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Abstract This study used a fluid-conveying nonlinear beam and a nonlinear spring to sim-
ulate the vibration of a fluid-conveying tube placed on an elastic foundation. The centripetal
force and tangential force of fluid acting on the tube wall were considered. In this paper,
Hamilton’s principle is used to derive the equation for the nonlinear flow-structure coupled
motion, where the method of multiple scales is used to derive the frequency response of each
mode under the fixed point (steady state), and the amplitude of each mode is used to examine
internal resonance. This study added (tuned mass dampers) TMDs of different masses, spring
constants and damping coefficients at different locations in the system to observe the effect
of the shock absorber in avoiding the internal resonance of the flow-structure coupled system
and reducing the vibration of the system. Poincaré map, maximum amplitude contour plots,
and basin of attraction are used to analyze and compare the system to verify the correctness of
our theory. The stability of the system is analyzed by changing the flow velocity of the fluid.
The results show that under a certain combination of elastic foundation spring constants and
flow speeds, the 1:3 internal resonance between the first and third modes of the main system
will occur. In addition, the stability range of any case will increase significantly after TMD
is added, indicating that TMD plays an important role.

1 Introduction

Fluid-conveying tubes are widely used in the engineering sector, such as air conditioner and
offshore oil-conveying pipes, and can even simulate the aorta in the human body. As this sys-
tem has the possibility of coupling the vibration between fluid and solid, the topic of the fluid-
conveying tube has been widely discussed. Paidoussis et al. [1,2] used the Bernoulli–Euler
beam as the theoretical model to study the dynamic characteristics of the fluid-conveying tube.
Blevins [3] gave a comprehensive overview of flow-induced vibration, while this paper gives
a detailed description of the phenomena of vortex-induced vibration, meaning Galloping and
Flutter. Based on the Bernoulli–Euler beam, Semler et al. [4] used the large deformations
of the beam to derive the geometric nonlinear motion equation of the fluid-conveying tube.
Zhang et al. [5] studied the vibration of the fluid-conveying tube, deduced the matrix equation
of dynamic equilibrium by using the Lagrange principle, and used Eulerian and Fictitious
loads to study the concept of kinematic correction to analyze the vibration. Reddy and Wang
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[6] used the theoretical model of a fluid-conveying beam to simulate the vibration of a fluid-
conveying tube, meaning a nonlinear Bernoulli–Euler beam and a nonlinear Timoshenko
beam were used to derive the equations of motion of the fluid-conveying beam of the two
theories, respectively, and their results provided a method to simulate pipe vibration with the
theoretical model of the nonlinear beam.

The vibration of the fluid-conveying tube and flow-induced wall vibration plays an impor-
tant role in medical research. In addition to deteriorating elastin in the vascular wall, pro-
longed vibration may damage vascular smooth muscle, resulting in vascular dilatation; if
the dilatation area is wider, the aneurysm may change permanently [7]. In addition, in the
murmur-producing areas of arteries, changes in the elasticity of arterial walls are accompa-
nied by poststenotic dilation. Boughner and Roach [8] found that low-frequency vibration in
vascular murmurs caused changes in the properties of vascular walls. However, there was no
literature regarding the relationship between the radial and axial vibrations of arterial wall
and blood flow until 2000, when Sunagawa et al. [9] simultaneously measured the radial
and axial vibrations and blood flow velocity of the arterial wall using ultrasonic beams, and
the data they obtained on vascular wall vibration are beneficial to the diagnosis of the upper
carotid artery. These studies have found that there is an important correlation between the
elasticity of the arterial wall and the pressure on the arterial wall.

The vibration of nonlinear systems has always played an important role in the study of
vibration, as internal resonance (I.R.) is a unique phenomenon in nonlinear systems; when
the natural frequencies of different modes with the same degree of freedom have integer
multiple relations with each other, the high modes of the excitation system will produce higher
amplitudes in the low modes [10]. In a nonlinear system, the internal resonance is caused by
the transfer of energy from the high mode of excitation to the low mode of nonexcitation,
which triggers the low mode to produce a larger amplitude than the high mode, and this
phenomenon may cause unpredictable damage to the system. Nayfeh et al. [11] studied the
effects of various nonlinear external forces on I.R. The double-beam system, as considered
by Palmeri and Adhikari [12], is composed of two slender beams connected by Winkler-
type springs as the inner layer; they used the Galerkin-type method to study the transverse
vibration of the double-deck beam system, and the obtained numerical results validated the
accuracy and versatility of the method. Sedighi et al. [13] studied the nonlinear vibration
of cantilever beams under preloaded nonlinear cubic spring boundary conditions, where the
He’s Parameter Expanding Method (HPEM) was used to obtain the exact solution for the
dynamic behavior in this system, and the results demonstrated that series expansions with one
term are sufficient to obtain an accurate solution. Nayfeh and Pai [14] proposed many linear
and nonlinear beam models to simulate practical applications, as well as various methods for
the analysis of nonlinear systems, such as the average method and the method of multiple
scales (MOMS). In addition, Nayfeh and Balachandran [15] illustrated the definitions of
various stabilities in nonlinear systems, as well as the methods for judging the stability of
various systems, which are of great reference value to the stability analysis of this system.

Merely changing the location of the damper can reduce vibration, without the need to
change the damper itself; for example, Wang and Kuo [16] discussed a hinged-free linear
Euler–Bernoulli beam resting on a nonlinear elastic foundation and found that placing a DVA
with appropriate mass could prevent internal resonance and suppress vibrations in the beam.
Wang and Lu [17] reported that, in a system with a hinged-hinged nonlinear beam resting on a
nonlinear elastic foundation, 1:3 I.R. occurs within the 1st and 3rd modes when the ratio of the
elastic modulus of the foundation to that of the beam is 9π4. Wang and Liang [18] investigated
the damping effects of vibration absorbers with a lumped mass on a hinged-hinged beam and
found that this kind of vibration absorber is able to mitigate vibrations in mechanical and
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civil engineering structures on an elastic foundation. This shows that changing the position,
mass, spring constant, or damping coefficient of the TMD or DVA is also feasible approaches
to preventing I.R. and reducing vibrations. Wang et al. [19] also found that when the mDk
of the TMD shock absorber is a certain value (mDk = 0.0475), the best vibration reduction
effect can be obtained, and this characteristic still exists when the location of the TMD (lD) is
adjusted. In this study, TMD was added to the flow-structure coupled system to try to avoid
I.R. and achieve the best effect of vibration reduction by changing the parameters of TMD.

In this paper, Hamilton’s principle is used to derive the equation for the nonlinear flow-
structure coupled motion, where the method of multiple scales (MOMS) is used to derive
the frequency response of each mode under the fixed point (steady state), and the amplitude
of each mode is used to examine I.R. This study mounted TMDs of different masses in
different locations on beams, in order to determine whether their fixed point plots can avoid
I.R. and reduce the amplitude. In addition, we used the 3D maximum amplitude contour
plot (3D MACP) to comprehensively identify the best TMD vibration reduction combination
(including mass, position, spring constant, and the damping coefficient of TMD) for the flow-
structure coupled system and verified the correctness of the results with numerical simulation.
This study analyzed the effects of different flow velocities and TMD parameters on the I.R.
of the entire system and used the Floquet theory to analyze the stability of the flow-structure
coupled system. Based on the criterion of Floquet multipliers (F.M.), we drew the basin of
attraction plots of the system to explore the stability of the fluid delivery system at different
flow rates and after TMD was added.

2 Establishment and analysis of the theoretical model

2.1 Establishment of the fluid-conveying tube system

Figure 1 shows the schematic diagram of a fluid-conveying tube system. We put the system
on an elastic foundation, which can be used to simulate the water-cooled heat sink pipeline
system, the offshore oil pipeline, submarine cable, micro-electromechanical system, or the
vibration model of the human aorta. A laminar flow with no circulation or vortex in the
pipe was considered. So we assumed that a nonviscous fluid flows in a pipe at the velocity
of v and considered that the main body was affected by the distribution force. We added a
damping ring to the pipe, which can be simulated by a tuned mass damper (TMD), in order to
reduce the vibration, and took the fluid-conveying nonlinear beam to simulate the model of
the fluid-conveying tube, and then, used a nonlinear spring to simulate the elastic foundation,
and the relevant coordinate system and boundary conditions are detailed in Fig. 2. Among
them, mb is beam mass/unit length, Ab is the cross-sectional area of the beam, E is Young’s
modulus, Ib is the moment of inertia, kw and Bw are the linear and nonlinear spring constants
of the elastic foundation, respectively, mD is the mass of the additional TMD, fs is the spring
constant of the additional TMD, and gs is the damping coefficient of the additional TMD.
This study took an element of a nonlinear beam for analysis, as shown in Fig. 3, which
assumed the elastic beam bend at slight angle θ after deformation, and considered the effects
of the centripetal force and tangential force of the fluid acting on the pipe wall. Among them,
u and w are the deformation of the elastic beam in the x and y directions, respectively, m f

is the mass of fluid per unit length, and ρ is the radius of the curvature of the beam.
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Fig. 1 Schematic diagram of a fluid-conveying tube system

