
Eur. Phys. J. Plus (2020) 135:379
https://doi.org/10.1140/epjp/s13360-020-00366-z

Regular Art icle

Multi-lump or lump-type solutions to the generalized
KP equations in (N + 1)-dimensions

Li Cheng1,a, Yi Zhang2, Wen-Xiu Ma2,3,4,5,6,7, Jian-Ya Ge1

1 Normal School, Jinhua Polytechnic, Jinhua 321007, Zhejiang, China
2 Department of Mathematics, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
3 Department of Mathematics, King Abdulaziz University, Jeddah, Saudi Arabia
4 Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620, USA
5 School of Mathematics, South China University of Technology, Guangzhou 510640, China
6 College of Mathematics and Systems Science, Shandong University of Science and Technology,

Qingdao 266590, Shandong, China
7 Department of Mathematical Sciences, International Institute for Symmetry Analysis and Mathematical

Modelling, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho 2735, South Africa

Received: 11 September 2019 / Accepted: 30 March 2020 / Published online: 28 April 2020
© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract We aim to explore lump or lump-type solutions to the generalized Kadomtsev–
Petviashvili (gKP) equations in (N + 1)-dimensions via the long wave limit technique. The
construction procedure for presenting lump or lump-type solutions is improved. The key
step is that all the involved parameters are extended to the complex field. We first furnish
lump solutions from the corresponding soliton solutions to the (2 + 1)-dimensional gKP
equation. In particular, a general class of multi-lump solutions of the (2 + 1)-dimensional
gKP equation can be obtained. It is then shown that there exist lump-type solutions to the
(N + 1)-dimensional gKPI equations with N ≥ 3 by means of the improved long wave limit
technique.

1 Introduction

In nonlinear sciences, the Kadomtsev–Petviashvili (KP) equation I

(ut + 6uux + uxxx )x − uyy = 0, (1.1)

is a completely integrable system that describes the motion of two-dimensional solitary waves.
For all integrable soliton equations, there exist soliton solutions, analytic and exponentially
localized in certain directions [1]. In contrast to soliton solutions, lump solutions are a class of
nonsingular rational solutions which decay to zero in all directions in the space [2–7]. There
are various discussions on lump solutions to integrable equations such as the KPI Eq. (1.1)
[2,4], the B-type Kadomtsev–Petviashvili (BKP) equation [8,9] and the Davey-Stewartson
(DS) equation [10,11]. It is known that long wave limits of the N -soliton solutions can
generate multi-lump solutions of envelope hole type [2]. In particular, upon taking long wave
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limits on the two-soliton solutions, the KPI Eq. (1.1) has the following special lump solution
[2,12]:

u = 4
− [

x + ay + (
a2 − b2

)
t
]2 + b2 (y + 2at)2 + 3/b2

{[
x + ay + (a2 − b2)t

]2 + b2(y + 2at)2 + 3/b2
}2 , (1.2)

where a and b are real free parameters. Moreover, through symbolic computations with
Maple, the KPI Eq. (1.1) possesses a class of lump solutions [4]:

u = 2(ln f )xx , f =
(
a1x + a2y + a1a2

2 − a1a2
6 + 2a2a5a6

a2
1 + a2

5

t + a4

)2

+
(
a5x + a6y + 2a1a2a6 − a2

2a5 + a5a2
6

a2
1 + a2

5

t + a8

)2 + 3
(
a2

1 + a2
5

)3

(a1a6 − a2a5)
2 , (1.3)

where the involved parameters ai ’s are arbitrary but a1a6 −a2a5 �= 0. This contains the lump
solution (1.2) presented earlier [2,12].

Recently, there has been a growing interesting in lump or lump-type solutions, rationally
localized in almost all directions in the space [13,14]. By applying Maple symbolic com-
putations, Ma et al. developed a direct and efficient way to construct generic one-lump or
lump-type waves to nonlinear and linear partial differential equations [4,15–19]. Aiming at
multi-lump solutions, the long wave limit approach [2,9,20,21], the bilinear transformation
method [10,11] and the nonlinear superposition formula [22,23] articulate particular multi-
lump wave solutions. In the above-mentioned methods, Hirota bilinear forms play a crucial
role in constructing lump or lump-type solutions.

