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Abstract In this paper, a new and an efficient solution method based on local gradient
smoothing method has been applied to free vibration problem of open composite laminated
cylindrical and conical shells with elastic boundary conditions. The theoretical model is for-
mulated by the first-order shear deformation theory, and the motion equation is obtained by
the Hamilton’s principle. The motion equation is discretized by meshless shape function; in
this process, the derivatives of the shape function are approximated by local gradient smooth-
ing method. The accuracy, applicability and efficiency of this method are demonstrated for
free vibrations of open composite laminated cylindrical and conical shells with different
geometric, material parameters and boundary condition. The numerical results show good
convergence characteristics and good agreement between the present method and the existing
literature. And through several numerical examples, some useful results for free vibration
results of open composite laminated cylindrical and conical shells are obtained, which may
serve as a benchmark solutions for researchers to check their analytical and numerical meth-
ods.

1 Introduction

As the rapid development of science and technology, new processes for manufacturing com-
posite materials are used in variety of engineering fields such as aerospace, high-speed train
and ship engineering and are developing rapidly. With the development of new composite
materials manufacturing processes, the cost of materials has reduced and application fields
of composite materials are extending more widely. The study on free vibration of shells,
one of the structural elements widely used in engineering, has attracted of attention many
researchers.

So far, for analyzing the dynamic characteristics of shell, classical shell theory (CST)
[1-5], first-order shear deformation theory (FSDT) [6-9] and HSDT (higher-order shear
deformation theory) [10-15] have been developed and used. Since transverse normal and
shear deformations are neglected in the CST, the FSDT was developed to correct these defects.
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HSDT is a theory developed to avoid the use of shear correction coefficient introduced in
FSDT and to predict more accurate vibration behavior.

However, as pointed out by Qu et al. [7], somewhat complex formulas and boundary
terms are introduced in the HSDT, which are much more computationally complex than the
FSDT. Therefore, it is very important to carefully select rational shell theory for free vibration
analysis of composite laminated shells. In the existing literature, it can be seen that FSDTs
with appropriate shear correction factors are suitable for predicting the vibration behavior
of composite laminated shells. Francesco [16-19] has used FSDT to perform static and
dynamic analyses of various types of laminate shells and panels on the Winkler—Pasternak
elastic foundation, achieving very good results.

From these results, FSDT is just applied for presented method. Based on various shell
theories (e.g., CST, FSDT and HSDT), a number of methods have been proposed, such as
the Rayleigh—Ritz method, the Haar wavelet discretization method (HWDM), the Galerkin
method and the finite element method (FEM), to deal with the vibration problems of the
laminated composite shell.

Many researchers have made efforts to analyze the vibration behavior of laminated com-
posite shell by using approach analytical and numerical techniques, such as Fourier—Ritz
method [20-26], Jacobi—Ritz method [27-31], differential quadrature method (DQM) [2, 4,
9, 32, 33], discrete singular convolution method (DSCM) [5, 6], a general domain decom-
position method [7, 34], Haar wavelet discretization method (HWDM) [35, 36], meshless
method [13, 37, 38], spline method [8, 39] and FEM [40]. Some researchers have applied
differential geometry within the generalized differential quadrature (GDQ) method while
performing static and dynamic analysis of functionally graded (FGM) and laminated shells
and panels resting on linear and nonlinear elastic foundations [18, 19].

From the review of previous literature, it can be seen that although there are many methods
for vibration analysis of laminated composite shell, finding a reliable and efficient approach
to laminated composite shells with different boundary conditions is still a big challenge.
Therefore, the purpose of this work is to introduce a simple and effective method to deal
with the vibration behavior of the structures. The solution is obtained by using the numerical
technique termed the meshless collocation method, which leads to a generalized eigenvalue
problem. The mathematical basis and recent developments of this method and its application
in engineering are described in detail below.

The meshfree method is a numerical method used to establish a system algebraic equation
for the entire problem domain without using a predefined mesh for domain discretization
[41]. Over the last few decades, the meshfree methods have been rapidly developed and
successfully applied in many fields such as the plate and shell analysis [42—45], nonlinear
dynamic analysis [46, 47], large deformation simulation [48], fluid analysis [49-54], and
impact and fragmentation simulation [55].

Recently, the detailed investigations have been conducted on various types of meshfree
method and their properties [56, 57]. Compared to the weak-form method, the meshless col-
location method is very simple and is considered a true meshless method because it doesn’t
even need a background cell for numerical integration [58]. On the other hand, the Galerkin
meshfree method requires special treatment to apply Dirichlet boundary condition due to the
non-interpolatory property of the meshfree shape function, but in the meshless collocation
method it can be applied directly without any other treatment. In the past, many researchers
have conducted studies on the strong-form meshfree method and its application, and interest-
ing arrangement methods have been proposed such as least-squares radial point collocation
method [59], isogeometric collocation method [60], finite point method [61], strong-form
meshless implementation of Taylor series method [62], etc. However, in the methods men-
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tioned above, higher-order derivatives of the shape function are required, which is one of the
causes of the instability and the inaccuracy of the solution. Wang et al. have approximated the
derivatives of meshfree shape function by using the gradient smoothing method (GSM) in the
strong form of the given problem [63]. The first-order smoothing gradient of meshfree shape
function is obtained by the meshfree interpolation of its standard derivatives, and the second-
order smoothing gradients are calculated by directly differentiating the first-order smoothing
gradients. Liu et al. used GSM instead of the generalized finite difference method (FDM) to
successfully approximate the first- and second-order derivatives of the field function in the
solid mechanics problems [64].

