)

in which

ω = 1

2 + 3aα
. (76)

It is remarkable to observe that, naturally, the equation of state turns out to be of the non-
barotropic type, i.e., p = p (a, σ ) [19,20]. Furthermore, at the equilibrium state where
a = a0 and ȧ = ä = 0 one finds

σ0 = − 1

4π

(
2

a0
+ 3α

) √
ψ0 (77)

and

p0 = − 1

4π

1

a0

√
ψ0. (78)

123
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From Eqs. (77) and (78), we observe that for α > 0, σ0 < 0 and p0 < 0. However, for α < 0
such that |α| > 3

a0
, not only σ0 but also σ0 + p0 become positive. In other words, the induced

energy momentum tensor on the throat satisfies the weak energy conditions. Moreover, for
satisfying the strong energy conditions by the energy momentum tensor one has to consider
|α| > 4

a0
. Looking carefully at the model of f (R)-gravity considered in this study, i.e., Eq.

(50), we see that α is originated from the modified theory of gravity such that α = 0 takes the
theory to the Einstein’s R-gravity. Hence, having the energy conditions satisfied, is a feature
of constructing TSW in f (R)-gravity. Nevertheless we should add that, having α < 0 causes
that, f ′ (R) become negative for r > − 1

α
which is an indication of having ghost in the theory.

3.1 The radius of the throat

Our metric function is given in (49) from which one finds the equilibrium equation explicitly
as

2αa0
2 − μa0 + 2Q2α = 0. (79)

There are two roots for this equation given by

a±
0 = μ̃

4

⎛

⎝1 ±
√

1 −
(

4Q

μ̃

)2
⎞

⎠ (80)

in which μ̃ = μ
α

has to be positive. On the other hand, the horizon of the solution (49) is
given by

ψ(rh) = 0 (81)

in which

r±
h = μ̃

3

⎛

⎜
⎝1 ±

√√√√1 −
(√

18Q

μ̃

)2
⎞

⎟
⎠ . (82)

It is revealed from (80) and (82) that a±
0 are smaller than the event horizon r+

h . Under this
condition in order to construct TSW the only alternative left for this solution is the non-
black hole case, i.e., ψ(r) �= 0. This condition, combined with the existence of the shell at
equilibrium (80) amounts to

16 Q2 < μ̃2 < 18Q2. (83)

Finally the unique pair of the equilibrium radii of the TSW are found to be those given in
(80). In other words, for fixed Q,and μ̃ there are two possible radii for the TSW denoted as
a±

0 .

3.2 Linear stability analysis

In this section we study the dynamical stability of the TSW solution, constructed in the
previous section. In doing this, we apply a linear-radial perturbation to the TSW and upon
that ȧ and ä are not zero. The radius of the throat a(τ ) after the perturbation should satisfy
(64). One may rewrite (64) as

ψ ′ + 2ä = −4

a
(ψ + ȧ2), (84)
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which after applying the chain-rule, i.e., ä = dȧ
da ȧ one simply finds

a4ψ ′ + 4a3ψ = a4 d

da
(ȧ2) + 4a3(ȧ2). (85)

Both sides are total derivatives, i.e.,

d

da
(a4ψ) = d

da
(a4(ȧ2)), (86)

which after an integration yields

a4ψ = a4(ȧ2) + c, (87)

in which c in the integration constant. To find c, we recall that at a = a0, ȧ = 0. Hence, we
obtain

c = a4
0ψ(a0) = a4

0ψ0. (88)

Taking back c into (87) we get finally

ȧ2 + a4
0

a4 ψ0 − ψ = 0. (89)

This is the equation of motion of the throat after the perturbation. Rewriting this equation in
the standard form

ȧ2 + V (a) = 0, (90)

one finds the effective potential

V (a) = a4
0

a4 ψ0 − ψ. (91)

As we have already assumed, let’s keep the equilibrium point to be at a = a0 where ȧ0 =
ä0 = 0. Then, a Taylor expansion of the potential V (a) about a = a0 implies

V (a) = V (a0) + V ′(a0)(a − a0) + 1

2
V ′′(a0)(a − a0)

2 + O((a − a0)
3), (92)

in which V (a0) = V ′(a0) = 0 identically, while

V ′′(a0) = 20

a2
0

ψ0 − ψ ′′
0 . (93)

On the other hand, the linear equation of motion of the TSW after the perturbation becomes

ȧ2 + 1

2
V ′′(a0)(a − a0)

2 
 0. (94)

