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Abstract In this paper, we consider two separate Jaynes–Cummings (JC) nodes with a
nonidentical qubit-field system in the presence of dissipation terms. We reveal the influence
of the time variation of the coupling terms on some important measures when the qubits
are immersed in a vacuum. The density matrix for the two qubits initially in Bell states
are obtained. The dynamical behavior of the quantum discord (QD), classical correlation
(CC), qubit-qubit entanglement, and quantum Fisher information (QFI) is investigated. We
explore the relationship among QD, CC, qubit-qubit entanglement, and QFI in the absence
and presence of the dissipation effect during the time evolution. Furthermore, we show the
main optimal conditions for obtaining a high level of correlation and coherence between the
two qubits.

1 Introduction

Quantum correlations (QCs) are seen as necessary and influential phenomena in quantum
information technology. Numerous QCs can be described as a kind of nonlocal correlation
between two or more quantum subsystems [1]. QCs are considered the main source of quan-
tum cryptography, teleportation and quantum metrology in quantum information processing
[2–4]. The main aim of these processes is to generate entangled states between subsystems
that are not possible with a classical resource. The QD is another kind of correlation that
depends on mutual quantum information. The QD is more general than entanglement and
can be nonzero for separable mixed states [5–7]. Generally, it is difficult to evaluate the QD
due to the problem of optimization. For the special case of qubit systems in the X-form state,
the QD can be evaluated analytically [8–10].
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In the framework of parameter estimation theory, various attempts have been made to dis-
cover quantifiers of QCs for quantum subsystems. In this regard, the QFI has been employed
to detect atom-field entanglement [11–14]. The relationship between the QFI and atom-field
entanglement in the absence and presence of decoherence has been studied [15,16]. The flow
of QFI was introduced to detect the non-Markovianity in open systems [17]. Additionally,
the QFI for Markovian and non-Markovian dynamics of a two-level atomic system driven
by the phase noise of a laser beam was examined [18]. Recently, the characterization of
QCs via local QFI was considered [19]. Also, the question of “does large QFI imply Bell
correlations?” has been answered [20]. The property of QFI continuity, that is, that two close
states with close first derivatives have close QFI, has been demonstrated [21].

A main research direction in quantum information technology is generalization based
on the type of interaction between quantum systems. Under this consideration, the studied
models provide new physical situations and have become more realizable. The JC model was
extended based on atomic motion, which was quantized as the motion of the center of mass
of an atom, and the vibrational motion was quantized. The properties of entanglement of a
three-two level atom and the field mode in Fock have also been investigated [22]. The sudden
death and birth phenomena of entanglement between two atoms have been discovered [23].
The effect of time-dependent coupling on QCs between a pair of atoms and the field mode
of power-law potentials has also been examined [24].

The QD attempts to capture quantum aspects of correlations beyond entanglement [5,25],
and there exist separable states that return a nonzero value of QD. These correlations have
several advantages in the theoretical and experimental domain. For example, some interesting
applications of QD in quantum computation [26–29], state merging [30,31], remote state
preparation [32] and open quantum systems representation [33] have been reported. Recently,
the dynamics of super QD and QD teleportation in the JCM have been discussed [34].
Moreover, the relation between quantum coherence and geometric QD has been explored
[35]. The sudden death and sudden birth of QD have also been investigated [36]. Furthermore,
the properties of Rènyi discord have been studied for two-independent dimer systems coupled
to two correlated Fermi-spin environments under non-Markovian conditions [37]. However,
these studies do not consider the case of time-varying coupling on the evolution of QD
and other correlations and its link with the quantum Fisher information. To the best of our
knowledge, this manuscript is the first to study the effect of the time-dependent effect on
quantum discord, classical correlation and quantum Fisher information.

In this paper, we examine the dynamic behavior of some important measures of QCs of a
nonidentical qubit-field system with and without time-varying coupling under the dissipation
effect. We explore the influence of the time variation of the coupling terms on the quantifiers
when the qubits are immersed in a vacuum. We show the relationship among QD, CC, qubit-
qubit entanglement and QFI in the absence and presence of the dissipation effect during the
time evolution.