GSM is a kind of systematic technique for approximating the derivatives of a function
by using the smoothing operation expressed in integral form. Compared to the conventional
finite difference and the generalized finite difference methods, GSM has the advantage of
being easily applied to arbitrary irregular meshes for complex geometry. In GSM, a well-
designed smoothing domain is generated around the node of interest, and the derivative of
the field function at that node is approximated by the integration of the field function along
the smoothing domain boundary. At this time, the sum of the areas of the smoothing domains
for all nodes is equal to the area of the entire problem domain [58, 64]. However, a fixed
smoothing mesh domain which is time-consuming to create in the problem domain is required
in GSM.

In this paper, a local gradient smoothing method (LGSM) is proposed to approximate the
derivatives of the meshfree shape function in the local smoothing domain. In this method,
the local smoothing domains corresponding to the nodes are independent of each other and
therefore spacing may occur between them. In other words, the sum of the areas of the
local smoothing domains according to all the nodes may not be equal to the area of the
problem domain. The proposed method makes it possible to reduce the effort of making the
smoothing domains. The integration of field function in the smoothing domains is calculated
by using the numerical integration methods such as Gauss quadrature rule. In this paper, the
derivatives of the meshfree shape function approximated by the proposed method are applied
to the vibration motion equations of the considered shell structures, in which shell structures
selected the open laminated composite cylindrical and conical shell, in order to depict a
generalized shell structure. Several numerical examples to some benchmark problems are
provided to model the free vibration of open composite laminated cylindrical and conical
shells with classical, elastic and combined boundary conditions. The proposed numerical
example shows that the current methods can obtain solutions with high accuracy.

2 Theoretical formulations
2.1 Local gradient smoothing method
In the paper, the derivatives of the meshless shape function are approximated by using the

local gradient smoothing method. According to the local gradient smoothing method, the
first-order smoothing gradients of the meshless shape function at node i can be expressed as:

P (xi) Z/‘P,;(x)‘l’(x —x;)d$2 ()
£2;

where ¢ = (1, 2) denote the x and 6 directions, ¥ is the smoothing function, £2; is the
local smoothing domain and () , represent %. The comparison of the smoothing domains
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Fig. 1 The smoothing domains of traditional GSM (a) and local gradient smoothing method (b)

in the traditional GSM with that in the proposed method is shown in Fig. 1. As shown in
Fig. 1a, GSM is a global method that uses a fixed smoothing domain according to the node
distribution of the problem area. In contrast, the local smoothing domains corresponding to
the nodes are independent of each other. Since the smoothing domains may be overlapped or
spaced, the sum of smoothing domain areas cannot be equal to the area of problem domain.
These features of the local smoothing domain make its generation process very simple.

A weighted Shepard function is used as the smoothing function:

Yx —x;)
Zj‘\;l W(x - xj)Aj

U(x —x;) = ()

where N is the number of nodes distributed in the problem domain and A; is the local
smoothing domain area corresponding to the j th node. The following piecewise constant
function is used in this paper:

. 1 xe .Qi
Yix —x0) {0 P 3)
Substituting Eq. (3) into Eq. (2), the smoothing function is
1
W(x—x;)={ Xl A ' 4)
0 X ¢ £2;

where n; is the number of nodes in the local smoothing domain of node i. In this paper, the
local smoothing domain of node i is made small enough to not contain any nodes other than
node i. That is, Eq. (4) is simplified as

174 x e
lI/(x—x,-)_{O X ¢ 2 ©)
Integrating by parts Eq. (2) is
D (x;)= fd)(x)n;(x)lll(x —x;)dl" — / DXV (x —x;)d2 (6)
I 12
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where n; (x) is the ¢ direction unit outward normal vector on the local smoothing domain
boundary. Since the smoothing function is chosen as a constant, the second term of the
right-hand side of Eq. (6) is eliminated:

D (x;)= f P(x)n;(x)¥(x —x;)dI" = Ai / P (x)n; (x)dl" (@)
n N

As a result, the first-order derivative of the shape function becomes the line integration
along the boundary of the local smoothing area.
In the paper, the integrals of Eq. (7) are obtained by using Gauss quadrature:

g

1
@ (xi) =~ ) wk(x o (x i) il ®)
b k=1

where n, is the number of Gauss points placed on the boundary of the local smoothing
domain, wy the Gauss weighting factor of Gauss point x g and J; Jacobian matrix for
the curve integration in the boundary [7;. Similarly, according to the procedure described in
Egs. (1)—(8), the second-order gradient of the shape function is approximated as:

n q

1
D oy(xi) = = D wn (x oy (¥ i) | ] ©)
b k=1

where ¢,n = (1,2) denote the x and 6 directions. Substituting Eq. (8) into Eq. (9), the
second-order gradient of the shape function can be rewritten as:

1 & 1 &
D p(xi) = X Z wk|:AQk Z Wiy P (X g )N ¢ (me)|JQk|:|nr;(ka)|Ji| (10)
k=1 m=1

where A and ng are the area of the local smoothing domain §2¢p; generated around the
Gauss point x o, and the number of Gauss points placed on the boundary of §2 g, respectively,
wy is the Gauss weighting factor for Gauss point x g,, and J g is the Jacobian matrix for
the curve integration of the boundary I'gy.

As shown in Fig. 2, the local smoothing domains of the second-order gradient are gener-
ated around the Gauss points placed on the boundary of the local smoothing domain of the
first-order gradient. The first- and second-order gradients according to a; when using the
rectangular local smoothing domain in a two-dimensional problem are shown in Figs. 3 and
4. In the figure, o is a coefficient related to the size of the local smoothing domain:

= —= (11)

where d. and dj are the average nodal spacing and the size of local smoothing domain,
respectively. For example, in a two-dimensional domain, ¢y is

o — dix _ dry
T dey T dyy

12)

where d, and d,, are the average nodal spacings in the x and y directions and dy,, and dy
are the length and width of the rectangular local domain.
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Fig. 3 The first-order gradients according to ag in the two-dimensional domain a oy = 0.01, b ag = 0.1,
cag=05dag =1.0
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Fig. 4 The second-order gradients according to g in the two-dimensional domain a oy = 0.01,b g = 0.1,
cag=05dag =10

Fig. 5 Geometry and definition of an open composite laminated shell: a coordinate system, b cylindrical,
¢ conical

2.2 Description of the model

Open composite laminated cylindrical and conical shell with uniform thickness h selected as
the analysis model is shown in Fig. 5.

An orthogonal curvilinear coordinate system (o, 8 and z) in Fig. 5a is established in
the middle surface of the open composite laminated shell. Ro and Rg denote the principal
curvature radius in the middle surface along o and 8 axes, and Lo and Lg denote the lengths
of open shell in « and g directions, respectively. In order to simulate the generalized boundary
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conditions, three groups of translational springs (ku, kv and kw) and two groups of rotational
springs (kg and ky) are introduced along the edges of the open shell. The boundary conditions
can be generalized readily by assigning the proper values of spring stiffnesses. The geometry
and notation of open composite laminated conical shell are shown in Fig. 5b. L and a denote
the cone length and the cone semi-vertex angle of the conical shell, R; and R are the radius
of the cone at start and end edges of conical shell, respectively. The radius R which defined
between R; and R; is a function along x-axis coordinate. If the semi-vertex angle is set to
o= 0 in Fig. 5b, it can be considered open cylindrical shells (Fig. 5a) which is a special
case of conical shells, and the formulation of conical shell can be reduced to formulation of
cylindrical shells.

2.3 Governing equations

The displacement field for the shell based on FSDT assumptions takes the following form
[31, 35, 36]:

ulx,0,z,t) =ug(x,0,t)+z7x:(x,0,1)
v(x,0,z,t) =vo(x,0,1) +zx0(x,0,1)
w(x,0,z,1t) = wy(x,0,1) (13)

u, v and w denote the generalized displacements, and ug, vo and wq are displacements of a
point on the reference surface (z = 0) along meridional, circumferential and normal directions,
respectively.

Xx and xp represent transverse normal rotations at middle surface (z = 0) with respect to
B and o axis. f represents the time variable. The strain—displacement relations at any points
lying of the conical shell space can be written in the following matrix form:

&y L0 0 0 0
sin ¢ 19 cos ¢
€ R R0 r 0 0 ]
1o 8 _ sing 0 0 “
Vx0 R30 9x R .
3
x | |0 o o 2 0 1
1o o 0 sing 1.9 v
X0 R R 30 £
19 9 sin ¢ x
Xx6 0 0 0 R0 9 R .
vo: 0 %L gm0 1 ==
u
v | L0 0 2 1 0 ]
—_——

3

where 82, eg and y)?g are the membrane strains on the reference surface, x, xo and xyg¢ the

curvature changes and yy, and yp, the transverse shearing strains.
Then, the constitutive equations are expressed in the matrix form as follows:

N = De (15)

where
N =[N Ng Nyg My Mg Myg Qo Qx]T (16a)
e =[ex €0 va0 Xx X0 Xu0 Yoz Vaz ] (16b)
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Ay A A B B Big O 0
Aip Ap Ay Bz Bxn By 0 0
Aig Az Aes Big By Bes O 0
B B B D D D 0 0
D 11 12 16 11 12 16 (16¢)
By By By Dia Dy Dy O 0
Bis By Bes Dis D Des 0O 0
0 0 0 0 0 0 Ay Ays
(0 0 0 0 0 0 Ags Ass
The individual elements of the stiffness matrix D are expressed as:
NN Ak _ Co
Aij _Zk:I Q,'j(Zk+1 %) Lj=126
N Ak PR
Aij = ke 3 4Ly Qf ket —2) i, j=4,5 (17)

_ 1 N Ak (.2 2 R
Bij =3 2.4=1 Qij(zk+1 —z) =126
o1 NL Ak (.3 3 P
Dij =32 4= Qij(zk+l _Zk) i,j=12,6
where Aj;, Bjj and D;; denote extensional stiffness, the extensional-bending coupling stiffness

and the bending stiffness, respectively, and k. is the shear correction factor. Q{‘/ are the

elements of the dislocation stiffness matrix Qk corresponding to the kth layer, expressed as
following:

0" =T, 01T (18)

In Eq. (18), the transformation matrix T and the reduced the stiffness matrix Qk for kth
layer are defined as:

[ cos? & sin? 8 0 0 —2 sin 8 cos &g i
sin? 8 cos? 8 0 0 2 8in 8y cos 8k
Ty=1|0 0 cosd; sinédy 0 (19)
0 0 —sin §y cos sy 0
i sin 8 cos 8 — sin 8 cos 8 O 0 cos? 8 — sin? 8 ]

where §; denotes fiber direction angle of kth layer:

o ohb o 0 0 ]
03 05 0 0
0“=l0 o Q4 0
0 0 0 Q%
0 0 0 0 Q]

(20)

S o o ©
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The reduced stiffness Qk @i, j=1,2,4,5, 6) of the orthotropic materials is defined as

k ko _ M12E11 Ej)
O = uk Q=0 =1 T=wyus;” 02 RN 1)
kK _ Gk
Q44 - G23’ Q 55 — G13’ Q66 - G12

where EX 1 EX 2, are the Young’s modulus in the pr1n01pal directions of the kth layer, G 12 G23
and G13 are shear modulus, respectively. /le, “21 are the Poisson’s ratios.

According to Hamilton’s principle, the governing equations of open composite laminated
conical shell shown in Fig. 5 can be written as [6, 65]:

Bal\)lcx + Il{dg/gg +(N Ng)smtp — I 3 u +I 63,%

e+ p o + Q00" = I a 7+ aarie

8dex + IIQBnge + Qx simp — Ny COS(/) _ 10 012 (22)
BEIKX +1 1 BMV(; +(M - M )smfp Qx _ Il %,5 +] d EX

WMo 4 }Q"M‘* +2Mep e — Qp =110V 4 Iy aaf;

Ny, Ny and N,y are the in-plane force per unit length of shell, M, Mg and M,¢ are the bend-
ing moment and twisting moment and Qp and Q, are the transverse shear force, respectively.
And R is the radius of curvature at a given point and is expressed as:

R = Rp+xsing (23)

And the mass inertias term Ig, /1 and I, can be expressed as Eq. (24), where Ny and
pr denote the number of layers in shell structure and the density of the kth layer per unit
reference surface area, respectively:

Ni Zk+1

(o, I, L] = Z / ok[1, z, 2]dz (24)
k=12

2.4 Solution procedure and implementation of LGSM

In the meshless collocation method, the discretized simultaneous system equations are
obtained by directly discretizing the strong forms of the governing equations and bound-
ary condition equations at the nodes. The advantages of meshless collocation method are that
algorithm is simple and there are no meshes or cells in the problem domain.

Equation (22) in Sect. 2.3 can be expressed in the matrix form as follows:

Ii+ LN =0 (25)

Individual terms in Eq. (25) can be expressed as follows in detail; N is defined from
Eq. (15):

b0 0 -5 0 |
0 —Ihb0 0 -—I
I={0 0 —-Ihb0 0 (262)
L 0 0 —L 0
0 - 0 0 —h]
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i oy Sigw _

0 7
L=1|0 -
0 0

K 0

g
N
|—
|

Q
(=5
g Elo
[=%]
+

S}
o o O S‘Q’%

|G

0 0 0
sin @
2 R 0 0 0
0 0 0
Ka + sing sing 1 9
dx R R R 36
19 9 sing
0 R x T2 R
2 a2 a2 a2 28 1T
:[MM PP 9% «959]
2 32 32 B2 92

0 0
co;(p 0 |
b e | o)
0 -1
-1 0
(26¢)

All of the displacements in the equilibrium equations of motion can be approximated as
following form using a meshfree shape function:

-
v|
wi
u #0000 50000 ---¢,0 000 Ex1
v 0 610000 000 --0 ¢,0 00 go1
w|=|00¢0000¢00 ---00 ¢0 0 : 27)
£y 000 ¢ 0000 ¢0 --000 ¢,0 “
£ 00000000 ¢--0000 ¢ ],
—— n
u ¢T wn
gXVl
_E@n_
———
Us

where 7 is the number of nodes in the support domain of the node being discussed, ®7 is
the shape function matrix and Uy is the node displacement matrix.
By substituting Eq. (27) into Egs. (14), (14) can be rewritten as the matrix form:

0

e=BU;

cos
R £ ¢i

0

0

cos
R(p ¢i 0

e © © © O

=
=

=1}
=

n ], B; is expressed as follows:

(28)

29

By substituting Egs. (15), (27) and (28) into Eq. (25), the discretized systematic equation
can be obtained for any node / of the open composite laminated shell:

MU, +K;U;, =0

(30)
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where the stiffness matrix K ; and the mass matrix M ; of the node I are expressed as follows:
K; = LsxsDgygBsys, =K Kpo - Kpi -+ Kpp | (31a)
Mp=[M;j Mp - My - My, | (31b)

Detailed expressions of individual elements of stiffness and mass matrix are presented in
“Appendix.”

Finally, the total mass and the stiffness matrices corresponding to the all of the nodes
distributed in the area considered can be obtained by arranging the individual mass matrices
and the stiffness matrices corresponding to the node number in the row direction.

That is, the vibration equation of the total system discretized into the node number of N
is defined follows:

MU +KU =0 (32)

where U is the total displacement matrix, K and M are the total stiffness matrices and total
mass matrices of considered shell structure, respectively, and they are expressed as follows:

T
U =[uiviwi & &1 - uy vy wy Exn N | (33a)
.. - B . - - T
U= [azul v w0 & | Puy oy Pwy e 62$9N] (33b)
92 ar2 a2 Az o2 92 a2 or? 912 312
My My - My K1 Kip --- Ky
My My --- Myy K> Ky --- Koy
Msyxsy = | . ) L , Ksnxsy = . )
My, My, --- Mpyy Kyi Kn2 --- Kyn
(33¢)

The natural frequencies of the considered shell structures can be determined by solving
the standard eigenvalue problem in Eq. (32).

It should be noted that the global matrix in Eq. (33c) contains a matrix corresponding
to the boundary condition. In the meshless collocation method, the equations of motion are
directly discretized about all of nodes including boundary nodes. Therefore, the boundary
condition is reflected in the stiffness and the mass matrix of the whole system represented
in Eq. (33c¢). Discretization of nodes on the boundary proceeds in the following order: The
boundary condition equation generalized in the open composite laminated conical shell shown
in Fig. 5 can be written as [65]:

Ny —klgu =0 Ny+klju=0

Nyg —kygv =0 Nyg+k}jv=0

0 —ktw=0 *T% ) o +kmw=0 =L (342)
My =kl =0 My + k& =0

My — ko€ =0 My + K156 = 0

Nyg — kbogu =0 Nyg + ki =0

Ng —kjov =0 Ny +kpv=0

0o —ktw=0 979 ) gprrpuw=0 =% (34b)
My — ke =0 My + K &0 =0

My — koo =0 My +k) &9 =0
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where k4, k2, k¥, k%, and k9, (m = x0, x1, 60, 81) are the spring coefficients of the boundary
foundation, as shown in Fig. 5a.
In Eq. (34a), the boundary condition equation for x= 0 can be written as follows in the

matrix form:

10000000 kK% 0 0 0 0
00100000 0 k% 0 0 0
000000O0T1|N=|O O k% 0 © u=0 (35)
00010000 0 0 0 Ky, O
00000100 o 0o o o &Y

Substituting Eqgs. (15), (27) and (28) into Eq. (35), the discretized boundary condition
equation for the nodes on the boundary of x = 0 is obtained as:

(CxDB — ky)Uy =0x =0 (36)
where
10000000
00100000
C,=[{00000001 (37a)
00010000
B 00000100 ~
Kigr 0 0 0 0 - Ky¢nO 0 0 0
0 k%10 0 0 0 kYy$aO 0 0O
kvo={0 0 k%0 0 0 0 k%, 0 0 (37b)
0 0 0 KkiyO 0 0 0 kypO
0 0 0 0 kfjoqsl. 0 0 0 0 k%

For other boundaries, discretized boundary condition equations can be obtained in the
same way as above:

(CyDB+k DUy =0x=1L (38)
(C¢DB —keo)U; =00 =0 (39)
(C¢DB +ke)U;, =006 =6 (40)
where
00100000
01000000
Co=l000000T10 (41a)
00000100
~ 00001000 )
K¢r0 0 0 0 K O 0 0 0
0 k¢ 0 0 0 -~ 0 kY ¢n O 0 0
kqi=1]0 0 k%10 0 0 0 k% n 0 0 (41b)
0 0 0 kY10 ) 0 0 kX ¢n O
0 0 0 0 K\pp -+ 0 0 0 0 k%, n
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[kigr0 0 0 0 KO 0 0 0 ]
0 k%0 0 0 0  kig#nO O O
koo=]10 0 k&0 O 0 0 kx¢0 O (41¢)
0 0 0 ki}g¢10 -0 0 0  klgpnO
[0 0 0 0 Kop1 -+ 0 0 0 0 kgoqsn_
(kg0 0 0 0 K¢, 0 0 0 0 |
0 k¢ 0 0 0 0 kl¢s0 0 0
kop=|10 0 kj¢r10 0O 0 0 kX¢a0 O (41d)
0 0 0 ky¢»O0 -0 0 0 kO
0 0 0 0 k1 -0 0 0 0 k§1¢n_

