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Abstract We use different combinations of data samples to investigate the new generalized
Chaplygin gas (NGCG) model in the context of dark energy (DE) cosmology. Using the
available cosmological data, we put constraints on the the free parameters of NGCG model
based on the statistical Markov chain Monte Carlo method. We then find the best fit values
of cosmological parameters and those confidence regions in NGCG cosmology. Our result
for the matter density parameter calculated in NGCG model is in excellent agreement with
that of the standard �CDM cosmology. We also find that the equation of state of DE of the
model slightly favors the phantom regime. We show that the big tension between the low-
and high-redshift observations appearing in �CDM universe to predict the Hubble constant
H0 can be alleviated in NGCG model. However, from the statistical point of view, our results
show that the standard �CDM model fits the observations better than the NGCG cosmology.

1 Introduction

The analysis of various observational data, including those of cosmic microwave background
(CMB) [1,2], supernovae type Ia (SNIa) [3,4], large-scale structures (LSS), baryon acoustic
oscillation (BAO) [5] and other cosmic observations strongly suggest that the present uni-
verse is undergoing an accelerated phase of expansion. In order to explain this acceleration,
an unknown component with negative pressure the so-called dark energy (DE) was proposed
[6]. The earliest and simplest model for DE is the cosmological standard � [7] with constant
equation of state (EoS) parameter equal to −1. This model can successfully describe observa-
tions, while it indeed encounters some of theoretical problems; for example the coincidence
and fine-tuning problems [8,9]. Therefore, some of other DE models have been proposed
in the literature, such as quintessence [10], phantom [11,12], holographic [13], oscillating
Quintom [14], agegraphic [15] and Ghost [16]. Although these models can solve or allevi-
ate the problems of �CDM, they should be confirmed by the cosmic observations. Many
investigations have been done to examine these DE models in the light of observational data
(reader can see [17–21]). Besides the DE models, modified gravity theories such as scalar
tensor cosmology [22] and braneworld models [23] were proposed to solve the challenge of
acceleration of universe.
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The Chaplygin gas model is a candidate of DE that unifies dark matter and DE. In fact,
this model plays a dual role at different epochs of the history of the universe. It plays the role
of pressure-less dark matter in the early universe and DE at the late time. The other property
of this model is that the Chaplygin gas model belongs to the category of dynamical DE with
time-varying EoS parameter differs from −1 alleviating the coincidence problem in standard
�CDM cosmology [24]. The simplest form of this model, the so-called standard Chaplygin
gas (SCG), was proposed in the field of cosmology by Kamenshchik et al. [24] and Gorini et
al. [25]. Although the SCG model explains the late time-accelerated expansion of universe,
this model cannot interpret the scenario of the structure formation in the universe [26,27]. To
solve this problem, the SCG model is generalized into the generalized Chaplygin gas (GCG)
model [28–30]. Same as the SCG model, the GCG model can obtain the accelerated expansion
of the universe [31]. This model has been widely studied in the literature and has confirmed by
observations. The results of [31] show that the GCG model is well fitted by WMAP, CMBR
and BAO data sets. They showed that one can assume the GCG model as an interacting form
of �CDM [31]. Furthermore, a new version of generalized Chaplygin gas (NGCG) model,
which can be a kind of interacting wCDM model, was proposed in [32]. They showed that
the NGCG model has totally a dual role to interpret the interacting wCDM parametrization,
where the interaction between DE and dark matter is characterized by a constant parameter.
The authors of [32] have also performed a statefinder analysis on the NGCG model and found
some discrimination between NGCG model and other DE scenarios. They also by performing
the statistical likelihood analysis using different data of type Ia supernovae, CMB and LSS
have provided a fairly tight constraints on the free parameters of the model.

Nowadays, there are different samples of observational data in a wide range of redshifts
which can be used to put new updated constraints on parameters of cosmological models. In
this work, we study the NGCG model using different data sets of cosmological observations.
To do this, we use some available of these samples including type Ia supernovae (SNIa) from
the Pantheon catalog [33] and the Union2.1 catalog [34], Big Bang nucleosynthesis (BBN)
[35], BAO [36,37], CMB from the results of WMAP observations [38] and recently updated
observational Hubble parameter data H (z) extracted from cosmic chronometers. These data
can reveal the role of DE in the dynamics of the accelerated expansion of the universe.
In our analysis, we use the Markov chain Monte Carlo (MCMC) method to constrain the
cosmological parameters of the NGCG model. Finally, using the Akaike information criteria
[39], we compare the NGCG model with standard �CDM cosmology. The summary of this
paper is as follows. We start by introducing the NGCG model in Sect. 2. In Sect. 3, we present
the observational constrains on the free parameters of NGCG model. In Sect. 4, we present
our numerical results and finally in Sect. 5, we summarize our results and expose the main
conclusions.