Fig. 2 Fluid-conveying nonlinear beam coordinate system and boundary conditions

Fig. 3 Element of a fluid-conveying nonlinear beam system

2.2 Derivation of the equation of motion for the nonlinear flow-structure coupled system

First, this study considered the nonlinear Bernoulli–Euler beam and defined κ = 1
ρ

= ∂θ
∂x =

∂2w
∂x2 as the curvature of the beam. Based on the relationship between von Kármán nonlinear
strain (η) and deformation (u, w), we can obtain that the nonlinear strain of the beam is
η = ∂u

∂x + 1
2 ( ∂w

∂x )2 + y( ∂2w
∂x2 ) = η0 + yη1, in which η0 = ∂u

∂x + 1
2 ( ∂w

∂x )2 is the tensile strain of
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the beam, η1 = ( ∂2w
∂x2 ) is the bending strain of the beam, and y is the cross-sectional coordinate

system of the beam. In this study, Hamilton’s principle is used to derive the equation of motion
for the flow-structure coupled system, and its kinetic energy (T) is, as follows:

T =
∫ l

0

(
1

2
mb

(
u̇ + y

∂2w

∂t∂x

)2

+ 1

2
mbẇ

2

)
dx +

∫ l

0

(
1

2
m f (

⇀

V )2 + 1

2
m f

(
y

∂2w

∂t∂x

)2
)

dx .(1)

The first integral term is the kinetic energy of the beam, the second integral term is the kinetic

energy of the fluid y ∂2w
∂t∂x = y ∂θ

∂t = yω, and
⇀

V = (v cos θ + u̇)
⇀

i + (v sin θ + ẇ)
⇀

j is the
relative velocity of the fluid and the beam, in which the velocity is v = Y sin ωt . The potential
energy (U) of the system is:

U =
∫ l

0

(
1

2
E Abη

2
)

dx +
∫ l

0
[−qw + m f v

2 ∂2w

∂x2 (w cos θ − u sin θ)

+m f v̇(u cos θ + w sin θ)]dx . (2)

Considering the hypothesis that angle θ is a small angle, the relative velocity
⇀

V of the fluid
and the beam can be expressed as:

⇀

V = (v cos θ + u̇)
⇀

i + (v sin θ + ẇ)
⇀

j ≈ (v + u̇)
⇀

i + (vθ + ẇ)
⇀

j . (3)

Then, we further assumed that the variability (u̇ and ẇ) of the beam deformed in u and w

directions is very small relative to flow speed (v). After we neglected it, we obtained the
following equation:

⇀

V = (v + u̇)
⇀

i + (vθ + ẇ)
⇀

j ≈ (v)
⇀

i + (vθ)
⇀

j ≈ (v)
⇀

i + (vw′)
⇀

j . (4)

Based on Hamilton’s principle:
∫ T

0 δ(T −U )dt = 0, after the variation of Eq. (1), the
following results are obtained:

∫ T

0
δT dt =

∫ T

0

∫ l

0
m f (v − (v′w′w + vww′′))dxdtδv −

∫ T

0

∫ l

0
[mbü]dxdtδu

−
∫ T

0

∫ l

0
[mbẅ − (mb + m f )y

2ẅ′′ + m f (vv′w′ + v2w′′)]dxdtδw

+
{ ∫ l

0
mb(u̇δu)dx |T0 +

∫ l

0
mb

(
y2ẇ′ ∂δw

∂x

)
dx |T0 −

∫ T

0
mb(y

2ẅ′δw)dt |l0

+
∫ l

0
mb(ẇδw)dx |T0 +

∫ l

0
m f

(
y2ẇ′ ∂δw

∂x

)
dx |T0 −

∫ T

0
m f (y

2ẅ′δw)dt |l0

+
∫ T

0
m f vw′δvwdt |l0+

∫ l

0
m f vw′δwdx |T0

}
. (5)

Similarly, by the variation of Eq. (2), we can obtain the following:
∫ T

0
δUdt =

∫ T

0

∫ l

0
m f (v̇ − v2w′′w′)dxdtδu − E Ab

∫ T

0

∫ l

0
(u′′ + w′w′′)dxdtδu

+
∫ T

0

∫ l

0
m f v̇w′dxdtδw +

∫ T

0

∫ l

0
m f v

2w′′dxdtδw +
∫ T

0

∫ l

0
−qdxdtδw

−E Ab

∫ T

0

∫ l

0
(u′′w′ + u′w′′ + 3

2
w′′w′2 − y2wiv)dxdtδw
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+
{ ∫ T

0
E Abu

′δudt |l0 +
∫ T

0
E Abu

′w′δwdt |l0 +
∫ T

0
E Aby

2w′′δw′dt |l0

+
∫ T

0
E Ab

1

2
w′3δwdt |l0 +

∫ T

0
E Ab

1

2
w′2δudt |l0 −

∫ T

0
E Aby

2w′′′δwdt |l0
}
.

(6)

Based on Hamilton’s principle, we can obtain the following coupling equations of motion
for the fluid-conveying nonlinear beam system:

mbü − E Ab(u
′′ + w′w′′) + m f v̇ − m f v

2w′′w′ = 0, (7)

mbẅ − (Imb + Im f )ẅ
′′ + E Ibw

iv − E Ab(u
′′w′ + u′w′′ + 3

2
w′′w′2)

+m f (vv′w′ + 2v2w′′ + v̇w′) − q = 0. (8)

Equations (7) and (8) are the coupling equations of motion of the system in the u and w

directions, respectively. To simplify the symbols, we defined ( )′ as the space differential and
•
( ) as the time differential. Among them, E Ib = E Aby2 is the flexural rigidity of the beam;
Imb = mby2 and Im f = m f y2 are moment of inertia of the beam and fluid, respectively.
At this time, we added the structural damping terms μuu̇, μwẇ of the elastic beam and the
nonlinear elastic foundation kww+Bww3 of the support system. Based on Newton’s method,
the coupling equations of motion can be expressed, as follows:

mbü + μuu̇ − E Ab(u
′′ + w′w′′) + m f v̇ − m f v

2w′′w′ = 0, (9)

mbẅ − (Imb + Im f )ẅ
′′ + μwẇ + E Ibw

iv − E Ab

(
u′′w′ + u′w′′ + 3

2
w′′w′2

)

+m f (vv′w′ + 2v2w′′ + v̇w′) + kww + Bww3 − q = 0. (10)

To facilitate the writing of equations, this study used the same symbols as the dimensional
equation of motion to express the dimensionless equations of motion. After dimensionless
transformation of Eqs. (9) and (10), we obtained:

ü + μuu̇ − (u′′ + w′w′′) + M v̇ − Mv2w′w′′ = 0, (11)

ẅ − Ī ẅ′′ + μwẇ + ω2wiv −
(
u′′w′ + u′w′′ + 3

2
w′′w′2

)

+M(vv′w′ + 2v2w′′ + v̇w′) + kww + Bww3 − qei�τ = 0. (12)

The dimensionless definition of the coefficients is shown in “Appendix A,” where M is the
ratio of the fluid mass to the elastic beam mass, ω is the ratio of transverse to the axial natural
frequency of the elastic beam, Ī is the moment of inertia, and � is the frequency of external
force. Both ends of the elastic beam are hinged, and the dimensionless boundary conditions
are, as follows:

u(0, τ ) = 0, u(1, τ ) = 0,

w(0, τ ) = 0, w′′(0, τ ) = 0, w(1, τ ) = 0, w′′(1, τ ) = 0. (13)

To simplify the problem, we assumed that the flow velocity (v) of the fluid is a uniform flow
field, and that the elastic beam is transformed into a steady state in the u direction. Therefore,
Eqs. (11) and (12) can be replaced by:

u′′ + w′w′′ − M v̇ + Mv2w′w′′ = 0, (14)
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ẅ − Ī ẅ′′ + μwẇ + ω2wiv −
(
u′′w′ + u′w′′ + 3

2
w′′w′2

)

+M(2v2w′′ + v̇w′) + kww + Bww3 − qei�τ = 0. (15)

From Eq. (14), we can obtain the following relations.

u′′ = (−Mv2 − 1)w′w′′ + M v̇. (16)

After integrating Eq. (16), the results are expressed, as follows:

u′ = −1

2
(Mv2 + 1)(w′)2 + M v̇x + c1(τ ),

u = −1

2
(Mv2 + 1)

∫ x

0
(w′)2dx + 1

2
M v̇x2 + c1(τ )x + c2(τ ). (17)

By substituting boundary conditions Eq. (13) into Eq. (17), we can obtain:

c2(τ ) = 0; c1(τ ) = 1

2
(Mv2 + 1)