3 Numerical results and discussion

In this section, the computational efficiency and accuracy of the proposed method are veri-
fied through the comparison with the results of previous literature, and the several numerical
examples for the free vibration analysis of the open composite laminated conical and cylindri-
cal shell with different geometric dimension, material properties and boundary conditions are
presented. In order to indicate boundary conditions simply, the clamped boundary is denoted
by C, the free boundary is denoted by F, the simply supported boundary is denoted by S, and
E!, E? and E3 represent three types of elastic boundaries, respectively. Unless stated other-
wise, non-dimensional frequencies are defined as 2 = wL?/ph/D in this paper, where p is
the material density, L and / are the shell length and thickness and D is the flexural stiffness
of the shell, is defined as D = E1h3/12(1 — W12i421). where Eq, (12, 121 are the Young’s
modulus and Poisson’s ratio, respectively.

3.1 Convergence and verification study

In the numerical calculation by using current method, taking into account the calculation
time of the numerical solution, the number of terms in the series should be truncated to
the appropriate finite number. Therefore, to establish the number of terms that should be
used to obtain accurate results, a convergence study is required. In addition, the boundary
conditions in proposed method are decided by the boundary spring parameters. For example,
to simulate the clamped boundary, it is necessary to set the boundary spring parameters to
infinite in theory. However, this will make the matrix infinite, which will lead to ill-conditioned
solution without real exact solution. Therefore, in order to select an appropriate value of the
boundary spring parameters, it is also necessary to study the convergence of the boundary
spring parameters.

Firstly, the convergence characteristics according to the change in the coefficient o, related
to the size of the local smoothing domain will be studied. The non-dimensional frequency
convergence results of the open composite laminated cylindrical and conical shell along
result of the reduction of the coefficient o, are shown in Fig. 6. The boundary conditions
of considered shells are defined as CCCC and SSSS, respectively. Geometric dimensions
are defined as follows: both of cylindrical shell and conical shell, L= 1 m, 2= 0.1 m, for
cylindrical shell R= 1 m, for conical shell, Ry = 1 m, and semi-vertex angle ¢ = /4.
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Fig. 6 Convergence of non-dimensional frequencies according to the decrease in coefficient ay. Cylindrical
shell: a CCCC, b SSSS; conical shell: ¢ CCCC, d SSSS

The material properties for cylindrical shell and conical shell are defined as follows: p =
1500 kg/m?3, Ey = 150 GPa, E; = 10 GPa, 112 = 0.25, G12 = G13 = Gp3 = 5 GPa, and fiber
direction angle is 8y = [0°/90°/0°].

As can be seen from Fig. 6, the non-dimensional frequencies of shell converge gradually
with coefficient o, decreasing. Specially, it can be seen that when the coefficient  is less
than 0.1, the dimensionless frequency tends to converge, and when the coefficient o is less
than 0.01, they hardly changes. Thus, in all numerical examples, coefficient o is set to 0.01.

Next, the convergence of boundary spring parameters is studied. The geometric dimensions
and material properties are same with those in Fig. 6. In order to study the influence of
boundary spring parameters, the one end of open shells is set as an elastic boundary, and the
other three ends are defined as a clamped boundary, and only one type of spring stiffness
value is changed from 103 to 10'8, while the spring stiffness value of the other type is set to
10'3. The convergence results of non-dimensional frequencies in the cylindrical and conical
shell are shown in Figs. 7 and 8, respectively. As can be seen in Figs. 7 and 8, the non-
dimensional frequencies rapidly increase as springs’ stiffness values increase from 103 to
10'% and beyond this range, the variation of the non-dimensional frequencies is little. Based
on that, it is assumed that to simulate the clamped boundary condition, the boundary spring
stiffness value is set as 10'%, and for the elastic boundary condition, the spring stiffness
value is set as 103, The spring stiffness values corresponding to each boundary condition are
summed up in Table 1.
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Fig. 7 Convergence curve of non-dimensional frequencies on the boundary spring stiffness of the open com-
posite laminated cylindrical shell: a mode 1, b mode 2, ¢ mode 3, d mode 4

In this subsection, finally, based on the convergence study, a comparative validation study
of proposed method will be carried out.