2 New generalized Chaplygin gas model

We briefly introduce the NGCG model in this section. Assuming that the universe is flat with
the Friedman–Robertson–Walker (FRW) metric, the equation of state of NGCG fluid is given
as follows [32]:

ρNGCG = − Ã(a)

ρα
NGCG

, (1)

where α is the constant parameter of NGCG fluid and a is the scale factor. The NGCG fluid
consists of dark matter and DE ρde ∼ a−3(1+wd ) where wd is the EOS parameter. The energy
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Fig. 1 Redshift evolution of Hubble parameter E in terms of redshift parameterizations of NGCG and �CDM
models

density of the NGCG can be written as [32]:

ρNGCG =
[
Aa−3(1+wd )(1+α) + Ba−3(1+α)

]1/1+α

(2)

A + B = ρ1+α
NGCG0 (3)

where A and B are positive constants and the Ã(a) defined as follows

Ã(a) = −wd Aa
−3(1+wd )(1+α) (4)

Therefore, the NGCG energy density is defined as [32]:

ρNGCG = ρNGCG0a
3
[
1 − AS + ASa

−3wd (1+α)
] 1

1+α
(5)

where AS is a parameter of NGCG fluid. Notice that based on the last equation, the constant
parameters of NGCG are redefined as As and α. Therefore, the density of DE and dark matter
in NGCG model can be written as follows

ρde = ρde0a
−3[1+wd (1+α)] ×

[
1 − As + Asa

−3wd (1+α)
] 1

1+α
−1

(6)

ρdm = ρdm0a
−3

[
1 − As + Asa

−3wd (1+α)
] 1

1+α
−1

(7)

We can easily see that the GCG model is retrieved when the EOS parameter of DE
component, wd , is equal to −1. Additionally, if α = 0 ,this model reduces to wCDM model.
It is worth mentioning that α describes the interaction between DE and dark matter.

When α > 0 ,the energy is transferred from dark matter to DE. On the contrary, the energy
is transferred from DE to dark matter in the case of α < 0 [32]. The Hubble parameter in a
flat universe filled by radiation, baryonic matter and NGCG fluid can be written as

H(a) = H0E(a), (8)
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Fig. 2 Evolution of the fractional energy density of nonrelativistic matter and dark energy components in
terms of redshift parameterizations of NGCG and �CDM

where

E(a)2 = (1 − �b0 − �r0) a
−3

[
1 − As

(
1 − a−3wd (1+α)

)] 1
1+α

+�b0a
−3 + �r0a

−4, (9)

where �b0 and �r0 are the present values of dimensionless energy densities of baryonic
matter and radiation, respectively, and H0 is the Hubble constant. Solving Eq. (9), we show
the redshift evolution of Hubble parameter E for NGCG parametrization in Fig. 1. The
same quantity is also plotted for concordance �CDM model. Here, we fix the cosmological
parameters based on the best fit values obtained in second and third columns of Table 3. In
Fig. 2, we show the evolution of fractional energy density of nonrelativistic dark matter and
DE component in terms of redshift for NGCG and standard �CDM models. We see that
similarly to �CDM model, the NGCG model can interpret the matter dominated universe at
early times and DE domination at later times.

3 Observational constraints on NGCG model parameters

In this section, we use the well-known and available cosmological data sets to put constraints
on the free parameters of the NGCG model. Given a cosmological model with a set of free
parameters and using a set of observational data points, we can define a merit function to
quantify the agreement between the model and observations. In this regard, by maximizing
the degree of agreement, one can obtain the best fit values of the free parameters of the model.
Moreover, our analysis should provide the error bar of each parameter reasonable measure of
the goodness of the fit. Notice that if the model cannot fit the observations, then the obtained
best fit values of the free parameters are obviously meaningless. Here, we use the minimum
chi-squared (χ2) technique for model fitting procedure. Given a set of data points D and a
cosmological model, M(x,p), where vector p includes the free parameters of the model, the
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χ2 function is defined as follows

χ2 =
∑
i

1

σ 2
i

[Di − M(xi | p)]2 , (10)

where σi is the error of data point i . The best fit values of the free parameters p are obtained
by minimizing the χ2 function. Notice that the above equation for calculating χ2 function is
valid when the observational data points are not correlated. If we use correlated data points,
we should use the new formula

χ2 =
∑
i, j

[Di − M(xi | p)]Qi j [Dj − M(x j | p)] . (11)

where Qi j is the inverse of the covariance matrix. The covariance matrix explains the covari-
ance between observational data points.