∫ 1

0
(w′)2dx − 1

2
M v̇. (18)

Then, Eqs. (16–18) are substituted into Eq. (15). We further assumed that the velocity of the
fluid is a steady state; thus, the equation of motion of the flow-structure coupling system can
be simplified to the equation of motion of the w-direction vibration, as follows:

ẅ − Ī ẅ′′ + μwẇ + ω2wiv + 3

2
Mv2w′′w′2 − 1

2
Mv2w′′

∫ 1

0
(w′)2dx − 1

2
w′′

∫ 1

0
(w′)2dx

+2Mv2w′′ + kww + Bww3 − qei�τ = 0. (19)

At this time, we added TMD to the main system, which can be regarded as the concentrated
load acting on the elastic beam, and its effect on the elastic beam can be expressed as:
{gs[ẇ(x, t) − ẆD(t)]+ fs[w(x, t) − WD(t)]}δ[x − lD]. To simplify the symbols, we used
the same symbols as the dimensional equations of motion to represent the variables. Based
on Newton’s method, the dimensionless equation of motion of the fluid-conveying elastic
beam with TMD is obtained, as follows:

ẅ − Ī ẅ′′ + μwẇ + ω2wiv + 3

2
Mv2w′′w′2 − 1

2
Mv2w′′

∫ 1

0
(w′)2dx − 1

2
w′′

∫ 1

0
(w′)2dx

+2Mv2w′′ + {gs(ẇ − ẆD) + fs(w − WD)}δ[x − lD] + kww + Bww3 − qei�τ = 0.

(20)

The equation of motion of the TMD added to the elastic beam can also be obtained by
Newton’s method:

m̄DW̄
∗∗
D (τ ) − f̄s[w̄(x̄, τ ) − W̄D(τ )] − ḡs[w̄∗(x̄, τ ) − W̄ ∗

D(τ )] = 0. (21)

Equation (21) is a dimensionless TMD equation of motion; for the dimensionless definition of
the coefficients, please refer to “Appendix A”; among them, m̄D is the mass of dimensionless
TMD, and f̄s and ḡs are the spring constant and damping coefficient of dimensionless TMD,
respectively.
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2.3 Comparing the framework of this model with relevant research

To verify the correctness of the flow-structure coupling motion equation, as deduced by this
study, the structure of this model was compared with the related research. Nayfeh and Pai [14]
used Newton’s 2nd law, meaning the coordinate transformation of Euler’s angle and Taylor
series expansion, in order to obtain the complete equations of the motion of nonlinear beams.
Assuming that Nayfeh and Pai [14] did not consider the high number of beams or confine
the beams to planar 2D motion, the derived nonlinear beam equation can be rewritten, as
follows:

m ¨̄u − E Aū′′ = E A

(
1

2
w̄′2 − ū′w̄′2

)′
+ E I

[
w̄′ (w̄′′′ − ū′′′w̄′ − 2ū′′w̄′′ − 3ū′w̄′′′)]′ ,

(22)

m ¨̄w − j3 ¨̄w′′ + E I w̄iv = E A(ū′w̄′ − ū′2w̄′ + 1

2
w̄′3)′

+E I

[
ū′w̄′′′ + (

ū′w̄′)′′ − (
ū′2 − w̄′2) w̄′′′ − ū′ (ū′w̄′)′′ −

(
ū′2w̄′ − 1

3
w̄′3

)′′]′
+ F̄ .

(23)

Ignoring the coupling rotary term of u and w in Eqs. (22) and (23), and ignoring that ¯uw

is higher than the coupling term of cubic, it can be expressed as:

m ¨̄u − E A

[
ū′′ + E A

(
1

2
w̄′2

)′]
= 0, (24)

m ¨̄w − j3 ¨̄w′′ + E I w̄iv − E A

(
ū′w̄′ + 1

2
w̄′3

)′
− F̄ = 0. (25)

On the contrary, in Eqs. (11) and (12), as deduced by this study, if the structural damping,
elastic foundation, and the influence of fluid are neglected, the nonlinear beam equation can
be obtained, as follows:

ü − (u′′ + w′w′′) = 0, (26)

ẅ − Ī ẅ′′ + ω2wiv − (u′′w′ + u′w′′ + 3

2
w′′w′2) − qei�τ = 0. (27)

After comparison, it is found that Eqs. (24) and (25), as deduced by Nayfeh and Pai [14],
are consistent with Eqs. (26) and (27), as deduced by this study; thus, the correctness of the
nonlinear beam equation deduced by this study can be verified.

We also referred to the equation of motion of the fluid-conveying beam, as derived by
Reddy and Wang [6]. Reddy and Wang [6] assumed that the main beam is a nonlinear
Bernoulli–Euler beam and considered the tangential force and centripetal force of the fluid
acting on the pipe wall. The fluid-conveying nonlinear beam equation is derived, as follows:

(mp + m f )ü0 − Ep Ap(u
′′
0 + w′

0w
′′
0 ) + m f v̇ − m f vw′

0(ẇ
′
0 + vw′′

0 ) = 0, (28)

(mp + m f )ẅ0 − ( Î p + Î f )ẅ
′′
0 + Ep Ipw

iv
0 − Ep Ap(u

′′
0w

′
0 + u′

0w
′′
0 + 3

2
w′′

0w′2
0)

+m f (2vẇ′
0 + v2w′′

0 + v̇w′
0) − m f v[u̇0w

′′
0 + w′

0(ẇ0w
′′
0 + u̇′

0)] = q. (29)

Regarding the fluid-conveying nonlinear beam of this study, it is assumed that the vari-
ability (u̇ and ẇ) relative velocity v of the beam, as deformed in u and w directions, is very
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small; thus, it is ignored. If the structural damping and elastic foundation are further ignored,
eqs. (11 and 12) can be expressed as follows:

ü − (u′′ + w′w′′) + M v̇ − Mv2w′w′′ = 0, (30)

ẅ − Ī ẅ′′ + ω2wiv − (u′′w′ + u′w′′ + 3

2
w′′w′2) + M(vv′w′ + 2v2w′′ + v̇w′) = qei�τ .

(31)

After comparing eqs. (28 and 29) and eqs. (30 and 31), it can be found that, if the coupling
terms of v and u̇0&ẇ0(m f vw′

0ẇ
′
0, 2m f vẇ′

0 and m f v[u̇0w
′′
0 + w′

0(ẇ0w
′′
0 + u̇′

0)]) in eqs.
(28 and 29) are eliminated, the results are similar to those of eqs. (30 and 31), as deduced
by this study; therefore, the correctness of the equation of the motion of the fluid-conveying
nonlinear elastic beam, as deduced by this study, can be verified again.

In comparing with the typical existing theoretical researches, Chen [20] studied a simply
supported pipe model with conveying fluid. He investigated the stability of this pipe with
constant mean flow velocity superimposed on a time-varying component. Only linear model
was assumed, and the effects of bending and curvature of the beam were not considered
in his work. Rahmati et al. [21] proposed a method for investigating probabilistic stability
of pipes conveying fluid. The conveying pipe was resting on an elastic foundation. The
divergence instability of this pipe with uncertain flow velocity was analyzed. However, the
spring constant effect of the elastic foundation on the conveying beam was not studied. The
unique nonlinear property of internal resonance was not considered in their work. In the
present study, a nonlinear model of fluid-conveying beam resting on an elastic foundation
was proposed. The centripetal force and tangential force of fluid acting on the beam were
considered. In comparing with the existing theories, this nonlinear flow-induced beam model
is not only a novel work in physics but also application on medical research and engineering
problems.

2.4 Method of multiple scales

This study adopted MOMS to analyze the frequency response and fixed points of the nonlinear
equation, which involved dividing the time scale into fast and slow timescales. Suppose T0 =
τ is the fast-time term, T1 = ε2τ is the slow-time term, andW (x, τ, ε) = εW0(x, T0, T1....)+
ε3W1(x, T0, T1....), where ε is the timescale of small disturbances and is a minimum value.
MOMS is a technique used for small perturbations. This study considered weak damping and
nonlinearity. Under the assumptions of small perturbations and weak nonlinear vibrations,
we scaled the dimensionless damping coefficient (μ) and the other nonlinear terms in the
order of ε2. Since ε is the minimum value, we ignored the influence of higher-order terms,
such as ε5 , ε7 . . . on the system. Then the order of μw , fs , gs is ε2, and the order of uniformly
distributed external forces is assumed to be ε3 for analysis. Based on these assumptions and
with the expansion of W (x, τ, ε) in the order of ε and ε3, the damping coefficient (μ), the
nonlinear terms, and the external force are collected in the same order of ε3 The time-scaled
equation can be obtained as follows:

(
ε
∂2w0

∂T 2
0

+ ε3 ∂2w1

∂T 2
0

+ 2ε3 ∂2w0

∂T0∂T1

)
− Ī

(
ε
∂2w′′

0

∂T 2
0

+ ε3 ∂2w′′
1

∂T 2
0

+ 2ε3 ∂2w′′
0

∂T0∂T1

)