In this letter, let us consider the generalized Kadomtsev–Petviashvili (gKP) equations in
(N + 1)-dimensions [3]:

(ut + 6uux1 + ux1x1x1)x1 +
N∑

j=2

a j j ux j x j = 0, (1.4)

where N ≥ 2 and a j j , j ≥ 2, are arbitrary non-zero real constants. When a j j = − 1, j =
2, . . . , N , it is called the gKPI equation, and when a j j = 1, j = 2, . . . , N , the gKPII
equation. Under the dependent variable transformation

u = 2(ln f )x1x1 , (1.5)

a direct computation shows that (1.4) can be expressed as
⎛

⎝D4
x1

+ Dx1 Dt +
N∑

j=2

a j j D
2
x j

⎞

⎠ f · f = 0, (1.6)

where Dx1 , Dt and Dx j , j = 2, . . . , N , are Hirota bilinear differential operators [1]. By
taking N = 2 and a22 = − 1, note that (1.4) reduces to the (2 + 1)-dimensional KPI
Eq. (1.1), which possesses abundant lump solutions. However, in (N + 1)-dimensions with
N ≥ 3, the gKP Eq. (1.4) has no lump solutions generated from quadratic functions under
the transformation u = 2(ln f )x1x1 [3].

The main purpose of this study is to construct lump or lump-type solutions by taking
a long wave limit of the corresponding soliton solutions to the (N + 1)-dimensional gKP
Eq. (1.4). The construction procedure for presenting rational solutions will be improved. The
framework of this paper is as follows. In Sect. 2, for the (2+1)-dimensional gKP equation, we

123



Eur. Phys. J. Plus (2020) 135:379 Page 3 of 11 379

will extend the technique of long wave limits to obtain a general class of one-lump solutions
from the corresponding two solitons. Besides, multi-lump solutions will also be given by
performing a limit procedure on the N -soliton solutions. In Sect. 3, we will formulate lump-
type solutions to the above gKP equations in (N + 1)-dimensions with N ≥ 3. Finally, our
conclusions and remarks will be given at the end of the paper.

2 Lump solutions to (1.4) with N = 2

Let us first consider the simplest case: N = 2. This yields the (2 + 1)-dimensional gKP
equation:

(ut + 6uux + uxxx )x + a22uyy = 0, (2.1)

where setting x1 = x , x2 = y and a22 �= 0. By the typical transformation u = 2(ln f )xx , the
corresponding Hirota bilinear form reads

(
D4
x + Dx Dt + a22D

2
y

)
f · f = 0. (2.2)

2.1 One-lump solutions

To get general one-lump solutions, now we introduce new variables

ηi = ki (pi1x + pi2y + ωi t + αi ) + η
(0)
i , i ≥ 1, (2.3)

with the dispersion relation being satisfied:

ωi = −k2
i p

4
i1 + a22 p2

i2

pi1
. (2.4)

Obviously, the two-soliton solution to the bilinear Eq. (2.2) has the form

f2 = 1 + eη1 + eη2 + eη1+η2+A12 , (2.5)

where

eA12 = 3
(
k1 p2

11 p21 − k2 p11 p2
21

)2 − a22 (p11 p22 − p12 p21)
2

3
(
k1 p2

11 p21 + k2 p11 p2
21

)2 − a22 (p11 p22 − p12 p21)
2
.

For the two-soliton (2.5), if we set eη
(0)
i = − 1 and ki → 0 for i = 1, 2 with k1/k2 =

O(1), pi1 = O(1) and pi2 = O(1), then we have

eA12 = 1 + 12k1k2 p3
11 p

3
21

a22 (p11 p22 − p12 p21)
2 + O(k3), (2.6)

and

f2 = k1k2

[

θ1θ2 + 12p3
11 p

3
21

a22 (p11 p22 − p12 p21)
2 + O(k)

]

, (2.7)

with

θi = pi1x + pi2y − a22 p2
i2

pi1
t + αi , i = 1, 2. (2.8)
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Since u is given by the transformation u = 2(ln f2)xx , f2 is equivalent to θ1θ2 + B12, where

B12 = 12p3
11 p

3
21

a22(p11 p22 − p12 p21)2 . (2.9)