Notice that when we compute different χ2 functions for different data sets, we should
sum all of the χ2

n functions. So finding the best fit values of free parameters requires the
minimizing of the sum of χ2

n functions. We allow the free parameters of the model walk in a
wide range of values. To do this, we perform a Markov chain Monte Carlo (MCMC) analysis.
In this work, we compute the χ2 function for different SNIa, CMB, BAO, BBN and H(z)
data sets.

χ2
tot(p) = χ2

SN + χ2
BAO + χ2

CMB + χ2
BBN + χ2

H , (12)

The first data set we have considered is the distance modulus of SNIa including 580
distinct data points from Union2.1 sample [34] and 1048 distinct data points from Pantheon
catalog catalog [40]. Finally, we have a short comparison between these two samples. The
χ2 function for SNIa samples is therefore given by

χ2
sn =

∑
i

[μth (zi ) − μob (zi )]2

σ 2
i

(13)

where μth(zi ) is the theoretical value of distance modulus at the specific redshift zi and μobs

is the corresponding observational value. Here, σi is the error bar of the observational data.

For a given cosmological model, we have μth(z) = 5 log10

[
(1 + z)

∫ z
0

dz
E(z)

]
+ μ0, where

μ0 = 42.384 − 5 log10 h [41]. The second data set which we consider is the BAO sample.
The BAO includes six distinct measurements of the baryon acoustic scale. These data points
and their references are summarized in Table 1. Since the BAO data are correlated, the χ2

BAO
function is given by [42]

χ2
BAO = Y TC−1

BAOY, (14)

where the vector Y is given by

Y = d(0.1) − d1,
1

d(0.35)
− 1

d2
,

1

d(0.57)
− 1

d3
,

d(0.44) − d4, d(0.6) − d5, d(0.73) − d6.

The quantity d(zi ) is defined as the ratio of comoving sound horizon at the baryon drag
epoch, rs , divided into a function of angular diameter distance, DV (z), as

d(z) = rs
(
zdrag

)

Dv(z)
, (15)
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Table 1 Current available data
points for BAO measurements
which we use in our analysis

z di References

0.106 0.336 [43]

0.35 0.113 [44]

0.57 0.073 [45]

0.44 0.0916 [46]

0.6 0.0726 [46]

0.43 0.0592 [46]

where rs is given by

rs(a) =
∫ a

0

csda

a2H(a)
(16)

In the above equations, cs is the baryon sound speed. Finally, the function of angular diameter
distance Dv(z) is defined by

Dv(z) =
[
(1 + z)2D2

A(z)
z

H(z)

] 1
3

(17)

where DA is the angular diameter distance. We refer the reader to [42], to see the fitting
formula for estimated redshift of baryon drag epoch, zdrag, which we adopt it to compute
d(zi ) in our work. The baryon sound speed in Eq. (16) is given by

cs(a) = 1√
3

(
1 + 3�b0

�γ 0
a
) (18)

where �γ 0 = 0.469 × 10−5 h−2 [42]. We also adopt the covariance matrix C−1
BAO given in

[42] as

C−1
BAO =

⎡
⎢⎢⎢⎢⎢⎢⎣

4444.4 0 0 0 0 0
0 34.602 0 0 0 0
0 0 206611 0 0 0
0 0 0 24532.1 −25137.7 12099.1
0 0 0 −25137.7 134598.4 −64783.9
0 0 0 12099.1 −64783.9 128837.6

⎤
⎥⎥⎥⎥⎥⎥⎦

(19)

The third sample which we use in our numerical analysis is the data of the position of
t CMB acoustic peak. This sample is very important to provide resonable constrain on DE
models. The position of this peak is given by (la, R, z∗), where z∗ is the recombination epoch,
R is the scale distance to recombination epoch and

la = π
DA (z∗)
rs (z∗)

. (20)

Also, the prior distance R is given by

R = √
�m0H0DA(z∗). (21)

We also adopt the fitted formula for the epoch for recombination presented in [42]. We
use the WMAP data set for the position of acoustic pick of CMB measurements [47]. Notice
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Table 2 H(z) data points
including their references

z H(z) σH References

0 73.24 1.74 [47]

0.07 69 19.6 [48]

0.1 69 12 [49]

0.12 68.6 26.2 [48]

0.17 83 8 [49]

0.1791 75 4 [50]

0.1993 75 5 [50]