This paper is organized in the following order. The basic equations and relations in the
system under consideration are given in Sect. 2. The different kinds of correlations based on
the evolution of concurrence and QD are presented in Sect. 3. Section 4 shows the dynamical
properties of the QFI with respect to the main parameters of the model. The main conclusion
is presented in Sect. 5.
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2 Model of the qubit-field in two separate JC nodes

Recently, considerable effort has been exerted in the investigation of different types of atom-
field interactions [38,39]. Here, we present a model of two separate JC nodes with a non-
identical qubit-field system as

Ĥ
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where h̄ = 1 and the two qubits are represented by the atomic operators σ̂
( j)
z , σ̂

( j)
+ and

σ̂
( j)
− for the jth qubit donated by A for j = 1 and B for j = 2. The atomic operators are

defined in terms of the atomic basis as |↑〉 〈↑|− |↓〉 〈↓|, |↑〉 〈↓| and |↓〉 〈↑|. The optical field
is represented by the annihilation (creation) operator b̂ j (b̂

†
j ), with the jth field mode. The

values g j are the coupling coefficients between the jth qubit and the localized field, and we
set g1 = g2 = g.

We assume the field modes are initially in their vacuum states and the two qubits are
initially in the maximally entangled states

|v(0)〉 = 1√
2

[
exp(iβ) |↑〉 〈↑| + |↓〉 〈↓|] ⊗ |0102〉. (2)

In the context of quantum state estimation, Eq.(2 ) is the optimal input state after the phase
gate operation β for the two-qubit systems interacting with two fields in the vacuum state.

At any time |v(t)〉 = exp
{
−i(ĤA + ĤB)t

}
|v(0)〉, where [ĤA, ĤB ] = 0. Thus, we have

exp
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−i ĤAt

}
|n,↑〉 = C(t)|n,↑〉 + S(t)|n + 1,↓〉, (3)

exp
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}
|n + 1,↓〉 = S(t)|n,↑〉 − C(t)|n + 1,↓〉. (4)

In the case of time-dependent coupling, we have |v(t)〉 = exp
{
i
∫ t

0 Ĥ(τ )dτ
}

|v(0)〉, and

after some calculations for the field in the vacuum state, one can obtain

C(t) =
{
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e−γ t , (5)

S(t) = −ie−γ t

√
1 − γ 2

sin(G(t)
√

1 − γ 2). (6)

The target of this work is to examine the effect of constant and time-dependent coupling
between each qubit j and vacuum field defined as

G(t) =
⎧
⎨

⎩

gt for g j = const.
g sin(t) for g j (t) = cos(t)
g(1 − cos(t)) for g j (t) = sin(t)

(7)
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Therefore, by tracing out two field modes, the resulting two-qubit state is obtained in the
form X-state as

�AB(t) = tr1,2 (|v(t)〉 〈v(t)|) =

⎡

⎢⎢⎣

0 0 0 0
0 �22 �23 0
0 �32 �33 0
0 0 0 �44

⎤

⎥⎥⎦

3 Quantum and classical correlations

The entanglement transfer between the subsystem has useful applications in quantum com-
puting and quantum information technology [23,40,41]. Moreover, the creation of entangled
states for many subsystems also has interesting applications. The most famous suitable model
for discussing quantum and classical correlations is a model of the interaction between the
field and the TQs. The QD is a main measure of QCs between the two qubits, and the
concurrence is a measure of the first and second qubit entanglement defined as [42]

CAB = max{0, λ1 − λ2 − λ3 − λ4}, (8)

where λ j defines the eigenvalues in decreasing order of �AB �̃AB and �̃AB is defined as

�̃AB = (σY ⊗ σY )�∗
AB(σY ⊗ σY ), (9)

where �∗
AB denotes the conjugate of �AB and σY is the Pauli operator. The qubits A and B

are in a pure state as CAB = 0, but CAB = 1 indicates that the qubits are in a maximally
entangled state.

