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Abstract In this study, by functionally grading carbon nanotube (CNT) fibres through the
axial direction of deformable beams, a new model for strengthening such structures is for-
mulated. The strengthened deformable beam is additionally supported by a varying elastic
foundation which is modelled via the Winkler–Pasternak elastic foundation. CNT distribu-
tion in the longitudinal direction is modelled using a power-law function presenting general
forms of variation from linear to parabolic models. Equations of motion are determined
using Hamilton’s principle and are solved by employing the generalised differential quadra-
ture approach method. A comprehensive parametric investigation is presented in order to
indicate the influence of having CNT fibres distributed functionally through the length. It
is shown that grading CNT fibres axially have a significant effect in varying the natural
frequency parameter. Moreover, the influence of having Winkler–Pasternak elastic bed on
the free vibration of such structures is discussed considering different types of foundation
stiffness variation through the length. A comprehensive comparison study is presented to
verify the current methodology and formulation by using previous literature for foundation
modelling and FE modelling for linearly varying CNT’s longitudinal distribution, which for
all the cases, a good agreement between the results is observed.

1 Introduction

One main concern of engineers in designing structures is the durability of the structure while
undergoing different types of static and dynamic loadings. This importance has created a key
research topic on manufacturing, modelling and analysing reinforced structures. Composite
structures are a great example of the engineered structures with optimised stiffness in at least
one direction [1].

1.1 Application and importance

A well-known class of composite structures is fibre strengthened structures which are made
of a base material (matrix) and at least one element for reinforcing the structure (fibre).
These types of fibre reinforcements, which could also be observed in nature [2–4], have a
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long history of utilisation in biomechanics and body tissues [5, 6] automotive industry [7]
and repairing and strengthening structures [8]. One of the successful models of strengthened
structures is carbon nanotube (CNT) strengthened structures where the CNTs, with significant
stiffness properties, play the role of fibres in the composite structure.

The importance, difficulties and achievements in producing CNT strengthened structures
have widely been discussed in past years (interested readers are referred to Refs. [9, 10] for
more details). In general, small-scale structures such as micro/nanobeams, micro/nanoplates
and micro/nanotubes show different mechanical response due to molecular interactions forces
which have been discussed previously in Refs. [11–19]. Although it can easily be understood
that the structural behaviour is modified by adding CNT fibres to the base matrix, the effect
intensity of adding CNT fibres and the amount to be added for different base materials
to reach the demanded mechanical behaviour should be investigated. Thus, some studies
mainly focused on the mechanical characteristics of different base materials strengthened
with different amounts of CNT fibres [20].

Moreover, since adding the CNT fibres could increase the costs notably, it is important
to manage the usage and positioning the fibres, especially for high volume productions.
Accordingly, it is more beneficial to optimise the mechanical properties of the base matrix in
the direction(s) and region(s) in which the structure needs to behave more firmly. A proper
way to do this is to align the CNT fibre through the required direction(s) that the structure is
confronting mechanical loadings which could be useful in decreasing the total CNT usage
[21, 22].

Furthermore, positioning the CNT fibres in a proper way through the structure following an
optimised model could significantly affect the total CNT usage. This means having a higher
volume fraction of CNT fibres in the regions that require more stiffness and decreasing it in
the regions with lower mechanical loading, as reported by Kwon et al. [23] who successfully
fabricated CNT strengthened structures in which the volume fraction, of CNT has been
functionally graded through the structure using a powder metallurgy route method.

1.2 Literature review

Since there are unlimited ways to functionally grade the CNT fibres through the structure,
it is important to know which function could be appropriate regarding the type of loading
and the mechanical condition. For different types of structures, researchers have studied
the mechanical behaviour of FG CNT strengthened structures in the past in which beams,
as the most important structural element, have attracted extensive attention. For instance,
in the framework of nonlinear dynamics, Ke et al. [24] analysed the nonlinear oscillation
behaviour of CNT strengthened beams with CNT through-thickness varying volume fraction;
the Timoshenko beam theory with geometrical nonlinearities has been used to formulate the
structure. CNTs were assumed to be aligned through the axial direction with the possibility
to linearly increase the volume fraction through the thickness. It was shown that increasing
the CNT volume fraction leads to higher natural frequencies in both uniformly distributed
and FG graded fibre models; they [25] also studied the dynamic behaviour of such structures
with the same assumptions indicating the influence of increasing the CNT volume fraction
on the stability of the strengthened structure.

In the framework of linear dynamic analysis, both free and nonlinear vibration responses
of CNT reinforced beams with grading through thickness have been investigated. Lin and
Xiang [26] have examined the vibration behaviour of first- and third-order beams strengthened
with CNTs. CNT was distributed functionally through the thickness of the beam using type
A and X models. It was shown that the natural frequency parameter increases significantly
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by increasing the CNT volume fraction from 12 to 17%. Ansari et al. [27] investigated the
forced vibration response of FG CNT strengthened through the thickness via the Timoshenko
beam theory. Different types of CNT distribution had been studied considering von-Karman
geometrical nonlinearity. It was shown that type O CNT distribution model has the highest
peak amplitude compared to other types of CNT positioning.