We still denote θ1θ2 + B12 as f2, then the corresponding rational solution to (2.1) can be
written as

u = 2(ln f2)xx , f2 = θ1θ2 + B12, (2.10)

where θ1, θ2 and B12 are defined by (2.8) and (2.9), respectively. Moreover, the selection of
the parameters:

p11 = c11 + Id11, p12 = c12 + Id12, α1 = l1 + Im1, p21 = p∗
11,

p22 = p∗
12, α2 = α∗

1 , c1 j , d1 j , l1,m1 ∈ R, j = 1, 2, I = √−1, (2.11)

yields θ2 = θ∗
1 . Here the asterisk denotes the complex conjugate. Substituting (2.11) into

(2.9) and (2.10), we have

f2 =
[
c11x + c12y − a22(c11c2

12 − c11d2
12 + 2c12d11d12)

c2
11 + d2

11

t + l1
]2

+
[
d11x + d12y − a22(2c11c12d12 − c2

12d11 + d11d2
12)

c2
11 + d2

11

t + m1

]2

− 3(c2
11 + d2

11)
3

a22(c11d12 − c12d11)2 , (2.12)

where the involved six real parameters c11, c12, d11, d12, l1,m1 are arbitrary but c11d12 −
c12d11 �= 0. It is easy to observe that f2 is a class of positive quadratic function solutions to the
bilinear gKP Eq. (2.2) if the coefficient a22 < 0, and thus, a class of one-lump solutions to the
(2+1)-dimensional gKP Eq. (2.1) can be obtained through the transformationu = 2(ln f2)xx .
But Eq. (2.1) has pole singularity in the (x, y)-plane at any time if the coefficient a22 > 0.
Note that this result with a22 = − 1 is the same as the solutions (1.3) presented by Ma [4].

2.2 Multi-lump solutions

Following the preceding literature [2,24], the (2+1)-dimensional gKP Eq. (2.1) is completely
integrable and in particular exists the three-soliton solution. By employing Hirota’s method,
the N -soliton solution of (2.1) may be expressed as follows:

u = 2(ln f )xx , f ≡ fN =
∑

μ=0,1

e

N∑

1≤i< j
μiμ j Ai j+

N∑

i=1
μiηi

, (2.13)

with

ηi = ki
(
pi1x + pi2y − k2

i p
4
i1 + a22 p2

i2

pi1
t + αi

)
+ η

(0)
i ,

eAi j = 3(ki p2
i1 p j1 − k j pi1 p2

j1)
2 − a22(pi1 p j2 − pi2 p j1)

2

3(ki p2
i1 p j1 + k j pi1 p2

j1)
2 − a22(pi1 p j2 − pi2 p j1)2

.

The
∑

μ=0,1 denotes the summation over all possible combinations of μ1 = 0, 1, μ2 =
0, 1, . . . , μN = 0, 1; the

∑N
1≤i< j summation is over all possible combinations of the N

elements with the specific condition 1 ≤ i < j .
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By virtue of the result discussed by Satsuma and Ablowitz [2], a solution of (2.2) given
as a long wave limit of the N -soliton solution may be written as

fN =
N∏

i=1

θi + 1

2

N∑

1≤i< j

Bi j

N∏

l �=i, j

θl + · · · + 1

M !2M

×
N∑

i, j,...,m,n

M
︷ ︸︸ ︷
Bi j Bkl · · · Bmn

N∏

q �=i, j,...,m,n

θq + · · · , (2.14)

where

θi = pi1x + pi2y − a22 p2
i2

pi1
t + αi ,

Bi j = 12p3
i1 p

3
j1

a22(pi1 p j2 − pi2 p j1)2 ,

and
∑N

i, j,...,m,n denotes the summation over all possible combinations of i, j, . . . ,m, n which
are taken from 1, 2, . . . , N . The first four in (2.14) can be expressed as

f1 = θ1, (2.15a)

f2 = θ1θ2 + B12, (2.15b)

f3 = θ1θ2θ3 + B12θ3 + B31θ2 + B23θ1, (2.15c)

f4 = θ1θ2θ3θ4 + B12θ3θ4 + B13θ2θ4 + B14θ2θ3 + B23θ1θ4

+B24θ1θ3 + B34θ1θ2 + B12B34 + B13B24 + B14B23. (2.15d)