The comparison of the first four non-dimensional frequencies for open composite lami-
nated cylindrical and conical shells with CCCC and SSSS boundary condition is presented
in Tables 2 and 3, respectively. The geometric dimensions and material properties are same
with those in Fig. 6. Table 4 shows the errors of solutions obtained using traditional GSM
and existing method (LGSM) for the above problems. The error evaluation indicator is as
follows:

Zi (finum _ fiexact)2
Zi (ficxact)z

x 100 (42)

ef =

where [ and f™™ are i th non-dimensional frequencies obtained by the Fourier—Ritz
method and the numerical method (GSM or LGSM), respectively. From Tables 2, 3 and 4,
it can be observed that the calculation results obtained by the current method are in good
agreement with the results of the Fourier—Ritz method compared to traditional GSM.

3.2 Numerical example

In this subsection, based on the convergence study and the verification results for the proposed
method, to enrich the free vibration analysis data of open composite laminated cylindrical
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Table 1 The spripg stiffness B.C ky0s ky1 kyos ky1 kwo, kw1 kgo- kg1 koo, ko1
value corresponding to boundary
conditions F 0 0 0 0 0
S 104 1014 1014 0 1014
1014 1014 1014 1014 1014
E; 1014 1014 108 1014 1014
Ep 1014 1014 1014 107 1014
E3 1014 1014 1014 107 1014

and conical shells, some examples of the considered shell with different boundary conditions
are numerically provided. Also, through numerical example, the geometrical dimension,
material properties and the effects of boundary conditions on the free vibration behavior of
open composite laminated cylindrical and conical shells will be studied.

Tables 5 and 6 show the nature frequencies of four-layered open composite laminated
cylindrical shells and conical shell, respectively, in which nature frequencies are investigated
according to change in ratio of length L to radius R (R for cylindrical shelland Ry for conical
shell); the boundary conditions are set various classical boundaries and the elastic boundaries.
The material properties are defined as: p= 1500 kg/m3, Ey =10 GPa, E| = 15E>, 12 =
0.25, G12 = G13 = G23 = 0.5E>, the angle-ply in cylindrical shell is [0°/— 45°/0°/— 45°], and
the angle-ply in conical shell is [0°/45°/0°/45°]. Geometric dimensions of shells are defined
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Table 2 The comparison of the non-dimensional frequencies for open composite laminated cylindrical shells
with CCCC and SSSS boundary condition

BC f @

/4 /2 3r/4 b4

Ref. [66]. Present  Ref. [66]. Present Ref.[66]. Present Ref.[66]. Present

CCCcC 1 83.263 83.637 36.207 36.35 28.423 28.238 26.704 26.509
2 93.805 94.159 51.439 51.642 31.739 31.949 27.852 27.741
3 101.206 101.273  59.064 58.872 46.005 45.635 33.399 33.58
4 111.677 110.849  68.366 68.035 55.335 54.821 39.889 39.737

SSSS 1 73.291 73.177 25923 26.112 23.546 23.0881 20.746 20.078
2 78.082 79.267 41.763 42.1976  23.98 23.923 22.707 22.933
3 84.869 84.802 48.878 48.323 36.758 36.909 28.287 27.923
4

85.875 86.408 57.339 56.611 46.063 45.659 32.552 31.85

Table 3 The comparison of the non-dimensional frequencies for open composite laminated conical shells with
CCCC and SSSS boundary condition

BC fo0

/4 /2 3r/4 b4

Ref. [66]. Present Ref. [66]. Present Ref.[66]. Present Ref.[66]. Present

cccc 1 37831 37973  24.103 23932  22.566 22.72 21.855 21.856
2 44.176 44.553  27.671 28.067  22.888 22984  21.983 22.155
3 58363 58.516  37.898 37.683  26.78 27.07 24.519 24.563
4 67.406 67.698  39.299 39.374  30.186 30.378  25.038 25.061
SSSS 1 29953 29.803  16.702 16.354  15.281 15.159  14.82 14.984
2 32542 32522 19.81 19.706  16.536 16.7 15.129 15.214
3 50.005 49421 29091 29.874  19.943 20.093  17.444 17.508
4 5241 51.763  33.347 33.44 22.977 22.604  19.368 19.736

Table 4 The comparison of error e s for GSM and LGSM (%)

BC 0

/4 /2 3r/4 b4

GSM LGSM GSM LGSM GSM LGSM GSM LGSM

Cylindrical shell

CCccC 1.914 0.499 1.988 0.762 2.182 0.828 2.227 0.503
SSSS 3.120 0.809 3.891 1.146 2.934 0.931 3.979 2.000
Conical shell

CCccc 2.467 0.489 2.452 1.487 1.935 0.760 1.996 0.383
SSSS 3.057 1.042 3.947 0.728 3.340 1.192 3.768 1.241
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Fig. 9 Change in non-dimensional frequencies of open composite laminated cylindrical shell according to the
change in fiber direction « a CCCC, b CSCS

as: in cylindrical shell; R=1 m, 6 = 7/4, h= 0.1 m, in conical shell; Ry = 1 m, 6 = /4,
h= 0.1 m and cone semi-vertex angle ¢ =m/6. It can be seen from Tables 5 and 6 that, for
both shell types, the natural frequencies are decreased when the radius R is constant and the
length L increases, regardless of the boundary conditions. In a similar way as above, when
the radius R is constant and the thickness / increases, the change in natural frequencies in
open composite laminated cylindrical and conical shell is presented in Tables 7 and 8. The
geometric dimensions and material properties are same as above, except the length L= 2 m.
From Tables 7 and 8, it is clear that the natural frequencies of open composite laminated
cylindrical and conical shell increase as the length L and radius R are constant and the
thickness 4 increases.