For the case of stability analysis, Mayandi and Jeyaraj [28] used a finite element method
for analysing the mechanical behaviour of FG CNT strengthened beams. It was shown that
critical buckling temperature for type X CNT distribution is higher than type O and V;
this importance indicated the effect of CNT distribution on the mechanical behaviour of
such structures. Other types of structures strengthened with FG CNTs through the thickness
direction have also been analysed; interested readers are referred to as Refs. [29–33]. A
detailed literature review on the recent progress of FG CNT strengthened structures can be
found in Ref. [10].

1.3 Novelty and problem definition

It can be seen that in all of the discussed valuable literature, grading CNT has been applied
through the thickness direction and the mechanical behaviour for different types of CNT
distribution has been discussed. However, another important model of grading CNT in a
structure especially beams is by grading the CNT fibres through the axial direction. Axially
functionally grading (AFG) the CNT fibres could help in setting the natural frequencies
in the desired range as well as varying the strength of the structure through the length. A
schematic view of a beam in which the CNT fibres are graded through the length is presented
in Fig. 1 where the beam is located on an elastic foundation of combination of Pasternak
and Winkler type. This study aims to present a new general model of this class and analyse
the free dynamics response of such structures while considering the presence of a varying
Winkler–Pasternak foundation.

Matrix

CNT

h

Pasternak

Winkler

L

Fig. 1 Schematic model of an axially CNT strengthened beam resting on an elastic foundation of Winkler—
Pasternak type. The lower graph shows the variation of CNT volume fraction from the left end to the right end
of the beam following a specific function
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2 Problem formulation

2.1 CNT strengthened composite structures

For structures strengthened with CNTs (such as CNT strengthened beams), the composite
properties could be obtained using different rule of mixtures. However, by aligning and
grading the CNT distribution through the axial direction (Fig. 1), the properties become
dependent on the volume fraction of CNT and the base matrix defined as Vm(x) and VCNT(x),
respectively, where the subs CNT and m represent the properties related to the CNT fibres
and the base matrix. Accordingly, the material properties of AFG CNT strengthened one-
dimensional structures could be written as [34]

E(x) � Vm(x)Em + e1 VCNT(x)E11,CNT,

ν(x) � VCNT(x)νCNT + Vm(x)νm,

ρ(x) � VCNT(x)ρCNT + Vm(x)ρm, (1)

where ν, E, ρ, e1 and G indicate Poisson’s ratio, Young modulus, mass density, effective
coefficient and the shear modulus, respectively. As mentioned previously, it is assumed that
the volume fraction of CNT fibres varies through the length of the beam following a specific
function. Figure 1 presents a view of the variation of CNT volume fraction from the left end
of the beam to the right. Similar types of grading models have been previously studied in
structures with functionally graded physical properties variation due to material changes in
axial [17, 35–38], thickness [39–46] or both directions [47–51]. To have a general form of
AFG CNT strengthened model, the volume fraction of CNT fibres through the length has
been presented by utilising a power-law distribution function as [26]

VCNT(x) � (VCNT-L − VCNT-R)
(

1 − x

L

)k
+ VCNT-R, 0 ≤ x ≤ L;

Vm(x) � 1 − VCNT(x), (2)

where VCNT-L and VCNT-R are the volume fractions of CNT fibres at the left and right ends
of the beam, respectively; parameter k presents the power term which by having k � 0, CNT
strengthened model with constant CNT volume fraction will be obtained and by having k �
1, linear variation model will be achieved. The total volume fraction of CNT in the beam
could be presented as

VCNT-Total � (VCNT-L − VCNT-R)

k + 1
+ VCNT-R. (3)

It can easily be seen that for k � 0 the total volume fraction of CNT will be equal to the
CNT volume fraction at the left end.

2.2 Strengthened beam formulation

For a general structure model, constitutive stress–strain law is written as [52]

{σ }[Q]{ε} →

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

σxx

σyy

σzz

σxy

σxz

σyz

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

�

⎡
⎢⎢⎢⎢⎢⎢⎣

Q11 Q21 Q31 Q41 Q51 Q61

Q12 Q22 Q32 Q42 Q52 Q62

Q13 Q23 Q33 Q43 Q53 Q63

Q14 Q24 Q34 Q44 Q54 Q64

Q15 Q25 Q35 Q45 Q55 Q65
Q16 Q26 Q36 Q46 Q56 Q66

⎤
⎥⎥⎥⎥⎥⎥⎦

T
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

εxx

εyy

εzz

εxy

εxz

εyz

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (4)
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where Q indicates the stiffness matrix, σ is the stress term, and ε is the strain term. For
orthotropic structures, this equation is simplified as [53]:

{σ } � [Q]{ε} →

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

σxx

σyy

σzz

σxy

σxz

σyz

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

�

⎡
⎢⎢⎢⎢⎢⎢⎣

Q11 Q21 Q31 0 0 0
Q21 Q22 Q32 0 0 0
Q31 Q32 Q33 0 0 0
0 0 0 Q44 0 0
0 0 0 0 Q55 0
0 0 0 0 0 Q66

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

εxx

εyy

εzz

εxy

εxz

εyz

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (5)

and accordingly, for the Euler–Bernoulli beam theory, the constitutive stress–strain law is
written as [54]