Furthermore, choosing a22 < 0, pM+i,1 = p∗
i,1, pM+i,2 = p∗

i,2, and αM+i = α∗
i , i =

1, 2, . . . , M for N = 2M in (2.14), the solution fN of (2.2) can be presented in the following
determinant form:

f2M =
∣∣∣∣

C A
−A∗ C∗T

∣∣∣∣ , (2.16)

where T means the transpose of a matrix, A and C are M × M matrices defined by

C =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

θ1
2
√

3p3
11 p

3
21 I√|a22|(p11 p22−p12 p21)

· · · 2
√

3p3
11 p

3
M1 I√|a22|(p11 pM2−p12 pM1)

− 2
√

3p3
11 p

3
21 I√|a22|(p11 p22−p12 p21)

θ2 · · · 2
√

3p3
21 p

3
M1 I√|a22|(p21 pM2−p22 pM1)

...
...

. . .
...

− 2
√

3p3
11 p

3
M1 I√|a22|(p11 pM2−p12 pM1)

− 2
√

3p3
21 p

3
M1 I√|a22|(p21 pM2−p22 pM1)

· · · θM

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

(2.17)

A =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2
√

3p3
11 p

∗3
11 I√|a22|(p11 p∗

12−p12 p∗
11)

2
√

3p3
11 p

∗3
21 I√|a22|(p11 p∗

22−p12 p∗
21)

· · · 2
√

3p3
11 p

∗3
M1 I√|a22|(p11 p∗

M2−p12 p∗
M1)

2
√

3p3
21 p

∗3
11 I√|a22|(p21 p∗

12−p22 p∗
11)

2
√

3p3
21 p

∗3
21 I√|a22|(p21 p∗

22−p22 p∗
21)

· · · 2
√

3p3
21 p

∗3
M1 I√|a22|(p21 p∗

M2−p22 p∗
M1)

...
...

. . .
...

2
√

3p3
M1 p

∗3
11 I√|a22|(pM1 p∗

12−pM2 p∗
11)

2
√

3p3
M1 p

∗3
21 I√|a22|(pM1 p∗

22−pM2 p∗
21)

· · · 2
√

3p3
M1 p

∗3
M1 I√|a22|(pM1 p∗

M2−pM2 p∗
M1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.(2.18)
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Fig. 1 The propagation of the solution (2.21) at: a t = − 8, b t = 0, c t = 8

Owing to the determinant

f2M =
∣
∣
∣
∣

C A
−A∗ C∗T

∣
∣
∣
∣

with A,C given by (2.17) and (2.18) is always positive, we may obtain a class of nonsingular
rational solutions under the transformation u = 2(ln f2M )xx , which can describe a multiple
collision of M lumps.

In the following, we present a two-lump solution with specific values of the parameters
for the (2 + 1)-dimensional KPI Eq. (1.1). The selection of the parameters:

M = 2, p11 = 1 + I, p12 = 1 + 2I, p21 = 3 − I,

p22 = 2 + I, p31 = p∗
11, p32 = p∗

12, p41 = p∗
21, p42 = p∗

22,

α1 = 1 + I, α2 = 2 + 2I, α3 = α1∗, α4 = α2∗, (2.19)

leads to

f4 = 20x4 + 25y4 + 125

4
t4 + 240ytx2 + 220y2t x + 180yt2x + 80xy3

+120x2y2 + 80x3y + 80x3t + 130x2t2 + 100y3t + 150y2t2 + 20t3x

100t3y + 56x3 + 90y3 + 120t3 + 172x2y + 160x2t + 192xy2

+174xt2 + 290y2t + 325yt2 + 364xyt + 68x2 + 482y2 + 1849t2

+164xy + 400xt + 1954yt − 144x + 1064t + 384y + 6544, (2.20)

and so a special two-lump solution is give by

u = 2 f4,xx

f4
− 2 f 2

4,x

f 2
4

. (2.21)

Figure 1 depicts the interaction of the two-lump solution (2.21) at several time steps. The
contour plots of moving process and curves of two-lump waves are shown in Figs. 2 and 3,
respectively. It is seen that the two-lump solution has two distinct peaks and algebraically
decays in all space directions.