Here, we employ the von Neumann entropy to quantify the two qubits and two vacuum
field entanglements defined by [43,44]

S(�AB) = −tr{�AB ln(�AB)}. (10)

Equation (10) can be written in terms of the eigenvalues of �AB and the atomic density ϕ j

S(�AB) = −
4∑

j=1

ϕ j ln(ϕ j ). (11)

Let us assume {θ j } is the set of local measurements on a subsystem, which leads to the
following density matrix

�
j
AB = 1

p j
(I ⊗ θ j )�AB(I ⊗ θ j ), (12)

such that

p j = tr [(I ⊗ θ j )�AB(I ⊗ θ j )], (13)

representing the probability of measuring the jth state. The bipartite system is considered a
conditional density operator, the conditional entropy is given by

S(�AB |{θ j }) =
∑

j

p j S(�AB), (14)
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a

Fig. 1 The evolution of the quantum discord D(ρ = �) (solid red line), concurrence CAB (dashed blue), and
classical correlation CC(�) (dashed-dotted black line) for the constant coupling between the qubits and vacuum
fields (i.e., gA(t) = gB (t) = g). a The case in the absence of the dissipation effect (i.e., γA/g = γB/g = 0)
and b the case in the presence of the dissipation effect (i.e., γA = γB = 0.1g)

and the total correlation (TC) corresponding to the difference between the partial von Neu-
mann entropy and the quantum mutual information is obtained as

TC(�AB |{θ j }) = S(�A) − S(�AB |{θ j }). (15)

The CC is the maximal amount of information in a subsystem after performing the local
measurements and is defined as

CC(�AB |{θ j }) = S(�A) − min
{θ j }

[S(�AB |{θ j })]. (16)

Therefore, the QD, which measures the quantum correlation in bipartite systems [45,46],
takes the following form,

DAB = TC(�AB) − CC(�AB). (17)

We first study the time evolution of the three kinds of correlations of the two qubits in
the absence of time-varying coupling gA(t) = gB(t) = g, with and without the dissipative
effect. The time evolution of the correlations for the initial Bell states in the case of γA/g =
γB/g = 0 and γA/g = γB/g 	= 0 is plotted in Fig. 1. As shown in Fig 1a, the correlations
exhibit oscillations that are described by a periodic function during the evolution in the
absence of dissipation. The three correlations show sudden death and birth phenomena that
do not occur simultaneously within the interaction time. Moreover, the concurrence and
classical correlation are less than the QD with the same maximum and minimum values
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b

a

Fig. 2 The same as Fig. 1 but the qubits-field coupling is a function of time as gA(t) = gB (t) = g cos(t)

during the evolution. Nevertheless, this result is not generally true since the correlations are
three different quantities and there is no proportionate ordering among them. From Fig. 1b,
we observe that the presence of the dissipative effect decreases the correlations during the
evolution. The amount of the three correlations of the two qubits decreases with an increase
in the decay terms γ j in the Hamiltonian. The extent of the decrease in the concurrence
and QD is less than that in the classical correlation during the dynamic process. Moreover,
for some intervals of time, the entanglement tends to zero, where the two qubits are still
discordant.

The time evolution of the three correlations for the JCM has been studied in previous works.
Here, we consider time-varying coupling between the qubits and the fields and explore the
realistic dynamics of these correlations under the dissipative effect, which has not previously
been reported. In Fig. 2, we show the effects of the time-varying gA(t) = gB(t) = g cos(t)
on the dynamic behavior of the three correlations with and without the dissipation effect.
The behavior of the three correlations is similar to that shown in Fig. 1. Moreover, the
presence of the time-varying coupling leads to avoidance of the sudden death and sudden
birth phenomena in the absence of the dissipative effect. On the other hand, the behavior of
the correlations is affected by the choice of the time coupling, as shown in Fig. 3 for the
case of gA(t) = gB(t) = g sin(t). Therefore, control of the time-varying coupling in the
interaction between the qubits and the field can help to enhance and stabilize the degree of
correlation between the qubits during the evolution.
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b

a

Fig. 3 The same as Fig. 1 but the qubits-field coupling is a function of time as gA(t) = gB (t) = g sin(t)

4 Quantum Fisher information

The Fisher information is defined in terms of the distribution function hϕ̂ (x) as [47,48]