σxx � Q11(x)εxx � E11(x)

1 − ν2(x)
εxx ,

εxx � ∂η(x, t)

∂x
− z

∂2ξ (x, t)

∂x2 . (6)

where η and ξ are the axial and transverse displacement terms, respectively. Moreover, the
beam is assumed to be resting on a Winkler–Pasternak foundation which could vary through
the axial direction. In a general form, the elastic foundation is defined using power-law
varying function with the following stiffness coefficients [55]

KW(x) � KW0

[
1 − α

( x
L

)n]
,

KP(x) � KP0

[
1 − β

( x
L

)m]
, (7)

where KW and KP are the Winkler and Pasternak foundation stiffness terms which are
assumed to be a function of length parameter x. The Winkler elastic foundation term is
presented with an initial value of KW0, a coefficient and power term α and n, respectively;
similarly, Pasternak foundation term is also presented using an initial value, coefficient and
power term KP0, β and m, respectively. For the given assumptions, material property varia-
tions and beam theory, the potential and kinetic energy terms and the external work due to
the foundation are formulated as

U � 1

2

L∫

0

∫

A

σxxεxxdAdx � 1

2

L∫

0

∫

A

E11(x)

1 − ν2(x)

[
∂η(x, t)

∂x
− z

∂2ξ (x, t)

∂x2

]2

dAdx,

K � 1

2

L∫

0

∫

A

ρ(x)

[(
∂ξ (x, t)

∂t

)2

+

(
∂η(x, t)

∂t
− z

∂2ξ (x, t)

∂x∂t

)2
]

dAdx,

WF � 1

2

L∫

0

[
KW(x)ξ2(x, t) + KP(x)

(
∂ξ (x, t)

∂x

)2
]

dx . (8)

By using Hamilton’s principle, one can reach to the equations of motion as:

δu → −I0(x)

(
∂η2(x, t)

∂t2

)
+ I1(x)

(
∂3ξ (x, t)

∂x∂t2

)

+
∂

∂x

[
A11(x)

(
∂η(x, t)

∂x

)]
− ∂

∂x

[
B11(x)

(
∂2ξ (x, t)

∂x2

)]
� 0,
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δw → −I0(x)

(
∂2ξ (x, t)

∂t2

)
+

∂

∂x

[
I2(x)

(
∂3ξ (x, t)

∂x∂t2

)]
− ∂

∂x

[
I1(x)

(
∂2η(x, t)

∂t2

)]

+
∂2

∂x2

[
B11(x)

(
∂η(x, t)

∂x

)]
− ∂2

∂x2

[
D11(x)

(
∂2ξ (x, t)

∂x2

)]

− KW(x)ξ (x, t) +
∂

∂x

[
KP(x)

(
∂ξ (x, t)

∂x

)]
� 0, (9)

in conjunction with the following boundary equations

A11(x)

(
∂η(x, t)

∂x

)
δη(x, t)

∣∣∣∣
x�L

x�0
− B11(x)

(
∂2ξ (x, t)

∂x2

)
δη(x, t)

∣∣∣∣
x�L

x�0
� 0,

∂

∂x

[
B11(x)

(
∂η(x, t)

∂x

)]
δξ (x, t)

∣∣∣∣
x�L

x�0
− ∂

∂x

[
D11(x)

(
∂2ξ (x, t)

∂x2

)]
δξ (x, t)

∣∣∣∣
x�L

x�0
� 0,

B11(x)

(
∂η(x, t)

∂x

)
δ

(
∂ξ (x, t)

∂x

)∣∣∣∣
x�L

x�0
−
[
D11(x)

(
∂2ξ (x, t)

∂x2

)]
δ

(
∂ξ (x, t)

∂x

)∣∣∣∣
x�L

x�0
� 0.

(10)

By having symmetric material distribution through the thickness, I0, I1 and I2 as the
inertia terms become

{
I0(x)

I2(x)

}
� [ρm + (ρCNT − ρm)VCNT(x)]

{
A

I

}
, I1 � 0, (11)

and A11, B11 and D11 are the stiffness terms written as
{

A11(x)

D11(x)

}
� Em +

(
e1 E11,CNT − Em

)
VCNT(x)

1 − ν2(x)

{
A

I

}
, B11 � 0, (12)

leading to simplified equations of motion and boundary equations as

δu → −I0(x)

(
∂η2(x, t)

∂t2

)
+

∂

∂x

[
A11(x)

(
∂η(x, t)

∂x

)]
� 0,

δw → −I0(x)

(
∂2ξ (x, t)

∂t2

)
+

∂

∂x

[
I2(x)

(
∂3ξ (x, t)

∂x∂t2

)]
− ∂2

∂x2

[
D11(x)

(
∂2ξ (x, t)

∂x2

)]

− KW(x)ξ (x, t) +
∂

∂x

[
KP(x)

(
∂ξ (x, t)

∂x

)]
� 0, (13)

BC1: η(x, t)|L0 � 0 or
∂η(x, t)

∂x

∣∣∣∣
L

0
� 0,

BC2:

[
∂D11(x)

∂x

(
∂2ξ (x, t)

∂x2

)
+ D11(x)

(
∂3ξ (x, t)