0.2 72.9 29.6 [48]

0.27 77 14 [49]

0.28 88.8 36.6 [48]

0.35 82.7 8.4 [51]

0.3519 83 14 [50]

0.4 95 17 [49]

0.48 97 62 [49]

0.5929 104 13 [50]

0.6797 92 8 [50]

0.7812 105 12 [50]

0.8754 125 17 [50]

0.88 90 40 [49]

0.9 177 23 [49]

1.037 154 20 [50]

1.3 168 17 [49]

1.43 177 18 [49]

1.53 140 14 [49]

1.75 202 40 [49]

2.33 244 8 [52]

that the data points are correlated. Then, we have [53]

χ2
CMB = XT

CMBC
−1
CMBXCMB, (22)

where

XCMB =
⎛
⎝

la − 302.40
R − 1.7264
z∗ − 1090.88

⎞
⎠ , (23)

and

C−1
CMB =

⎛
⎝

3.182 18.253 −1.429
18.253 11887.879 −193.808
−1.429 −193.808 4.556

⎞
⎠ . (24)

The forth data set used in our analysis is the Hubble data points extracted from cosmic
chronometers. These data and their references are collected in Table 2. The χ2 function for

123



429 Page 8 of 15 Eur. Phys. J. Plus (2020) 135:429

non-correlated Hubble data is given by

χ2
H =

∑
i

[Hth (zi ) − Hobs (zi )]2

σ 2
i

(25)

where Hth is the theoretical value of Hubble parameter, Hobs is the observational value
and the parameters σi is the corresponding uncertainty. The fifth data set is the Big Bang
Nucleosynthesis (BBN) measurements which provide a data point for energy density of
baryons �b0. The χ2

BBN is simply given by

χ2
BBN =

((
�b0h2 − 0.022

)

0.002

)2

(26)

By jointing all data samples, we perform a likelihood analysis based on the MCMC algo-
rithm to calculate the minimum of χ2

tot and the best fit values of the cosmological parameters.
Our results and discussion are presented in next section.

4 Results and discussion

In this study, two samples of type Ia supernovae (SNIa) data, i.e., Pantheon and Union2.1
catalogs, were used. Notice that the Pantheon sample contains more observational data at
higher redshift which basically leads to tighter constrain rather than Union 2.1 sample. We
consider two different jointed samples. Firstly, we joint the SNIa (Union 2.1) with BAO,
BBN, CMB and Hubble data and secondly, we joint the SNIa (Pantheon) with with BAO,
BBN, CMB and Hubble data. For both cases, we do our analysis and obtain the best fit
values of cosmological parameters leading to finding the minimum of χ2 function. The
numerical results are presented in Table 3. Also the 1σ , 2σ and 3σ confidence contours
for various cosmological parameters of �CDM ,and NGCG models are shown in Figs. 3,
4 and 5. We note that for �CDM model, we only use the Union 2.1 sample. We observe
that the best fit value of EoS parameter of NGCG model restricts w� = −1 even in 1σ

contour. Notice that the best fit value prefers the phantom regime of EoS parameter, but
the deviation from w� = −1 cannot deviate from 1σ error. Also the best fit value of the
energy density of nonrelativistic matter (�dm0 + �b0) obtained in our analysis for NGCG
model (both cases) is consistent with that of the �CDM cosmology even in 2σ uncertainty
(95% confidence level). We know that in the context of observational cosmology, there is a
big tension between the low-redshift observations and high-redshift CMB data in predicting
the value of Hubble constant. Quantitatively speaking, the high-redshift CMB data predict
H0 = 67.4+0.5

−0.5 km s−1 Mpc−1 [54], while from the Cepheid-calibrated SnIa at low redshifts

we have H0 = 74.03+1.42
−1.42 km s−1 Mpc−1 [55]. The combination of all high- and low-

redshift cosmological data can alleviate this tension causing to get lower values of H0 closer
to CMB predictions. In the case of �CDM cosmology (Union 2.1 sample of Supernovae
used), our results for the combinations of all data sets show that H0 = 71.3+1.1,+2.2,+3.0

−1.1,−2.2,−2.9
(third column of Table 3), while in the case of the NGCG model (first column of Table 3) we
have H0 = 70.41+0.92,+1.8,+2.3