+ε2μw

(
ε
∂w0

∂T0
+ ε3 ∂w1

∂T0
+ ε3 ∂w0

∂T1

)
+ ω2

(
εwiv

0 + ε3wiv
1

)
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+3

2
Mv2 (

εw′′
0 + ε3w′′

1

)
(ε2w′2

0)

−1

2
(Mv2 + 1)(εw′′

0 + ε3w′′
1 )

∫ 1

0
(εw′

0)
2dx +

{
ε2gs(ε

∂w0

∂T0
+ ε3 ∂w1

∂T0
+ ε3 ∂w0

∂T1

−ε
∂WD

∂T0
− ε3 ∂WD

∂T1
) + ε2 fs(εw0 + ε3w1 − εWD)

}
δ(x − lD)

+2Mv2(εw′′
0 + ε3w′′

1 ) + kw(εw0 + ε3w1) + Bw(εw0)
3 − ε3qei�τ = 0. (32)

Among them, the term consisting of ε1 is:

∂2w0

∂T 2
0

− Ī
∂2w′′

0

∂T 2
0

+ ω2wiv
0 + 2Mv2w′′

0 + kww0 = 0. (33)

The term consisting of ε3is:

∂2w1

∂T 2
0

− Ī
∂2w′′

1

∂T 2
0

+ ω2wiv
1 + 2Mv2w′′

1 + kww1 =

−2
∂2w0

∂T0∂T1
+ 2 Ī

∂2w′′
0

∂T0∂T1
− μw

∂w0

∂T0
− 3

2
Mv2w′′

0w′2
0 + 1

2
(Mv2 + 1)w′′

0

∫ 1

0
(w′

0)
2dx

−
[
gs

(
∂w0

∂T0
− ∂WD

∂T0

)
+ fs(w0 − WD)

]
δ(x − lD) − Bww3

0 + qei�τ . (34)

The corresponding boundary conditions of the equations for ε1 and ε3 are, as follows:

ε1 : w0(0, τ ) = 0, w′′
0 (0, τ ) = 0, w0(1, τ ) = 0, w′′

0 (1, τ ) = 0,

ε3 : w1(0, τ ) = 0, w′′
1 (0, τ ) = 0, w1(1, τ ) = 0, w′′

1 (1, τ ) = 0. (35)

Based on the separation of variable and boundary conditions, we can obtain the characteristic
equation of Eq. (33),

sin γ l = 0. (36)

Among them, the eigenvalues are γn = nπ
l , n = 1, 2, 3..., and the mode shape is

φn(x) = sin γnx . (37)

The subscript n represents each mode.

3 Analysis of resonance in systems

3.1 Equation for the nonlinear flow-structure coupled motion without TMD

We first discussed the phenomenon of nonlinear vibration in the main body without TMD, in
order to analyze the vibration of the nonlinear beam in the absence of a damper, and found
the target of vibration reduction. After removing TMD from the beam system, we obtain the
following equation:

ẅ − Ī ẅ′′ + μwẇ + ω2wiv + 3

2
Mv2w′′w′2 − 1

2
Mv2w′′

∫ 1

0
(w′)2dx − 1

2
w′′

∫ 1

0
(w′)2dx

+2Mv2w′′ + kww + Bww3 − qei�τ = 0. (38)
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The boundary condition of the hinged-hinged beam is:

w(0, τ ) = 0, w′′(0, τ ) = 0, w(1, τ ) = 0, w′′(1, τ ) = 0. (39)

The dimensionless definition of its coefficients can be found in “Appendix A.”

3.2 Analysis of internal resonance conditions

This study adopted MOMS and gave the equations for ε1and ε3.
The term consisting of ε1is:

∂2w0

∂T 2
0

− Ī
∂2w′′

0

∂T 2
0

+ ω2wiv
0 + 2Mv2w′′

0 + kww0 = 0. (40)

The term consisting of ε3is:

∂2w1

∂T 2
0

− Ī
∂2w′′

1

∂T 2
0

+ ω2wiv
1 + 2Mv2w′′

1 + kww1 = −2
∂2w0

∂T0∂T1
+ 2 Ī

∂2w′′
0

∂T0∂T1

−μw

∂w0

∂T0
− 3

2
Mv2w′′

0w′2
0 + 1

2
(Mv2 + 1)w′′

0

∫ 1

0
(w′

0)
2dx − Bww3

0 + qei�τ . (41)

The boundary conditions of the corresponding equations for ε1and ε3are, as follows,

ε1 : w0(0, τ ) = 0, w′′
0 (0, τ ) = 0, w0(1, τ ) = 0, w′′

0 (1, τ ) = 0,

ε3 : w1(0, τ ) = 0, w′′
1 (0, τ ) = 0, w1(1, τ ) = 0, w′′

1 (1, τ ) = 0. (42)

To explore the conditions for the generation of I.R. by a vibrating body, we must first determine
the conditions under which kw can cause I.R. First, we define:

w0 =
∞∑
n=1

ξ0n(τ )φn(x), w1 =
∞∑
n=1

ξ1n(τ )φn(x). (43)

Substituting Eq. (43) into Eq. (40) composed of ε1 and Eq. (41) composed of ε3, we can
obtain the order of ε1:

∞∑
n=1

(φn − Īφ′′
n )ξ̈0n +

∞∑
n=1

(ω2φiv
n + 2Mv2φ′′

n + kwφn)ξ0n = 0. (44)

the order of ε3:
∞∑
n=1

(φn − Īφ′′
n )ξ̈1n +

∞∑
n=1

(ω2φiv
n + 2Mv2φ′′

n + kwφn)ξ1n =

−2
∂2

∂T0∂T1

∞∑
n=1

ξ0nφn + 2 Ī
∂2

∂T0∂T1

∞∑
n=1

ξ0nφ
′′
n − μw

∞∑
n=1

ξ̇0nφn

−3

2
Mv2

∞∑
n, j,k=1

ξ0nξ0 jξ0kφ
′′
nφ′

jφ
′
k

+1

2
(Mv2 + 1)

∞∑
n, j,k=1

ξ0nξ0 jξ0kφ
′′
n

∫ 1

0
φ′

jφ
′
kdx − Bw

∞∑
n, j,k=1

ξ0nξ0 jξ0kφnφ jφk + qei�τ .

(45)
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By using the orthogonal method, the following dynamic equations are obtained by multiplying
Eqs. (44) and (45) by φm(x) and integrating them at 0~l(l =1).

ξ̈0m+ (γ 4
mω2 − 2Mv2γ 2

m+kw)

(1+ Īγ 2
m)

ξ0m=0, (46)

ξ̈1m+ (γ 4
mω2 − 2Mv2γ 2

m+kw)

(1 + Īγ 2
m)

ξ1m= − 2

(1 + Īγ 2
m)

∂2

∂T0∂T1
ξ0m − 2 Īγ 2

m

(1 + Īγ 2
m)

∂2

∂T0∂T1
ξ0m

− μw

(1 + Īγ 2
m)

ξ̇0m − 3Mv2

2(1 + Īγ 2
m)

∫ 1
0 φ2

mdx

∫ 1

0
φmφ′′

nφ′
jφ

′
kdx

∞∑
n, j,k=1

ξ0nξ0 jξ0k

+ (Mv2 + 1)

2(1 + Īγ 2
m)

∫ 1
0 φ2

mdx

∫ 1

0
φmφ′′

ndx
∫ 1

0
φ′

jφ
′
kdx

∞∑
n, j,k=1

ξ0nξ0 jξ0k

− Bw

(1 + Īγ 2
m)

∫ 1
0 φ2

mdx

∫ 1

0
φmφnφ jφkdx

∞∑
n, j,k=1

ξ0nξ0 jξ0k +
∫ 1

0 φmdx

(1 + Īγ 2
m)

∫ 1
0 φ2

m dx
qei�τ

.

(47)

From Eq. (46), we can determine that the natural frequency of the flow-structure coupled
system is, as follows:

ωm =
[

(γ 4
mω2 − 2Mv2γ 2

m + kw)

(1 + Īγ 2
m)

] 1
2

,m = 1, 2, 3 . . . (48)

The relation schema between the natural frequency ratio of each mode of the system
and spring constant (kw) of the elastic foundation can be obtained by Eq. (48). As shown
in Fig. 4, when the frequency ratio of different modes is an integer, I.R. may occur. We
discussed several representative conditions; when kw =65.7, ω1 : ω2 = 1 : 2, kw =80.7,
ω1 : ω3 = 1 : 3, and kw =315, ω1 : ω3 = 1 : 2, I.R. may occur in the system. However,
in Eq. (47), we found that the right side of the equal sign contains only the first and second
power terms of ξ , which means that there will be no coupling terms between the modes when
the frequency ratio of different modes is 1:2; thus, even if the frequency is an integer ratio,

Fig. 4 Relation schema between
the natural frequency ratio and
spring constant (kw)
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there will be no I.R and there is no energy transfer between the modes. Therefore, analysis
is only required to determine whether I.R. occurs when the frequency ratio of the first mode
to the third mode is 1:3.