∂x3

)]∣∣∣∣
L

0
� 0 or ξ (x, t)|L0 � 0,

BC3:
∂2ξ (x, t)

∂x2

∣∣∣∣
L

0
� 0 or

∂ξ (x, t)

∂x

∣∣∣∣
L

0
� 0. (14)

Substituting Eqs. (11) and (12) into Eqs. (13) and (14) and by neglecting the Poisson’s ratio
variation due to very small variations of this parameter, equations of motion are rewritten as

− [ρm + (ρCNT − ρm)VCNT(x)]

(
∂η2(x, t)

∂t2

)
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+

(
e1 E11,CNT − Em

)
∂VCNT(x)

∂x

1 − ν2

(
∂η(x, t)

∂x

)

+
Em +

(
e1 E11,CNT − Em

)
VCNT(x)

1 − ν2

(
∂2η(x, t)

∂x2

)
� 0, (15)

− [ρm + (ρCNT − ρm)VCNT(x)]A

(
∂2ξ (x, t)

∂t2

)

+

[
(ρCNT − ρm)

∂VCNT(x)

∂x

]
I

(
∂3ξ (x, t)

∂x∂t2

)

+ [ρm + (ρCNT − ρm)VCNT(x)]I

(
∂4ξ (x, t)

∂x2∂t2

)

−
(
e1 E11,CNT − Em

)
∂2VCNT(x)

∂x2

1 − ν2 I

(
∂2ξ (x, t)

∂x2

)

− 2

(
e1 E11,CNT − Em

)
∂VCNT(x)

∂x

1 − ν2 I

(
∂3ξ (x, t)

∂x3

)

− Em +
(
e1 E11,CNT − Em

)
VCNT(x)

1 − ν2 I
∂4ξ (x, t)

∂x4

+ KP(x)

(
∂2ξ (x, t)

∂x2

)
+

∂KP(x)

∂x

(
∂ξ (x, t)

∂x

)
− KW(x)ξ (x, t) � 0, (16)

together with boundary conditions as:

BC1:
∂η(x, t)

∂x

∣∣∣∣
L

0
� 0 or η(x, t)|L0 � 0,

BC2:

⎡
⎢⎣
(
e1 E11,CNT−Em

) ∂VCNT(x)
∂x

(
∂2ξ (x,t)

∂x2

)

1−ν2

+
Em+

(
e1 E11,CNT−Em

)
VCNT(x)

1−ν2

(
∂3ξ (x,t)

∂x3

)

⎤
⎥⎦

∣∣∣∣∣∣∣

L

0

� 0 or ξ (x, t)|L0 � 0,

BC3:
∂ξ (x, t)

∂x

∣∣∣∣
L

0
� 0 or

∂2ξ (x, t)

∂x2

∣∣∣∣
L

0
� 0. (17)

By defining non-dimensional parameters of:

(18)

x∗ � x

L
, w∗ � ξ

h
, u∗ � η

h
, t∗ � t

√
Em I

ρm AL4 , γ

�
√

I

AL2 , k∗
w � kwL4

Em I
, k∗

p � kpL2

Em I
,

equations of motion will be rewritten in non-dimensional forms as

−
[

1 +

(
ρCNT

ρm
− 1

)
VCNT(x)

](
∂η2(x, t)

∂t2

)
+

(
e1

E11,CNT
Em

− 1
)

∂VCNT(x)
∂x

1 − ν2

1

γ 2

(
∂η(x, t)

∂x

)

+
1 +
(
e1

E11,CNT
Em

− 1
)
VCNT(x)

1 − ν2

1

γ 2

(
∂2η(x, t)

∂x2

)
� 0, (19)

−
[

1 +

(
ρCNT

ρm
− 1

)
VCNT(x)

](
∂2ξ (x, t)

∂t2

)
+

[(
ρCNT

ρm
− 1

)
∂VCNT(x)

∂x

]
γ 2
(

∂3ξ (x, t)

∂x∂t2

)
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+

[
1 +

(
ρCNT

ρm
− 1

)
VCNT(x)

]
γ 2
(

∂4ξ (x, t)

∂x2∂t2

)

−
(
e1

E11,CNT
Em

− 1
)

∂2VCNT(x)
∂x2

1 − ν2

(
∂2ξ (x, t)

∂x2

)
− 2

(
e1

E11,CNT
Em

− 1
)

∂VCNT(x)
∂x

1 − ν2

(
∂3ξ (x, t)

∂x3

)

−
1 +
(
e1

E11,CNT
Em

− 1
)
VCNT(x)

1 − ν2

(
∂4ξ (x, t)

∂x4

)

+ KP(x)

(
∂2ξ (x, t)

∂x2

)
+

∂KP(x)

∂x

(
∂ξ (x, t)

∂x

)
− KW(x)ξ (x, t) � 0, (20)

which for the sake of brevity the superscript * is removed from the equations. Considering
power-law CNT grading function through the length as demonstrated in Eq. (2) and a general
form for Winkler–Pasternak foundation varying model in Eq. (7), the equations of motion
can still be rewritten as

−
[

1 +

(
ρCNT

ρm
− 1

)
VCNT(x)

](
∂η2(x, t)

∂t2

)