−0.92,−1.7,−2.3. Hence, we see that in the case of NGCG model the tension
is alleviated approximately around 1σ error. Our numerical results for NGCG model (both
cases) show that the best fit value of interaction parameter α is negative at least in 1σ level.
Hence ,we can say that the NGCG model prefers the phantom regime in which the energy
transfers from DE to dark matter. As one can see in Table 3, in the case of jointed data sets:
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Fig. 3 1σ , 2σ and 3σ contours for various cosmological parameters using the combined cosmological data
SNIa (Union2.1 catalog) + CMB + BAO + BBN + H(z) for �CDM model

Fig. 4 1σ , 2σ and 3σ contours for various cosmological parameters using the cosmological data SNIa
(Union2.1 catalog) + CMB + BAO + BBN + H(z) for NGCG model
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Fig. 5 1σ , 2σ and 3σ contours for various cosmological parameters using the cosmological data of SNIa
(Pantheon catalog) + CMB + BAO + BBN + H(z) for NGCG model

H(z) + BAO + CMB+ BBN + SNIa (Union2.1), we obtained χ2
min = 591.4 for NGCG

model, while this value for �CDM is χ2
min = 572.0. Therefore, we can say that upon this

combination of data points, �CDM model is fitted to observations better than the NGCG
model. Furthermore, we should consider this point that the value of 591.4 for NGCG model
is obtained in the presence of six free parameters, while in our analysis �CDM just has three
free parameters. It is easy to know that more number of free parameters leads to improvement
in fitting procedure. To remove the effect of extra parameters, we can use the well-known
Akaike information criteria [39], AIC = χ2

min +2k where k is the number of free parameters.
If we compute the AIC value for the models under study, we will obtain AIC�CDM = 578.0
and AICNGCG = 603.4 which the big value of �AIC = 25.4 indicates that the standard
�CDM cosmology is in better agreement with the whole of cosmological observations. (For
more information about the relevance of �AIC for support to a given model, we refer the
readers to [56].) This result shows that from the statistical likelihood analysis, the simple
�CDM model is still the best model when we consider all the observational data. Notice that
in previous studies regarding the dynamical DE, the same results have been obtained (for
example, see [17–19,21,57]). On the base of our knowledge, there is still no dynamical DE
with time- varying EoS parameter with AIC value lower than the standard �CDM model.

In next step of our analysis, we consider another combination of data samples to see that
how our results depend on the including or excluding of Hubble data and Supernova data.
To do this, we first exclude the Hubble data (first and second column of Table 4) and then
exclude the Supernova samples (third column of Table 4). The 1σ , 2σ and 3σ confidence
regions are shown in Figs. 6, 7 and 8. One can easily see that in the presence of Supernova
data, and the EoS parameter of NGCG model is in agreement with constant value w� = −1
in 1σ contour. These results are independent of the Hubble data because by comparing the
first and second columns of Tables 3 and 4, we observe the negligible differences. While if we
exclude the Supernova data (third column of Table 4), the results are reasonably changed. We
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Fig. 6 1σ , 2σ and 3σ contours for various cosmological parameters using the cosmological data of SNIa
(Union2.1 catalog) + CMB + BAO + BBN for NGCG model

Fig. 7 1σ , 2σ and 3σ contours for various cosmological parameters using the cosmological data of SNIa
(Pantheon catalog) + CMB + BAO + BBN for NGCG model

observe that, in this case, the EoS parameter differs from constant w� = −1 approximately
with 1σ distance, confirming the phantom like of NGCG model.
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Fig. 8 1σ , 2σ and 3σ contours for various cosmological parameters using the cosmological data CMB +
BAO + BBN + H(z) for NGCG model

5 Conclusions

We studied the cosmological properties of NGCG DE model and compared the results in the
light of different combinations of observational data points. We also compare the results of
NGCG model with those of �CDM to find the best model which can describe the evolution of
cosmic fluid. Using different SNIa catalogs, we found that all combinations of data samples
which we considered for NGCG model lead to the same value of matter energy density with
that of the �CDM cosmology at least within 1σ uncertainty. Our results showed that the
NGCG model can alleviate the tension between low-redshift observations with the Plank
inferred value of H0 in the amount of 1σ level better than the �CDM cosmology. Our results
also showed that when we use one of the SNIa catalogs in our data combination, the value
of wd comes closer to −1 while without SNIa catalogs, wd moves in to the phantom region
beyond 1σ uncertainty. Comparing the values of χ2

min and AIC values which we have obtained
for the models under study by using the same data combination, we found that the �CDM is
still the best model to fit the all observational data in cosmology. Thus, we can conclude that
the NGCG model can alleviate the coincidence problem and H0 tension appearing in �CDM
cosmology, but from the statistical likelihood analysis, the standard �CDM cosmology is
still the best model to fit the whole of cosmological data in expanding universe.
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