3.3 Analysis of the frequency response in the system

Figure 4 shows that the 1st mode and 3rd mode may have the I.R. phenomena of 1:3;
therefore, this study discusses the 1st mode and 3rd mode. First, we assume ξ0m(τ ) =
Bm(T1)e−iςm eiωmT0 + B̄m(T1)eiςm e−iωmT0 and substitute it into Eq. (47) to obtain the fol-
lowing equation:

ξ̈1m + ω2
mξ1m =

−Am

(
iωm B ′

m(T1)e
−iςm eiωmT0 − iωm B̄ ′

m(T1)e
iςm e−iωmT0 + ωmς ′

mξ0m

)
+ Fmqe

i�τ

−βm

(
iωm Bm(T1)e

−iςm eiωmT0 − iωm B̄m(T1)e
iςm e−iωmT0

)

−Cm

[ ∫ 1

0
φmφnφ jφkdx

∞∑
n, j,k=1

(Bn(T1)e
−iςn eiωnT0 + B̄n(T1)e

iςn e−iωnT0)

(Bj (T1)e
−iς j eiω j T0 + B̄ j (T1)e

iς j e−iω j T0)(Bk(T1)e
−iςk eiωk T0 + B̄k(T1)e

iςk e−iωk T0)

]

−Dm

[ ∫ 1

0
φmφ′′

nφ′
jφ

′
kdx

∞∑
n, j,k=1

(Bn(T1)e
−iςn eiωnT0 + B̄n(T1)e

iςn e−iωnT0)

(Bj (T1)e
−iς j eiω j T0 + B̄ j (T1)e

iς j e−iω j T0)(Bk(T1)e
−iςk eiωk T0 + B̄k(T1)e

iςk e−iωk T0)

]

+Em

[ ∫ 1

0
φmφ′′

ndx
∫ 1

0
φ′

jφ
′
kdx

∞∑
n, j,k=1

(Bn(T1)e
−iςn eiωnT0 + B̄n(T1)e

iςn e−iωnT0)

(Bj (T1)e
−iς j eiω j T0 + B̄ j (T1)e

iς j e−iω j T0)(Bk(T1)e
−iςk eiωk T0 + B̄k(T1)e

iςk e−iωk T0)

]
.

(49)

For the definition of the relevant coefficients, please refer to “Appendix B.” In addition to
analyzing the frequency response of the system and drawing the fixed point plots, we assume
that the uniform distributed harmonic force is in the following form:

qme
i�τ = qme

i(ωm+ε2σ)T0 = qm(eiε
2σT0eiωmT0) = qme

iσT1eiωmT0 . (50)

If the solving procedure continues, terms containing the factors of the system frequencies (or
harmonics) appear on the right-hand side of Eq. (49). Terms such as these are called secular
terms. Because of the secular terms, the solution of Eq. (49) increases without bound as t
increases. The time scale of ξ1 does not provide a small correction to time scale of ξ0. For
the first mode (m =1), the secular terms should choose the harmonics of ω1 and ω3 − 2ω1.
For the third mode (m =3), the secular terms should choose the harmonics of ω3 and 3ω1.
After selecting the secular terms, we can obtain the solvability condition by setting them to
zero. This study discusses whether there is an I.R. phenomenon in the external excitation
in the fixed-point plot. Assuming that the external force excites the first mode (q1ei�τ =
q1eiσT1eiω1T0), we multiply the secular terms of the first mode by eiς1 and set �B = 3ς1 −ς3.
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In addition, in order to find the frequency response of the system in the fixed points (steady
state), we set �′

A = σ + ς ′
1 = 0 ⇒ ς ′

1 = −σ , �′
B = 3ς ′

1 − ς ′
3 = 0 ⇒ ς ′

3 = −3σ ,
and ∂B1

∂T1
= ∂B3

∂T1
= 0, and substitute the solvability condition, then the square sum of the real

and imaginary parts of the first mode is:
{
A1 (ω1σ B1) − C1

(
3B2

1 B̄1

∫ 1

0
φ4

1dx + 6B1B3 B̄3

∫ 1

0
φ2

1φ2
3 dx + 3B̄2

1 B3 cos (�B)

∫ 1

0
φ3

1φ3dx

)

+E1

(
3B2

1 B̄1

∫ 1

0
φ1φ

′′
1 dx

∫ 1

0
φ′2

1dx + 2B1B3 B̄3

∫ 1

0
φ1φ

′′
1 dx

∫ 1

0
φ′2

3dx

+4B1B3 B̄3

∫ 1

0
φ1φ

′′
3 dx

∫ 1

0
φ′

1φ
′
3dx

+B̄2
1 B3 cos (�B)

∫ 1

0
φ1φ

′′
3 dx

∫ 1

0
φ′2

1dx +2B̄2
1 B3 cos (�B)

∫ 1

0
φ1φ

′′
1 dx

∫ 1

0
φ′

1φ
′
3dx

)

−D1

(
3B2

1 B̄1

∫ 1

0
φ1φ

′′
1 φ′2

1dx + 2B1B3 B̄3

∫ 1

0
φ1φ

′′
1 φ′2

3dx + 4B1B3 B̄3

∫ 1

0
φ1φ

′′
3 φ′

3φ
′
1dx

+B̄2
1 B3 cos (�B)

∫ 1

0
φ1φ

′′
3 φ′2

1dx + 2B̄2
1 B3 cos (�B)

∫ 1

0
φ1φ

′′
1 φ′

1φ
′
3dx

)}2

+
{
−β1 (ω1B1) − C1

(
3B̄2

1 B3 sin (�B)

∫ 1

0
φ3

1φ3dx

)

+E1

(
B̄2

1 B3 sin (�B)

∫ 1

0
φ1φ

′′
3 dx

∫ 1

0
φ′2

1dx + 2B̄2
1 B3 sin (�B)

∫ 1

0
φ1φ

′′
1 dx

∫ 1

0
φ′

1φ
′
3dx

)

−D1

(
B̄2

1 B3 sin (�B)

∫ 1

0
φ1φ

′′
3 φ′2

1dx + 2B̄2
1 B3 sin (�B)

∫ 1

0
φ1φ

′′
1 φ′

1φ
′
3dx

)}2

= F2
1 q

2
1 . (51)

If we multiply the secular terms of the third mode by eiς3 , then the real part is:

3A3 (ω3σ B3) − C3

(
3B2

3 B̄3

∫ 1

0
φ4

3dx + 6B1 B̄1B3

∫ 1

0
φ2

1φ2
3 dx + B3

1 cos (−�B)

∫ 1

0
φ3

1φ3dx

)

+E3

(
3B2

3 B̄3

∫ 1

0
φ3φ

′′
3 dx

∫ 1

0
φ′2

3dx + 2B1 B̄1B3

∫ 1

0
φ3φ

′′
3 dx

∫ 1

0
φ′2

1dx

+4B1 B̄1B3

∫ 1

0
φ3φ

′′
1 dx

∫ 1

0
φ′

1φ
′
3dx + B3

1 cos (−�B)

∫ 1

0
φ3φ

′′
1 dx

∫ 1

0
φ′2

1dx

)

−D3

(
3B2

3 B̄3

∫ 1

0
φ3φ

′′
3 φ′2

3dx + 2B1 B̄1B3

∫ 1

0
φ3φ

′′
3 φ′2

1dx + 4B1 B̄1B3

∫ 1

0
φ3φ

′′
1 φ′

3φ
′
1dx

+B3
1 cos (−�B)

∫ 1

0
φ3φ

′′
1 φ′2

1dx

)
= 0. (52)

The imaginary part is:

−β3 (ω3B3) − C3

(
B3

1 sin (−�B)

∫ 1

0
φ3

1φ3dx

)

−D3

(
B3

1 sin (−�B)

∫ 1

0
φ3φ

′′
1 φ′2

1dx

)
+ E3

(
B3

1 sin (−�B)

∫ 1

0
φ3φ

′′
1 dx

∫ 1

0
φ′2

1dx

)
= 0.