−
(
e1

E11,CNT
Em

− 1
)[

(VCNT-L − VCNT-R)(k)(1 − x)(k−1)
]

1 − ν2

1

γ 2

(
∂η(x, t)

∂x

)

+
1 +
(
e1

E11,CNT
Em

− 1
)[

(VCNT-L − VCNT-R)(1 − x)k + VCNT-R
]

1 − ν2

1

γ 2

(
∂2η(x, t)

∂x2

)
� 0,

(21)

−
[

1 +

(
ρCNT

ρm
− 1

)[
(VCNT-L − VCNT-R)(1 − x)k + VCNT-R

]]( ∂2ξ (x, t)

∂t2

)

+

(
ρCNT

ρm
− 1

)[
(VCNT-L − VCNT-R)(k)(1 − x)(k−1)

]
γ 2
(

∂3ξ (x, t)

∂x∂t2

)

+

[
1 +

(
ρCNT

ρm
− 1

)[
(VCNT-L − VCNT-R)(1 − x)k + VCNT-R

]]
γ 2
(

∂4ξ (x, t)

∂x2∂t2

)

−
1 +
(
e1

E11,CNT
Em

− 1
)[

(VCNT-L − VCNT-R)(1 − x)k + VCNT-R
]

1 − ν2

(
∂4ξ (x, t)

∂x4

)

+ 2

(
e1

E11,CNT
Em

− 1
)[

(VCNT-L − VCNT-R)(k)(1 − x)(k−1)
]

1 − ν2

(
∂3ξ (x, t)

∂x3

)

+

⎧
⎨
⎩KP0

(
1 − βxm

)−
(
e1

E11,CNT
Em

− 1
)[

(VCNT-L − VCNT-R)(K − 1)(k)(1 − x)(k−2)
]

1 − ν2

⎫
⎬
⎭
(

∂2ξ (x, t)

∂x2

)

− mβxm−1
(

∂ξ (x, t)

∂x

)
− KW0

(
1 − αxn

)
ξ (x, t) � 0. (22)

It can be seen that the governing equations have x depended coefficients due to the CNT
fibre grading through the length and also the foundation variation.
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3 Solution procedure

Since the equations of motion contain complicated coefficients varying through the length,
generalised differential quadrature (GDQ) method is employed. Accordingly, the transverse
displacement term and the corresponding derivations are defined as [56]

W (r ) �
1∑

k�0

h(r )
1k w

(k)
1 +

1∑
k�0

h(r )
Nkw

(k)
N +

N−1∑
k�2

h(r )
k0 wk �

N+2∑
k�1

M (r )
ik Wk (23)

where hij determines the Hermite shape functions defined in [56] which could be represented
in one summation using Mik . Terms w1, wN and wk indicate the deformations at the left
end, right end and the nodes in between, respectively. The total number of sampling points
is indicated by N in which for higher accuracy, Chebyshev–Gauss–Lobatto model [57] is
employed for unevenly sampling which is defined as

xn � 1

2

[
1 − cos

(
n − 1

N − 1
π

)]
. (24)

For having harmonic response and by defining w(x, t) � w(x)eiωmt , the equations of
motion can be rewritten as

N+2∑
j�1

{
1 +

(
ρCNT

ρm
− 1

)[
(VCNT-L − VCNT-R)(1 − x j )

k + VCNT-R

]}
Mi jλ

2
m

−
N+2∑
j�1

γ 2
{(

ρCNT

ρm
− 1

)[
(VCNT-L − VCNT-R)(k)(1 − x j )

(k−1)
]}

M (1)
i j λ2

m

−
N+2∑
j�1

γ 2
{

1 +

(
ρCNT

ρm
− 1

)[
(VCNT-L − VCNT-R)(1 − x j )

k + VCNT-R

]}
M (2)

i j λ2
m

−
N+2∑
j�1

1 +
(
e1

E11,CNT
Em

− 1
)[

(VCNT-L − VCNT-R)(1 − x j )k + VCNT-R
]

1 − ν2 M (4)
i j

+ 2
N+2∑
j�1

(
e1

E11,CNT
Em

− 1
)[

(VCNT-L − VCNT-R)(k)(1 − x j )(k−1)
]

1 − ν2 M (3)
i j

+
N+2∑
j�1

⎧
⎪⎨
⎪⎩

KP0

(
1 − βxmj

)

−
(
e1

E11,CNT
Em

−1
)[

(VCNT-L−VCNT-R)(K−1)(k)(1−x j )(k−2)
]

1−ν2

⎫
⎪⎬
⎪⎭
M (2)

i j

−
N+2∑
j�1

mβKP0x
m−1
j M (1)

i j −
N+2∑
j�1

KW0

(
1 − αxnj

)
Mi j � 0, (25)

where λm indicates the non-dimensional natural frequency term defined with respect to the
base matrix properties as λm � ωm

√
ρm AL4/Em I . Depending on the boundary type, the

governing equations could be solved in matrix for the natural frequency characteristics.
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4 Results and discussion

This section provides a comprehensive verification for the current formulation and methodol-
ogy presents the convergence of the solution procedure and discusses the dynamic behaviour
of the CNT strengthened structure as different mechanical properties vary.