3 Lump-type solutions to (1.4) with N ≥ 3

As we know, the above gKP equations in (N + 1)-dimensions with N ≥ 3 have no lump
solutions generated from quadratic functions. This result has been proven by Ma and Zhou in
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Fig. 2 Contour plots of the solution (2.21) at: a t = − 8, b t = 0, c t = 8

Fig. 3 Profiles of the solution (2.21) with t = 0: a x-curves, b y-curves

[3]. In the following, we would like to present lump-type solutions to the (N+1)-dimensional
gKP Eq. (1.4) with N ≥ 3 by taking a long wave limit.

We begin with two-wave functions:

f2 = 1 + eη1 + eη2 + eη1+η2+A12 , (3.1)

where

ηi = ki

⎛

⎝
N∑

j=1

pi j x j + ωi t + αi

⎞

⎠ + η
(0)
i , i = 1, 2.

Applying the Hirota’s bilinear method leads to

ωi = −k2
i p

4
i1 + ∑N

j=2 a j j p2
i j

pi1
, i = 1, 2, (3.2)
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and

eA12 = 3
(
k1 p2

11 p21 − k2 p11 p2
21

)2 − ∑N
j=2 a j j

(
p11 p2 j − p1 j p21

)2

3
(
k1 p2

11 p21 + k2 p11 p2
21

)2 − ∑N
j=2 a j j

(
p11 p2 j − p1 j p21

)2
. (3.3)

Using the same limiting procedure presented in Sect. 2, we have

f2 = θ1θ2 + B12, (3.4)

where

θi =
N∑

j=1

pi j x j −
∑N

j=2 a j j p2
i j

pi1
t + αi , i = 1, 2, (3.5)

B12 = 12p3
11 p

3
21∑N

j=2 a j j (p11 p2 j − p1 j p21)2
. (3.6)

Additionally, taking the choices

p11 = c11 + Id11, p1 j = c1 j + Id1 j , α1 = l1 + Im1,

p21 = p∗
11, p2 j = p∗

1 j , α2 = α∗
1 , c1 j , d1 j , l1,m1 ∈ R, j = 1, 2, 3, . . . , N , (3.7)

and substituting (3.7) into (3.4), a class of quadratic function solutions to (1.6) is given by

f2 =
⎡

⎣
N∑

j=1

c1 j x j −
∑N

j=2 a j j (c11c2
1 j + 2d11c1 j d1 j − c11d2

1 j )

c2
11 + d2

11

t + l1

⎤

⎦

2

+
⎡

⎣
N∑

j=1

d1 j x j −
∑N

j=2 a j j (d11d2
1 j + 2c11c1 j d1 j − d11c2

1 j )

c2
11 + d2

11

t + m1

⎤

⎦

2

− 3
(
c2

11 + d2
11

)3

∑N
j=2 a j j

(
c11d1 j − c1 j d11

)2 , (3.8)

where the involved real parameters c1 j , d1 j , l1,m1, 1 ≤ j ≤ N , are arbitrary but (c2
11 +

d2
11)

[∑N
j=2 a j j (c11d1 j − c1 j d11)

2
] �= 0. Therefore, besides c2

11 + d2
11 �= 0, the condition for

guaranteeing lump-type solutions is

N∑

j=2

a j j (c11d1 j − c1 j d11)
2 < 0, (3.9)

which guarantees that f2 defined in (3.8) is positive.
It is easy to see that the condition (3.9) holds if we take

a j j < 0,

N∑

j=2

(c11d1 j − c1 j d11)
2 �= 0, j = 2, . . . , N , (3.10)

then the class of solutions (3.8) yields a kind of positive quadratic functions to (1.6). In turn, a
class of lump-type solutions can be given for the (N +1)-dimensional gKP Eq. (1.4) through
the transformation u = 2(ln f )x1x1 . This shows that the (N+1)-dimensional gKPI equations
(a j j = − 1, j = 2, . . . , N ) with N ≥ 3 possess the discussed lump-type solutions whereas
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the (N +1)-dimensional gKPII equations (a j j = 1, j = 2, . . . , N ) with N ≥ 3 do not. Note
that the condition (3.9) for guaranteeing lump-type solutions reduces to

N1∑

j=2

(c11d1 j − c1 j d11)
2 <

N∑

j=N1+1

(c11d1 j − c1 j d11)
2, (3.11)

upon taking

a j j = 1, j = 2, . . . , N1, a j j = − 1, j = N1 + 1, . . . , N . (3.12)

It is then shown that there exist positive quadratic function solutions to (1.6) with generic
situations.