(53)

We used the numerical method to solve eqs. (51-53) and drew the response charts of the
system’s amplitude B1 and B3 and fine-tuning frequency “σ” (fixed-point plot), in order to
observe whether there is an I.R. phenomenon.
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Similarly, if the third mode (q3ei�τ = q3eiσT1eiω3T0) is excited by an external force, the
real part of the first mode is:

A1

3
(ω1σ B1) − C1

(
3B2

1 B̄1

∫ 1

0
φ4

1dx + 6B1B3 B̄3

∫ 1

0
φ2

1φ2
3 dx + 3B̄2

1 B3 cos (�B )

∫ 1

0
φ3

1φ3dx

)

+E1

(
3B2

1 B̄1

∫ 1

0
φ1φ′′

1dx
∫ 1

0
φ′2

1dx + 2B1B3 B̄3

∫ 1

0
φ1φ′′

1dx
∫ 1

0
φ′2

3dx

+4B1B3 B̄3

∫ 1

0
φ1φ′′

3 dx
∫ 1

0
φ′

1φ′
3dx

+B̄2
1 B3 cos (�B )

∫ 1

0
φ1φ′′

3 dx
∫ 1

0
φ′2

1dx +2B̄2
1 B3 cos (�B )

∫ 1

0
φ1φ′′

1 dx
∫ 1

0
φ′

1φ′
3dx

)

−D1

(
3B2

1 B̄1

∫ 1

0
φ1φ′′

1 φ′2
1dx + 2B1B3 B̄3

∫ 1

0
φ1φ′′

1 φ′2
3dx + 4B1B3 B̄3

∫ 1

0
φ1φ′′

3 φ′
3φ′

1dx

+B̄2
1 B3 cos (�B )

∫ 1

0
φ1φ′′

3 φ′2
1dx + 2B̄2

1 B3 cos (�B )

∫ 1

0
φ1φ′′

1 φ′
1φ′

3dx

)
= 0. (54)

The imaginary part is:

−β1 (ω1B1) − C1

(
3B̄2

1 B3 sin (�B)

∫ 1

0
φ3

1φ3dx

)

+E1

(
B̄2

1 B3 sin (�B)

∫ 1

0
φ1φ

′′
3 dx

∫ 1

0
φ′2

1dx + 2B̄2
1 B3 sin (�B)

∫ 1

0
φ1φ

′′
1 dx

∫ 1

0
φ′

1φ
′
3dx

)

−D1

(
B̄2

1 B3 sin (�B)

∫ 1

0
φ1φ

′′
3 φ′2

1dx + 2B̄2
1 B3 sin (�B)

∫ 1

0
φ1φ

′′
1 φ′

1φ
′
3dx

)
= 0. (55)

Then, to eliminate the time-related terms, we added the square of the real part and the
imaginary part of the third mode to obtain:

{
A3 (ω3σ B3) − C3

(
3B2

3 B̄3

∫ 1

0
φ4

3 dx + 6B1 B̄1B3

∫ 1

0
φ2

1φ2
3 dx + B3

1 cos (−�B)

∫ 1

0
φ3

1φ3dx

)

+E3

(
3B2

3 B̄3

∫ 1

0
φ3φ

′′
3 dx

∫ 1

0
φ′2

3dx + 2B1 B̄1B3

∫ 1

0
φ3φ

′′
3 dx

∫ 1

0
φ′2

1dx

+4B1 B̄1B3

∫ 1

0
φ3φ

′′
1 dx

∫ 1

0
φ′

1φ
′
3dx + B3

1 cos (−�B)

∫ 1

0
φ3φ

′′
1 dx

∫ 1

0
φ′2

1dx

)

−D3

(
3B2

3 B̄3

∫ 1

0
φ3φ

′′
3 φ′2

3dx + 2B1 B̄1B3

∫ 1

0
φ3φ

′′
3 φ′2

1dx + 4B1 B̄1B3

∫ 1

0
φ3φ

′′
1 φ′

3φ
′
1dx

+B3
1 cos (−�B)

∫ 1

0
φ3φ

′′
1 φ′2

1dx

)}2

+
{
−β3 (ω3B3) − C3

(
B3

1 sin (−�B)

∫ 1

0
φ3

1φ3dx

)
− D3

(
B3

1 sin (−�B)

∫ 1

0
φ3φ

′′
1 φ′2

1dx

)

+E3

(
B3

1 sin (−�B)

∫ 1

0
φ3φ

′′
1 dx

∫ 1

0
φ′2

1dx

)}2

= F2
3 q

2
3 . (56)

eqs. (54-56) could be solved numerically. We drew the Fixed-point plot of the system’s
amplitude B1 and B3 and the tuned frequency “σ ,” in order to observe whether there is
internal resonance.
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3.4 Analysis of internal resonance

Figure 5 shows the Fixed-point plot of each mode under different kw values for the beam’s
third mode is excited. The horizontal axis is the tuned frequency, and the vertical axis is
the beam’s dimensionless amplitude. Figure 5 shows that when kw = 80.7, the frequency
response of the first mode has the largest amplitude (0.01462), as compared with other kw

values (0.01459 for kw =25 and 0.01052 for kw =300), while the frequency response of
the third mode has the smallest amplitude (0.05124 for kw =80.7, 0.06396 for kw =25 and
0.076632 for kw =300). The results show that when kw = 80.7, although the amplitude of
the third mode is larger than that of the first mode, there is energy transfer between the first
mode and the third mode, which represents the generation of weak internal resonance in the
system under this condition, and Fig. 4 shows the reference index.

4 Systematic analysis of TMD

4.1 Theoretical model of TMD

The research of Sect. 3 analyzed the energy exchange between the first and the third modes
of the main structure, which leads to the generation of weak I.R.; thus, this study adds shock
absorbers to the first and third modes of the system and analyzes the vibration reduction
effects. The TMD equation is, as follows:

mDẄD(τ ) − fs

[ ∞∑
n=1

wn(x, τ ) − WD(τ )

]
− gs

[ ∞∑
n=1

ẇn(x, τ ) − ẆD(τ )

]
= 0. (57)

Since TMD is regarded as an external force of the main body equation of motion, we first
discuss the displacement of TMD (WD) and, then, substitute it into Eq. (34). If we set n =1
and n =3 in Eq. (57), then Eq. (57) expands, as follows:

mDẄD(τ ) − fs[φ1(xD)ξ1(τ ) + φ3(xD)ξ3(τ ) − WD(τ )]
−gs[φ1(xD)ξ̇1(τ ) + φ3(xD)ξ̇3(τ ) − ẆD(τ )] = 0. (58)

Now, according to Eq. (33), we can assume that the solutions of ξ10 and ξ30 are:

ξ10 = B1e
−iς1eiω1T0 + B̄1e

iς1e−iω1T0 ,

ξ30 = B3e
−iς3eiω3T0 + B̄3e

iς3e−iω3T0 . (59)

Substitute its solution to Eq. (58) and assume that the solution is:

WD = H1e
−iς1eiω1T0 + H̄1e

iς1e−iω1T0 + H3e
−iς3eiω3T0 + H̄3e

iς3e−iω3T0 . (60)

Then, we can obtain:

H1 = B1
φ1(xD)( fs + iω1gs)

( fs + iω1gs) − mDω2
1

, H̄1 = B̄1
φ1(xD)( fs − iω1gs)

( fs − iω1gs) − mDω2
1

,

H3 = B3
φ3(xD)( fs + iω3gs)

( fs + iω3gs) − mDω2
3

, H̄3 = B̄3
φ3(xD)( fs − iω3gs)

( fs − iω3gs) − mDω2
3

,

WD = H1e
−iς1eiω1T0 + H̄1e

iς1e−iω1T0 + H3e
−iς3eiω3T0 + H̄3e

iς3e−iω3T0 . (61)
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Fig. 5 Fixed-point plots of each mode under different kws for the third mode are excited (no TMD). a
kw = 80.7, 1st mode, b kw = 25, 1st mode, c kw = 300, 1st mode, d kw = 80.7, 3rd mode, e kw = 25, 3rd
mode, f kw = 300, 3rd mode

After the rationalization of Eq. (61), we can obtain:

H1 = φ1(xD)

(
− fs B1mDω2

1 + g2
s B1ω

2
1 + f 2

s B1

m2
Dω4

1 − 2 fsmDω2
1 + g2

s ω
2
1 + f 2

s

+i
−gs B1mDω3

1

m2
Dω4

1 − 2 fsmDω2
1 + g2

s ω
2
1 + f 2

s

)
,

H̄1 = φ1(xD)

(
− fs B̄1mDω2

1 + g2
s B̄1ω

2
1 + f 2

s B̄1

m2
Dω4

1 − 2 fsmDω2
1 + g2

s ω
2
1 + f 2

s

+i
gs B̄1mDω3

1

m2
Dω4

1 − 2 fsmDω2
1 + g2

s ω
2
1 + f 2

s

)
,
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H3 = φ3(xD)

(
− fs B3mDω2

3 + g2
s B3ω

2
3 + f 2

s B3

m2
Dω4

3 − 2 fsmDω2
3 + g2

s ω
2
3 + f 2

s

+i
−gs B3mDω3

3

m2
Dω4

3 − 2 fsmDω2
3 + g2

s ω
2
3 + f 2

s

)
,

H̄3 = φ3(xD)

(
− fs B̄3mDω2

3 + g2
s B̄3ω

2
3 + f 2

s B̄3

m2
Dω4

3 − 2 fsmDω2
3 + g2

s ω
2
3 + f 2

s

+i
gs B̄3mDω3

3

m2
Dω4

3 − 2 fsmDω2
3 + g2

s ω
2
3 + f 2

s

)
.