4.1 Verification and comparison

For the first step, the current methodology for solving such problems and the accuracy of the
model is discussed. One way to verify the current results is to implement the model (in the
absence of the Winkler–Pasternak elastic foundation) in a finite element (FE) software (i.e.
ANSYS® (version 19.2, ANSYS Inc., Canonsburg, PA, US) [58]); to this end, by having
geometrical properties as L � 1 m and h � 10 mm, CNT volume fraction variation as
VCNT,total � 5%, VCNT-L � 2.5%, k � 1, and the properties as in [59]: Em � 2.5 GPa, E11,CNT

� 5646.6 GPa, vm � 0.3, ρm � 1190 kg/m3, ρCNT � 1400 kg/m3 and e1 � 0.14 (CNT is
assumed to be as the armchair (10, 10) in the room temperature). First four frequency terms
and mode shapes for linearly CNT volume fraction variation are observed for both GDQM and
ANSYS models which the results are presented in Table 1 and Fig. 2 for a clamped–clamped
beam and in Table 2 and Fig. 3 for a simply supported beam, respectively. The GDQM results
are in a good agreement with those obtained via the FE analysis.

Since there are no studies in the literature on grading the CNT fibres trough the length of
the beam for verification purposes, studies on non-strengthened beams resting on an elastic
medium are considered. Accordingly, two different comparative studies for analysing the
Winkler varying foundation model and Pasternak foundation are presented in the following.

Firstly, the beam is assumed to be homogeneous laying on a Winkler elastic foundation
which varies through the axial direction. For the case of having constant Winkler foundation,
the fundamental natural frequency terms for hinged beam model are obtained and compared
in Table 3 to those presented by Zhou [60]. Similarly, for linear KW � KW0 (1 − αx) and
parabolicKW �KW0 (1 − αx2) foundation variations through the thickness, the fundamental
frequency parameter is obtained for different KW0 and α terms and verified in Tables 4 and
5. It can be seen that the results are in very good agreement with those presented by Zhou
[60].

Secondly, in order to verify the modelling while considering the presence of Pasternak
foundation, a comparison study is performed. Tables 6 and 7 indicate the first natural fre-
quency term of simply supported and clamped beams resting on a Winkler–Pasternak founda-
tion, respectively. Results are shown for different Winkler and Pasternak terms and compared
with those presented by Chen et al. [61], which show great agreement between this method-
ology and previous studies.

After verifying the current solution procedure, the influence of different terms on the
free dynamics of AFG CNT strengthened beams is studied in Sects. 4.2, 4.3 and 4.4 for the

Table 1 Comparison between
GDQM and FEM:
non-dimensional natural
frequency results for a fully
clamped linearly AFG CNT
strengthened beam model

Clamped–clamped Mode 1 Mode 2 Mode 3 Mode 4

FEM (ANSYS) 89.2051 246.2585 482.7563 797.4308

GDQM 96.6712 258.4354 499.6074 819.3605

Error (%) 7.7 4.7 3.3 2.6
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Fig. 2 First four mode shapes of linearly AFG CNT strengthened clamped–clamped beam model with no
foundations: a 1st mode; b 2nd mode; c 3rd mode; d 4th mode

influence of the varying Winkler elastic parameters, Pasternak term and CNT distribution
model, respectively.
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Table 2 Comparison between
GDQM and FEM:
non-dimensional natural
frequency results for a simply
supported linearly AFG CNT
strengthened beam model

Simply supported Mode 1 Mode 2 Mode 3 Mode 4

FEM (ANSYS) 39.6320 157.5550 353.0572 624.7540

GDQM 41.2945 165.8349 368.1118 653.7749

Error (%) 4.0 5.0 4.1 4.4

4.2 Influence of varying Winkler elastic parameters

The influence of changing the CNT volume fraction together with different Winkler terms is
presented. To this end, the volume fraction of CNT at the left end is increased from 0 to 1%
with R � VCNT-L/VCNT-L � 1.5, and the Pasternak term is assumed to vary with KP0 � 10
and β � 1.

Figure 4 demonstrates parameters for the first natural frequency of the fixed-end beam for
different CNT volume fraction power terms (k � 1, 2 and 3); for bothKW0 � 200 and 750, the
natural frequency term for constant Winkler model is larger compared to foundation varying
models. By linearly varying the Winkler elastic foundation term, the natural frequency drops
in magnitude, however, by increasing the power term (from n � 1–2) the natural frequency
term increases but remains lower than that of the constant foundation model. Moreover, it
can be noted that increasing the power term k from 1 to 3, the natural frequency increases
for all the CNT volume fractions which means that the stiffness of the system has increased.

Moreover, for simply supported AFG CNT strengthened beam model, the fundamental fre-
quency terms are presented in Fig. 5 for k � 1, 2 and 3. Similar to the clamped–clamped beam
model, the natural frequency term decreases by changing the constant Winkler model to linear
model and increases, respectively, by changing the linear Winkler model to parabolic model;
the natural frequency parameter increases for all types of Winkler model while increasing
the CNT volume fraction.