Iϕ̂ =
∫

1

hϕ̂ (x)

(
∂hϕ̂ (x)

∂ϕ̂

)2

dx , (18)

where ϕ̂ is the estimator of the parameter. QFI is the quantum modification of the Fisher
information and is defined in terms of the symmetric logarithmic derivative (SLD). If we
consider the phase shift ϕ̂ = β, then the SLD can be obtained from the density matrix of the
two-qubit in terms of , which is given by [11,16]

∂�AB(β, t)

∂β
= 1

2
{�AB(β, t)D(β, t) + D(β, t)�AB(β, t)} (19)

Hence, the QFI for the phase shift parameter β is given by [11]

FQ(t) = tr(�AB(β, t)D(β, t)2) (20)

within the qubit density operator �AB(β, t) and the SLD.
Now, the main interest is to examine the dynamic behavior of the QFI under the effect

of time-varying coupling for the interaction term between the qubit and the field with and
without the dissipative effect. We compare the influence of different parameters h_i on the
evolution of the QFI. The blue line is for gA(t) = gB(t) = g, the dashed-red line is for
gA(t) = gB(t) = g cos(t), dashed-black line is for gA(t) = gB(t) = g sin(t). Figure 4a
shows the dynamic behavior of the function FQ(t) in terms of the scaled time for g j = 0.
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b

a

Fig. 4 The dynamics of the QFI in terms of the phase shift estimator parameter β for different types of
time-dependent qubit-field coupling, where the solid blue line is for gA(t) = gB (t) = g, the dashed red line
is for gA(t) = gB (t) = g cos(t) and the dashed-dotted black line is for gA(t) = gB (t) = g sin(t). a The case
of the absence of the dissipation effect (i.e., γA/g = γB/g = 0 ) and b the presence of the dissipation effect
(i.e., γA = γB = 0.1g)

The QFI function exhibits oscillation as a periodic function with an amplitude that depends
on the parameter g j . This indicates that the enhancement and preservation of the QFI may
occur through control of the interaction coupling strength of the whole system. Moreover, we
can obtain a monotonic correlation between the QFI and quantum correlations in this case.
Figure 4b shows the time evolution of the function FQ versus time in the presence of the
dissipative effect. The precision of the parameter estimation of the atom is highly sensitive
to the dissipative environment. Interestingly, the dissipative effect causes a destructive effect
on the amount of QFI during the evolution. The decay speed of the QFI is strictly dependent
on the choice of parameter g j . Moreover, the local maximum values of function FQ decrease
gradually during the time evolution and the decrease rate of these maximal values depends on
parameter g j . As time increases, the dissipative effect in the system interaction restrains the
quantum effects of the qubit system and the value of function FQ saturates to its lower level,
with inaccurate estimation of parameter β. On the other hand, the presence of time-varying
coupling destroys the monotonic relation between the functions QFI and correlations during
the dynamic evolution. The results show that appropriate preparation of the atom-field clearly
improves the estimation enhancement realized by JCM under the dissipative effect, which
may provide new perspectives to the field of quantum metrology.
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5 Conclusion

In summary, we have considered two separate Jaynes–Cummings nodes with an noniden-
tical qubit-field system in the presence of the dissipation effect. We have investigated the
dynamic behavior of the quantum discord, classical correlation, qubit-qubit entanglement,
and quantum Fisher information. We have explored the influence of the time variation of
the coupling terms on the quantifiers when the qubits are immersed in a vacuum. We have
demonstrated the time evolution of the three kinds of correlations of the two qubits in the
absence and presence of time-varying coupling. Moreover, we have shown how the presence
of the dissipative effect leads to a decrease in the correlations during the evolution. Finally,
we investigated the dynamic behavior of the quantum Fisher information under the effect of
time-varying coupling with and without the dissipative effect. We found that enhancement
and preservation of the quantum Fisher information may occur through control of the interac-
tion coupling strength of the whole system. Moreover, we can obtain a monotonic correlation
between the quantum Fisher information and quantum correlations in the absence of time-
varying coupling, whereas the presence of time-varying coupling damages this monotonic
relation.
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