(62)

Now, Eq. (62) is substituted into Eq. (34) and orthogonalized to obtain:

ξ̈1m + ω2
m ξ1m = −Am

(
∂2

∂T0∂T1
ξ0m

)
− βm ξ̇0m − Cm

⎛
⎝

∫ 1

0
φmφnφ jφkdx

∞∑
n, j,k=1

ξ0nξ0 j ξ0k

⎞
⎠

−Dm

⎛
⎝

∫ 1

0
φmφ′′

nφ′
jφ

′
kdx

∞∑
n, j,k=1

ξ0nξ0 j ξ0k

⎞
⎠

+Em

⎛
⎝

∫ 1

0
φmφ′′

ndx
∫ 1

0
φ′

jφ
′
kdx

∞∑
n, j,k=1

ξ0nξ0 j ξ0k

⎞
⎠

−Qmgs
(
φ2
m (xD)ξ̇0m − φm (xD)ẆD

)
− Qm fs

(
φ2
m (xD)ξ0m − φm (xD)WD

)
+ Fmqe

i�τ . (63)

The definitions of the coefficients are detailed in “Appendix B.” Thus, we can obtain the
beam dynamic equation with TMD.

4.2 Frequency response analysis of the beam system with TMD

As previously assumed, the equation of uniformly distributed external forces is expressed as
qmei�τ = qmei(ωm+ε2σ)T0 = qm(eiε

2σT0eiωmT0) = qmeiσT1eiωmT0 . For the first mode m =
1 (1st mode), the secular terms should choose the harmonics as ω1 and ω3 − 2ω1. For the
third mode m = 3 (3rd mode), the secular terms should choose the harmonics as ω3 and 3ω1.
When secular terms are selected, the solvability condition can be obtained by setting them
to zero. Similar to Sect. 3, this study discussed the cases of the first mode and the third mode
excited by external force, respectively, in order to determine the numerical solution and draw
the fixed-point plot, and to observe whether the weak I.R. can be effectively avoided or the
amplitude of the system can be reduced by adding the shock absorber. To simplify the layout,
we omitted the calculation details of the equation and list only the sorted results. Assuming
that the external force excites the first mode (q1ei�τ = q1eiσT1eiω1T0), the square sum of the
real and imaginary parts of the first mode is:

{
A1 (ω1σ B1) − C1

(
3B2

1 B̄1

∫ 1

0
φ4

1 dx + 6B1B3 B̄3

∫ 1

0
φ2

1φ2
3 dx + 3B̄2

1 B3 cos (�B)

∫ 1

0
φ3

1φ3dx

)

+E1

(
3B2

1 B̄1

∫ 1

0
φ1φ

′′
1dx

∫ 1

0
φ′2

1dx + 2B1B3 B̄3

∫ 1

0
φ1φ

′′
1 dx

∫ 1

0
φ′2

3dx

+4B1B3 B̄3

∫ 1

0
φ1φ

′′
3 dx

∫ 1

0
φ′

1φ
′
3dx

+B̄2
1 B3 cos (�B)

∫ 1

0
φ1φ

′′
3 dx

∫ 1

0
φ′2

1dx +2B̄2
1 B3 cos (�B)

∫ 1

0
φ1φ

′′
1 dx

∫ 1

0
φ′

1φ
′
3dx

)

−D1

(
3B2

1 B̄1

∫ 1

0
φ1φ

′′
1 φ′2

1dx + 2B1B3 B̄3

∫ 1

0
φ1φ

′′
1 φ′2

3dx + 4B1B3 B̄3

∫ 1

0
φ1φ

′′
3 φ′

3φ
′
1dx

+B̄2
1 B3 cos (�B)

∫ 1

0
φ1φ

′′
3 φ′2

1dx + 2B̄2
1 B3 cos (�B)

∫ 1

0
φ1φ

′′
1 φ′

1φ
′
3dx

)
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−Q1gsφ
2
1 (xD)

(
−gs B1mDω4

1

m2
Dω4

1 − 2 fsmDω2
1 + g2

s ω
2
1 + f 2

s

)

−Q1 fsφ
2
1 (xD)

[
B1 −

(
− fs B1mDω2

1 + g2
s B1ω

2
1 + f 2

s B1

m2
Dω4

1 − 2 fsmDω2
1 + g2

s ω
2
1 + f 2

s

)]}2

+
{
−β1 (ω1B1) − C1

(
3B̄2

1 B3 sin (�B)

∫ 1

0
φ3

1φ3dx

)

−D1

(
B̄2

1 B3 sin (�B)

∫ 1

0
φ1φ

′′
3 φ′2

1dx + 2B̄2
1 B3 sin (�B)

∫ 1

0
φ1φ

′′
1 φ′

1φ
′
3dx

)

+E1

(
B̄2

1 B3 sin (�B)

∫ 1

0
φ1φ

′′
3 dx

∫ 1

0
φ′2

1dx + 2B̄2
1 B3 sin (�B)

∫ 1

0
φ1φ

′′
1 dx

∫ 1

0
φ′

1φ
′
3dx

)

−Q1gsφ
2
1 (xD)

[
ω1B1 −

(
− fs B1mDω3

1 + g2
s B1ω

3
1 + f 2

s B1ω1

m2
Dω4

1 − 2 fsmDω2
1 + g2

s ω
2
1 + f 2

s

)]

−Q1 fsφ
2
1 (xD)

(
gs B1mDω3

1

m2
Dω4

1 − 2 fsmDω2
1 + g2

s ω
2
1 + f 2

s

)}2

= F2
1 q

2
1 . (64)

The real part of the third mode is:

3A3 (ω3σ B3) − C3

(
3B2

3 B̄3

∫ 1

0
φ4

3 dx + 6B1 B̄1B3

∫ 1

0
φ2

1φ2
3 dx + B3

1 cos (−�B)

∫ 1

0
φ3

1φ3dx

)

+E3

(
3B2

3 B̄3

∫ 1

0
φ3φ

′′
3 dx

∫ 1

0
φ′2

3dx + 2B1 B̄1B3

∫ 1

0
φ3φ

′′
3 dx

∫ 1

0
φ′2

1dx

+4B1 B̄1B3

∫ 1

0
φ3φ

′′
1 dx

∫ 1

0
φ′

1φ
′
3dx + B3

1 cos (−�B)

∫ 1

0
φ3φ

′′
1 dx

∫ 1

0
φ′2

1dx

)

−D3

(
3B2

3 B̄3

∫ 1

0
φ3φ

′′
3 φ′2

3dx + 2B1 B̄1B3

∫ 1

0
φ3φ

′′
3 φ′2

1dx + 4B1 B̄1B3

∫ 1

0
φ3φ

′′
1 φ′

3φ
′
1dx

+B3
1 cos (−�B)

∫ 1

0
φ3φ

′′
1 φ′2

1dx

)
− Q3gsφ

2
3 (xD)

(
−gs B3mDω4

3

m2
Dω4

3 − 2 fsmDω2
3 + g2

s ω
2
3 + f 2

s

)

−Q3 fsφ
2
3 (xD)

[
B3 −

(
− fs B3mDω2

3 + g2
s B3ω

2
3 + f 2

s B3

m2
Dω4

3 − 2 fsmDω2
3 + g2

s ω
2
3 + f 2

s

)]
= 0. (65)

The imaginary part is:

−β3 (ω3B3) − C3

(
B3

1 sin (−�B)

∫ 1

0
φ3

1φ3dx

)

−D3

(
B3

1 sin (−�B)

∫ 1

0
φ3φ

′′
1 φ′2

1dx

)
+ E3

(
B3

1 sin (−�B)

∫ 1

0
φ3φ

′′
1 dx

∫ 1

0
φ′2

1dx

)

−Q3gsφ
2
3(xD)

[
ω3B3 −

(
− fs B3mDω3

3 + g2
s B3ω

3
3 + f 2

s B3ω3

m2
Dω4

3 − 2 fsmDω2
3 + g2

s ω
2
3 + f 2

s

)]

−Q3 fsφ
2
3(xD)

(
gs B3mDω3

3

m2
Dω4

3 − 2 fsmDω2
3 + g2

s ω
2
3 + f 2

s

)
= 0. (66)

The analysis method of the third mode (q3ei�τ = q3eiσT1eiω3T0) of external force excitation
is similar to that of the first mode of excitation; thus, it is not necessary to elaborate here.
This study solved the solvability condition equations numerically and drew the fixed-point
plot of the system’s amplitude B1, B3 and the tuned frequency “σ ,” in order to observe the
effect of the damper on the system. In addition, we comprehensively analyzed the various
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parameters of TMD and, then, used the 3D maximum amplitude plots (3D MAPs) and
maximum amplitude contour plots (MACPs) to conclude the best combination of TMD, and
the results are discussed in Sect. 7.