4.3 Influence of varying Pasternak parameters

Another important term in the analysis of such structures is the Pasternak parameters in
the varying elastic foundation model. To demonstrate the influence of these parameters on
vibration response of AFG CNT strengthened structures with different CNT volume frac-
tions, Figs. 6 and 7 are presented. Figures 6 and 7, which are, respectively, for the clamped
and simply supported beam models, indicate the fundamental frequency term for different
Pasternak models for CNT grading power terms k � 1, 2 and 3. It can be noted that increasing
the Pasternak term KP0 leads to higher natural frequency parameters while changing it from
a constant stiffness to linearly varying with β � 1 and m � 2 decreases frequencies; in the
physical view, the stiffness of the whole system drops. Comparing Figs. 6 and 7 with Figs. 5
and 4, it can be seen that the frequency term of AFG CNT strengthened beam is more sensitive
to Winkler parameter variation compared to the Pasternak term variation in the foundation
model.

4.4 Influence of CNT distribution model

The main term in analysing these structures is the effect of CNT distribution by engineering
both CNT volume fraction and the grading through the length. To this end, by assumingKP �
10 and KW � 200, the fundamental frequency terms are calculated for VCNT-L � 15% while
varying both the power term and the volume fraction of the CNT at the right end. From Fig. 8,
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Fig. 3 First four mode-shapes of linearly AFG CNT strengthened simply-supported beam model with no
foundations: a 1st mode; b 2nd mode; c 3rd mode; d 4th mode
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Table 3 Non-dimensional fundamental natural frequency term of homogeneous beams resting on a constant
Winkler foundation
√

λ1 Simply supported KW � KW0, KP � 0

KW0 Ref. [60] DQM Error (%) KW0 Ref. [60] DQM Error (%)

100 3.748 3.7932 1.19 500 4.945 4.9636 0.37

150 3.966 4.0040 0.95 600 5.138 5.1565 0.36

200 4.152 4.1859 0.81 700 5.713 5.7299 0.29

250 4.318 4.3468 0.66 800 5.473 5.4878 0.27

300 4.465 4.4916 0.59 900 5.620 5.6332 0.23

350 4.599 4.6236 0.53 1000 5.755 5.7681 0.23

400 4.723 4.7452 0.47 1500 6.321 6.3314 0.16

450 4.837 4.8581 0.43 2000 6.766 6.7750 0.13

Table 4 Non-dimensional fundamental natural frequency term of homogeneous beams resting on a linearly
varying Winkler foundation
√

λ1 Simply supported KW � KW0(1 − αx), KP � 0

KW0 α Ref. [60] DQM Error (%) KW0 α Ref. [60] DQM Error (%)

500 0.2 4.837 4.8576 0.42 1500 0.2 6.165 6.1762 0.18

500 0.4 4.721 4.7433 0.47 1500 0.4 5.991 6.0043 0.22

500 0.6 4.595 4.6190 0.52 1500 0.6 5.798 5.8116 0.23

500 0.8 4.456 4.4827 0.60 1500 0.8 5.574 5.5926 0.33

1000 0.2 5.618 5.6320 0.25 2000 0.2 6.597 6.6054 0.13

1000 0.4 5.468 5.4829 0.27 2000 0.4 6.405 6.4155 0.16

1000 0.6 5.301 5.3178 0.32 2000 0.6 6.187 6.2006 0.22

1000 0.8 5.113 5.1329 0.39 2000 0.8 5.937 5.9536 0.28

it can be noted that increasing the power term and the right-to-left volume fraction ratio, leads
to higher fundamental frequency terms for both fully clamped and simply supported AFG
CNT strengthened beam models; varying the power term k has its most impact in the lower
amounts of k for both boundary condition models.

Additionally, to have a comprehensive view of the CNT reinforcing effect, all three rein-
forcement terms (VCNT-L, VCNT-R and k) are varied and the free vibration frequency response
is obtained. Figures 9 and 10 indicate the frequency terms by varying CNT distribution terms
as k � [1, 2, 5], 0≤VCNT-L ≤5% and 1≤R ≤3. It can be seen how the power term will
significantly change the fundamental frequency parameter for both simply supported and
clamped AFG CNT strengthened beam models. The physical explanation for such a sig-
nificance increase in non-dimensional frequency term is that the stiffness of CNT fibres is
considerably higher than the matrix base and hence, adding a small percentage of CNT leads
to significant changes in vibration behaviour of the system.
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Table 5 Non-dimensional fundamental natural frequency term of homogeneous beams resting on a parabolic
varying Winkler foundation

√
λ1 Simply supported KW � KW0

(
1 − αx2

)
, KP � 0

KW0 α Ref. [60] DQM Error (%) KW0 α Ref. [60] DQM Error (%)

500 0.2 4.884 4.9043 0.41 1500 0.2 6.233 6.2442 0.18

500 0.4 4.821 4.8419 0.43 1500 0.4 6.138 6.1493 0.18

500 0.6 4.753 4.7761 0.48 1500 0.6 6.032 6.0454 0.22

500 0.8 4.682 4.7064 0.52 1500 0.8 5.917 5.9313 0.24

1000 0.2 5.679 5.6919 0.23 2000 0.2 6.671 6.6795 0.13

1000 0.4 5.597 5.6101 0.23 2000 0.4 6.564 6.5737 0.15

1000 0.6 5.507 5.5222 0.28 2000 0.6 6.444 6.4563 0.19

1000 0.8 5.409 5.4271 0.33 2000 0.8 6.312 6.3255 0.21

Table 6 Non-dimensional fundamental natural frequency term of simply supported beams resting on a Win-
kler–Pasternak foundation
√