The first four non-dimensional frequencies of open composite laminated cylindrical and
conical shell with different boundary conditions and fiber layers are shown in Tables 9 and
10. The material properties for both cylindrical shell and conical shell are defined as: p =
1700 kg/m3, E1 = 60.7 GPa, Ey = 24.8 GPa, ;1> = 0.23, G12 = G13 = Goz = 12 GPa, and
the geometric dimensions of shells are defined as: in cylindrical shell; R=1m, 0 =n/4, L=
2m, h=0.1 m, in conical shell; Ro =1 m, 8 = /4, L=2 m, h= 0.1 m and cone semi-vertex
angle ¢ =m/6. From Table 9, it can be seen that in all boundary conditions except CFCF
boundary, the non-dimensional frequencies of open composite laminated cylindrical shell in
which cross-ply type is [0°/90°/0°] are smaller than those of the other two cases. It can be
seen from Table 10 that open composite laminated conical shells have the opposite trend as
with open composite laminated cylindrical shell.

Figure 9 shows the change in non-dimensional frequencies of three-layer [0°/«°/0°] open
composite laminated cylindrical shell with CCCC and CSCS boundary conditions according
to the change in fiber direction «. The geometric dimensions and material properties are
same with those in Table 9. It can be seen from Fig. 9 that the frequency of open composite
laminated cylindrical shell changes symmetrically with respect to the fiber direction angle
90°, regardless of the boundary conditions.

In Fig. 10, the effect of Young’s modulus ratio Ej/E> on the vibration characteristics
of open composite laminated conical shell is investigated. The boundary conditions of this
example are set to CCCC and CSCS. The geometric dimensions and material properties are
same with those in Table 10; only the number of layers and the angle of fiber direction are
different from the above. In this example, four-layer [45°/— 45°/45°/— 45°] conical shell is
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Fig. 10 Change in non-dimensional frequencies of open composite laminated conical shell according to the
increase in Young’s modulus ratio a CCCC, b CSCS

considered. The range of Young’s modulus ratio E / E5 is defined as 1 to 20. From Fig. 10,
it is found that the non-dimensional frequencies of open composite laminated conical shell
increase with the increase in Young’s modulus ratio.

Table 11 shows non-dimensional frequencies of open composite laminated conical shell
with increasing cone semi-vertex angle under different boundary conditions and fiber layers.
The material properties and the geometric dimensions are same with those in Table 10.
As shown in Table 11, the non-dimensional frequencies of open conical shell increase with
increasing semi-vertex angle, regardless of the laminating structure and boundary conditions.

Finally, the change characteristics of the non-dimensional frequencies in the four-layered
cross-ply [0°/90°/0°/90°] open composite laminated conical shell with CCCC boundary con-
dition along the change in circumferential rotation angle 6 and cone semi-vertex angle ¢
are investigated. The material properties are same with those in Fig. 6, and the geometric
dimensions are defined as: Ry = 1 m, L= 2 m, 7= 0.1 m. The investigated results are shown
in Fig. 11. From Fig. 11, it can be intuitively seen that as the circumferential rotation angle
0 increases, the non-dimensional frequency of open composite laminated shell decreases
regardless of the increase in the cone semi-vertex angle ¢. In other words, it can be seen that
under the same conditions, the increase in the circumferential rotation angle 6 results in a
decrease in frequencies.

4 Conclusions

In this paper, a new and an efficient solution method has been applied to free vibration
problem of open composite laminated cylindrical and conical shells with elastic boundary
conditions. The theoretical model is formulated by FSDT, and the motion equation is obtained
by the Hamilton’s principle. The motion equation is discretized by meshless shape function;
in this process, a new local gradient smoothing method has been introduced. The accuracy,
applicability and efficiency of this method are demonstrated for free vibrations of open com-
posite laminated cylindrical and conical shells with different geometric, material parameters
and boundary condition. The numerical results show good convergence characteristics and
good agreement between the present method and the existing literature. And through sev-
eral numerical examples, some useful results for free vibration of open composite laminated
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circumferential rotation angle 6 and cone semi-vertex angle ¢
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cylindrical and conical shells are obtained, which may serve as a benchmark solutions for
researchers to check their analytical and numerical methods.

Data Availability Statement This manuscript has associated data in a data repository. [Authors’ comment:
All data included in this manuscript are available upon request by contacting with the corresponding author.]
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