Below we consider the following (3 + 1)-dimensional gKP equation:

(ut + 6uux + uxxx )x + σuyy − uzz = 0, σ = ∓1, (3.13)

to shed light on lump-type solutions of (1.4). Through the dependent variable transformation
u = 2(ln f )xx , the corresponding (3 + 1)-dimensional bilinear equation can be written as

(
D4
x + Dx Dt + σD2

y − D2
z

)
f · f = 0, (3.14)

which is identified as the bilinear KPI equation in (3 + 1)-dimensions when σ = − 1. By
the above result in (3.8), the resulting quadratic function solutions read

f =
[
c11x + c12y + c13z − σμ2 − μ3

c2
11 + d2

11

t + l1
]2

+
[
d11x + d12y + d13z − σν2 − ν3

c2
11 + d2

11

t + m1

]2

− 3(c2
11 + d2

11)
3

σ(c11d12 − c12d11)2 − (c11d13 − c13d11)2 , (3.15)

with

μ j = c11c
2
1 j + 2d11c1 j d1 j − c11d

2
1 j , ν j = d11d

2
1 j + 2c11c1 j d1 j − d11c

2
1 j , j = 2, 3,

where all involved parameters are arbitrary provided that the expressions make sense. There-
fore, for the (3 + 1)-dimensional KPI equation, the conditions for guaranteeing lump-type
solutions are

c2
11 + d2

11 �= 0, (c11d12 − c12d11)
2 + (c11d13 − c13d11)

2 �= 0, (3.16)

which guarantee that the quadratic function f defined by (3.15) is positive. If we take c11 = 1,
then the resulting class of lump-type solutions is exactly the one in ref. [3]. In addition, when
σ = 1, the conditions are

c2
11 + d2

11 �= 0, (c11d12 − c12d11)
2 < (c11d13 − c13d11)

2, (3.17)

which guarantee that the quadratic function f defined by (3.15) is positive.
Associated with

σ = 1, c11 = 1, c12 = − 2, c13 = 3, l1 = 5, d11 = 0, d12 = 1, d13 = 4,m1 = 8,

(3.18)

123



379 Page 10 of 11 Eur. Phys. J. Plus (2020) 135:379

the transformation u = 2(ln f )xx with (3.15) provides a lump-type solution to the (3 + 1)-
dimensional gKP Eq. (3.14):

u = 4 f − 8(x − 2y + 3z − 10t + 5)2

f 2 , (3.19)

with

f = (x − 2y + 3z − 10t + 5)2 + (y + 4z + 28t + 8)2 + 1

5
.

4 Conclusion and remarks

To conclude, by using the long wave limit approach, we have presented lump or lump-
type solutions to the generalized KP equations in (N + 1)-dimensions. The construction
procedure for presenting lump or lump-type solutions is improved by extending the involved
parameters to the complex field. The resulting one-lump solutions are same as the solutions
(1.3) generated by Maple symbolic computations for the (2 + 1)-dimensional KPI equation.
Particularly, a general class of nonsingular rational solutions with a determinant form has
been given, which can describe a multiple collision of M lumps. And finally, a kind of lump-
type solutions to (1.4) with N ≥ 3 was deduced by means of the improved limit technique
of long waves. The (3 + 1)-dimensional gKP equation as an application example was given,
thereby presenting its particular lump-type solutions.

We remark that the improved long wave limit procedure can also be applied to construct
generic lump or lump-type solutions for many other higher-dimensional equations such as the
(2 + 1)-dimensional to equation [25,26], the (3 + 1)-dimensional generalized BKP equation
[27,28] and the Jimbo–Miwa equation [29–31]. Future research problems for us include how
to achieve interaction solutions between lumps and other kinds of exact solutions for nonlinear
evolution equations by taking the long wave limit approach, and how to understand integrable
characteristics of nonlinear multidimensional systems in mathematical physics [32–37].
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