Therefore, the nature of the solution of (94) depends on the sign of V ′′(a0). If V ′′(a0) > 0
then the solution after the perturbation is oscillatory which is an indication for stability.
Otherwise if V ′′(a0) < 0 the motion becomes of exponential type which implies that the
TSW is unstable. Therefore, we shall look for the possible values for the parameters such
that the expansion for V ′′(a0), becomes positive. Considering ψ given in (49) with R0 = 0

and μ̃ = 4
√

2βQ−1
α

> 0 one finds

V ′′(a0) = 6μ̃a0 − 14Q2 − 10a2
0

a4
0

. (95)
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Fig. 1 Q2V ′′
0 (ω) in terms of ω for both radii of equilibrium a±

0 . The solid-blue curve and the brown-dashed

curve correspond to a+
0 and a−

0 , respectively

Fig. 2 V0 in terms of a/Q for ω = 1.. 3
√

2
4 . The left panel and the right panel are for a0 = a+

0 an a0 = a−
0 ,

respectively. The value of ω varies with equal intervals from below / above in left / right panel. The minimum
and maximum of the potential are seen clearly for a0 = a+

0 an a0 = a−
0 , respectively

Furthermore, a0 is given in Eq. (80) which upon a substitution in (95) we find

V ′′
0 (a±

0 ) = 32
(
7μ̃2 ± 2μ̃

√
ξ − 112Q2 − 5ξ

)

(
μ̃ ± √

ξ
)4 , (96)
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in which ξ = (
μ̃2 − 16Q2

)
> 0. We recall that μ̃ has been bounded due to other condition

given in (83). Let’s introduce new variable such that μ̃ = 4Qω upon which V ′′
0 becomes

V ′′
0 (ω) =

4
(
ω2 ± ω

√
ω2 − 1 − 1

)

Q2(ω ± √
ω2 − 1)4

(97)

and
a0 (ω) = Q

(
ω ±

√
ω2 − 1

)
. (98)

In Fig. 1 we plot V ′′
0 (ω) in terms of ω = 1.. 3

√
2

4 for both a±
0 . Figure 1 shows clearly that in

the domain of ω (and consequently μ), V ′′
0 > 0 for a0 = a+

0 and V ′′
0 < 0 for a0 = a−

0 . It
means that the constructed TSW is stable for a0 = a+

0 and is unstable if a0 = a−
0 . To have

a better picture of the meaning of stability, we plot the potential V0 itself in terms of a/Q
for various values of ω and a0 = a±

0 in different frames in Fig. 2. At a = a+
0 the potential

(left panel) admits a local minimum which states that the corresponding TSW is stable. In
contrast, the potential for a = a−

0 (right panel) possesses a local maximum at this point
which indicates that the corresponding TSW is unstable.

4 Conclusion

Due to the stringent junction conditions construction of TSWs in f (R) -gravity in contrast
to Einstein’s general relativity, is a rather difficult operation. This originates from the tough
conditions imposed on the first and second fundamental forms. We overcome the difficulty by
considering a class of f (R) model coupled with NED whose third derivative, i.e., f ′′′(R) �= 0
so that it satisfies the generalized junction conditions. An exact solution is obtained which is
supported by an external static field within the context of NED. It admits electric black holes
which, however, does not serve our purpose of TSWs. The reason is simple: the existence
of the event horizon is not compatible with the radius of the thin-shell. We follow therefore
a different route. We choose the non-black hole branch of the solution which allows us to
locate the shell. The shell’s radius becomes bounded from above which is stable against linear
radial perturbations. The fluid energy-momentum emerging at the throat upon perturbation
satisfies naturally a non-barotropic equation of state. If the shell was not stable then it would
collapse at the slightest perturbation to the naked singularity at the center.

To complete our conclusion we would like to compare our work with the earlier works
such as [21–24]. In [21] the explicit form of f (R) is given by

f (R) = R + αR2 (99)

which is clearly in a different class in comparison with our model given in (50) in the sense
that in (99) in third derivative f ′′′ (R) = 0 while in (50) it is non-zero. This in turn implies
different junction conditions. On the other hand in [21], the Ricci scalar was considered to
be constant, i.e., R = R0 while in this current work R is not a constant as seen in Eq. (48).
Similarly, in Ref. [22], and [23] the authors considered different models of f (R)-gravity in
constant curvature background. Finally, we would like to mention a rather different study
of Eiroa and Aguirre [24], where they considered the background curvature in each side
of the wormhole to be constant but different from each other. In other words, at each side
of the throat, the geometry has a different constant curvature. In short, the main difference
between the current study and the other papers on TSW in f (R) gravity, is the structure of the
background curvature. While in the other studies the background curvature considered to be

123



440 Page 14 of 14 Eur. Phys. J. Plus (2020) 135:440

constant, we have considered a non-constant background curvature. Let’s note that, having
non-constant background curvature implies non-trivial consequences due to the junction
conditions such as occurrence of the non-barotropic EoS, i.e., p = p (a, σ ) given in Eq.
(75).
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