λ1 Simply supported KW � KW0, KP � KP0

(KW0, KP0) Ref. [61] DQM Error (%) (KW0, KP0) Ref. [61] DQM Error (%)

(0, 0) 3.1414 3.2165 2.33 (100, 0) 3.7482 3.7932 1.19(
0, π2

2

)
3.4765 3.5326 1.59

(
100, π2

2

)
3.9606 3.9989 0.96(

0, π2
)

3.7358 3.7813 1.20
(

100, π2
)

4.1435 4.1771 0.80(
0, 5π2

2

)
4.2968 4.3270 0.70

(
100, 5π2

2

)
4.5822 4.6071 0.54

Table 7 Non-dimensional fundamental natural frequency term of clamped beams resting on a Winkler–Paster-
nak foundation
√

λ1 Clamped–clamped KW � KW0, KP � KP0

(KW0, KP0) Ref. [61] DQM Error (%) (KW0, KP0) Ref. [61] DQM Error (%)

(0, 0) 4.7314 4.8428 2.30 (100, 0) 4.9519 5.0493 1.93(
0, π2

2

)
4.8683 4.9709 2.06

(
100, π2

2

)
5.0718 5.1630 1.77(

0, π2
)

4.9938 5.0892 1.87
(

100, π2
)

5.1834 5.2691 1.63(
0, 5π2

2

)
5.3195 5.3992 1.48

(
100, 5π2

2

)
5.4783 5.5514 1.32

5 Conclusions

In this study, a general formulation for free dynamic analysis of AFG CNT strengthened
deformable beams was obtained. CNTs are assumed to be aligned and graded through the
length following a general form of power-law function. The beam was assumed to be embed-
ded in an elastic environment considering both Winkler and Pasternak effects. The elastic
foundation was analysed in different forms as a constant model, linear and parabolic varying
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Fig. 4 Non-dimensional
fundamental natural frequency
term of clamped AFG CNT
strengthened beams with respect
to CNT volume fraction for
different Winkler foundation
models: a k � 1; b k � 2; c k � 3

(a)

(b)

(c)
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Fig. 5 Non-dimensional
fundamental natural frequency
term of simply-supported AFG
CNT strengthened beams with
respect to CNT volume fraction
for different Winkler foundation
models: a k � 1; b k � 2; c k � 3

(a)

(b)

(c)
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Fig. 6 Non-dimensional
fundamental natural frequency
term of clamped AFG CNT
strengthened beams with respect
to CNT volume fraction for
different Pasternak foundation
models: a k � 1; b k � 2; c k � 3

(a)

(b)

(c)
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Fig. 7 Non-dimensional
fundamental natural frequency
term of simply-supported AFG
CNT strengthened beams with
respect to CNT volume fraction
for different Pasternak foundation
models: a k � 1; b k � 2; c k � 3

(a)

(b)

(c)
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(a)

(b)

Fig. 8 Non-dimensional fundamental natural frequency term of AFG CNT strengthened beams with respect
to CNT volume fraction: a clamped; b simply supported

through the length direction of the beam. By modelling the problem via Hamilton’s approach
and solving using GDQ method, natural frequency parameters were obtained. It was shown
that for hinged and clamped beam models, adding CNT fibres to the base matrix could
increase the natural frequency and stiffness of the beam significantly; however, the simply
supported beam model is slightly more sensitive to the variation of CNT volume fraction
through the length. Adding AFG CNT fibres to the base matrix beam has its most impact on
varying the fundamental natural frequency terms of the beam model in the low amounts of
CNTs and its effect will slightly decrease by reaching to higher amounts of CNT. For a few
cases of the model with no foundations, the first four natural frequencies have been obtained
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Fig. 9 Non-dimensional fundamental natural frequency term of hinged AFG CNT strengthened beams with
respect to CNT volume fraction 1: k � 5; 2: k � 2; 3: k � 1

Fig. 10 Non-dimensional fundamental natural frequency term of clamped AFG CNT strengthened beams
with respect to CNT volume fraction 1: k � 5; 2: k � 2; 3: k � 1
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using the FEM in ANSYS Workbench [58] which shows a good agreement with the current
results.

Furthermore, the influence of having a general varying elastic foundation in conjunction
with CNT fibres graded through the length was discussed. It was shown that increasing
the constant Winkler and Pasternak terms leads to higher natural frequency terms while
increasing the power-term of the Pasternak foundation part decreases the frequency. For
the presented varying foundation model, increasing the Winkler power-term from uniformly
distributed model to linear model (from n � 0 to n � 1), the first natural frequency term
decreases significantly while increasing it from linear to parabolic model (from n � 0 to n �
1) increases the fundamental frequency of the beam. Moreover, for both fully clamped and
simply supported beam models, it was seen that for lower volume fractions of CNT fibres,
the sensitivity of fundamental frequency to variation of the foundation term is noticeably
higher.
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