5 Effects of different parameters on the system

5.1 Analysis of internal resonance

The I.R. is a unique property in the nonlinear system. The unexcited mode may have higher
amplitude than the excited mode, if the I.R. is triggered. This study focuses on the parameters
to trigger the I.R. on the flow-induced vibration system. The flow velocity (v) is the main
factor to trigger the I.R. and make system unstable. The moment of inertia ( Ī ), the ratio of
transverse to the axial natural frequency of the elastic beam (ω), and the spring constants of
the elastic foundation (kw) would also affect the system natural frequencies. We changed v,
Ī , and ω of the flow field to observe the amplitudes of the vibration system. The results are
presented in Tables 1, 2, and 3, where Tables 1, 2, and 3 are drawn for Ī = 0.01, Ī = 0.05,
and Ī = 0.1. The three tables are all analyzed for different flow velocities in the flow field.
Based on the simplicity of the layout, we only list v = 0.5, 0.7, and 0.9 for each table. In
addition, each elastic constant kw in Tables 1, 2, and 3 is the corresponding value when the
frequency ratio of the first and third modes of the system is 1:3, while Amp. represents the
maximum amplitude of the first and third modes of the exciting system in the third mode.
Tables 1, 2, and 3 show that the amplitude of the flow-structure coupled system increased
slowly with the increase of flow velocity. In addition, by drawing the fixed-point plots in
Tables 1, 2, and 3, we found that flow velocities v = 0.7, ω = 0.5 and kw = 113.1, ω = 0.8
and kw = 285.3, ω = 1.0 and kw = 444.0 would cause internal resonance of the main
system, such as case (B-1)–(B-3) of Table 1 (marked by (*)), which represent that the system
is in the state of energy exchange between high and low harmonic modes when the velocity
of the flow field is 0.7. This I.R. case will cause mechanical components to vibrate in an
unexpected harmonic mode and may even affect the stability of the structure.

5.2 Frequency response analysis of the beam system with TMD

To reduce the vibration and avoid the internal resonance of the main system, we added TMD
to case (B-1)–(B-3) when the flow velocity was v = 0.7, as shown in Table 1. This study
used MOMS to solve the equation and drew the fixed-point plot of the system’s amplitude
B1, B3 and fine-tuning frequency “σ ,” to observe the effect of the damper on the system. In
addition, we comprehensively analyzed the various parameters of TMD and, then, used 3D
MAPs and MACPs to conclude the best combination of TMD, and the results are discussed
in Sect. 7.

6 Analysis of system stability

This section discusses the effects of TMD dampers on system stability. In Eq. (20) for the flow-
structure coupled motion with the TMD system, we considered the different fluid velocities
(v) and used the Floquet theory to analyze the stability of the system. The Floquet theory
applies the Floquet transition matrix to the state variables at beginning and end of one period.
The eigenvalues of the Floquet transition matrix are shown to be exponentials occurring
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Table 1 Effects of different
parameters on the system
( Ī = 0.01)

Case ω v kw Amp.

1st mode 3rd mode

(A)

(1) 0.5 0.5 111.9 0.04814 0.154163

(2) 0.8 283.8 0.065482 0.151673

(3) 1.0 442.8 0.04406 0.161802

(4) 1.2 636.9 0.011721 0.152824

(5) 1.5 994.2 0.045498 0.151091

(6) 1.8 1431.0 0.024532 0.121369

(7) 2.0 1766.4 0.037289 0.147884

(B)

*(1) 0.5 0.7 113.1 0.433577 0.238624

*(2) 0.8 285.3 0.431481 0.223076

*(3) 1.0 444.0 0.455131 0.229315

(4) 1.2 638.1 0.133724 0.221541

(5) 1.5 995.7 0.148154 0.182063

(6) 1.8 1432.5 0.009184 0.217468

(7) 2.0 1767.9 0.002729 0.187656

(C)

(1) 0.5 0.9 115.2 0.009999 0.180626

(2) 0.8 287.1 0.011293 0.188706

(3) 1.0 446.1 0.0261 0.180658

(4) 1.2 640.2 0.004597 0.140927

(5) 1.5 997.5 0.003088 0.179397

(6) 1.8 1434.3 0.009368 0.146587

(7) 2.0 1769.7 0.003691 0.182905

in Floquet’s form of the initial value solution. This study used the 4th-order Runge–Kutta
method to find the Floquet transient matrix of the system with a shock absorber and obtained
the eigenvalue (�) of the matrix. Let � = a + ib and the flow-induced system’s eigenvalue

is η = ln
√
a2+b2

T + i( 1
T tan−1 b

a + 2nπ
T ), where T is the period of the system. The stability

criteria are defined by the Floquet multipliers (F.M.) and F.M. = √
a2 + b2. When all F.M.

< 1, the system is stable; when all F.M. > 1, the system is unstable. If some F.M. > 1 and
some F.M. < 1, it can be called the unstable limit cycle of the saddle type, which means that
the system has a saddle point, and it is still unstable. First, in order to analyze the stability of
the system, we used the perturbation technique to assume that:

w =
∞∑
n=1

(ξn + ξ̃n)φn . (67)

Among them, ξn is the equilibrium or periodic term, and ξ̃n represents the disturbant terms.
This study substituted Eq. (67) into Eq. (20), made them orthogonal, and then, we expanded
the dynamic equation according to each mode, as follows.
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Table 2 Effects of different
parameters on the system
( Ī = 0.05)

Case ω v kw Amp.

1st mode 3rd mode

(A)

(1) 0.5 0.5 39.3 0.048842 0.153617

(2) 0.8 96.9 0.012156 0.153043

(3) 1.0 150.3 0.037132 0.114413

(4) 1.2 215.1 0.010517 0.097856

(5) 1.5 334.8 0.009006 0.128956

(6) 1.8 481.2 0.020253 0.157896

(7) 2.0 593.4 0.010364 0.1213

(B)

(1) 0.5 0.7 41.7 0.019695 0.233413

(2) 0.8 99.3 0.071969 0.219309

(3) 1.0 152.4 0.000209 0.2336

(4) 1.2 217.5 0.018189 0.156584

(5) 1.5 337.2 1.43×10−6 0.225692

(6) 1.8 483.3 9.09×10−5 0.184311

(7) 2.0 595.8 8.57×10−11 0.217214

(C)

(1) 0.5 0.9 45.0 0.011387 0.181749

(2) 0.8 102.6 0.009999 0.135327

(3) 1.0 155.7 0.00872 0.1776

(4) 1.2 220.8 0.006067 0.126706

(5) 1.5 340.2 2.53×10−5 0.142217

(6) 1.8 486.6 0.000174 0.145029

(7) 2.0 598.8 0.001985 0.125983

The first mode:

¨̃
ξ1 + β1

˙̃
ξ1 + ω2
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[
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Table 3 Effects of different
parameters on the system
( Ī = 0.1)

Case ω v kw Amp.

1st mode 3rd mode

(A)

(1) 0.5 0.5 22.8 0.03054 0.112076

(2) 0.8 54.3 0.009999 0.153386

(3) 1.0 83.4 0.011434 0.117049

(4) 1.2 118.8 0.009999 0.153356

(5) 1.5 184.2 0.008298 0.121918

(6) 1.8 264.0 0.002767 0.106785

(7) 2.0 325.2 0.000633 0.106715

(B)

(1) 0.5 0.7 25.5 0.00172 0.157279

(2) 0.8 57.0 0.008069 0.223806

(3) 1.0 85.8 0.00016 0.15706

(4) 1.2 121.5 0.000153 0.182809

(5) 1.5 186.6 6.72×10−5 0.219507

(6) 1.8 266.7 2.45×10−5 0.230815

(7) 2.0 327.9 0.000126 0.156184

(C)

(1) 0.5 0.9 28.8 0.007688 0.180558

(2) 0.8 60.3 3.16×10−5 0.181175

(3) 1.0 89.4 0.000654 0.181263

(4) 1.2 124.8 0.001835 0.126888

(5) 1.5 190.2 0.009999 0.126764

(6) 1.8 270.0 0.00034 0.126611

(7) 2.0 331.2 8.14×10−5 0.126495

+(ξ1 + ξ̃1)
2(ξ3 + ξ̃3)

∫ 1

0
φ1φ

′′
3 dx

∫ 1

0
φ′2

1dx + 2(ξ1 + ξ̃1)(ξ3 + ξ̃3)
2
∫ 1

0
φ1φ

′′
3 dx

∫ 1

0
φ′

1φ
′
3dx

+(ξ1 + ξ̃1)(ξ3 + ξ̃3)
2
∫ 1

0
φ1φ

′′
1 dx

∫ 1

0
φ′2

3dx + (ξ3 + ξ̃3)
3
∫ 1

0
φ1φ

′′
3 dx

∫ 1

0
φ′2

3dx

]

+Q1gs(φ
2
1 (xD)

˙̃
ξ1 − φ1(xD)

˙̃
ξ D) + Q1 fs [φ2

1 (xD)(ξ1 + ξ̃1) − φ1(xD)ξ̃D] = F1qe
i�τ . (68)

The third mode:

¨̃
ξ3 + β3

˙̃
ξ3 + ω2

3(ξ3 + ξ̃3) + C3

[
(ξ1 + ξ̃1)

3
∫ 1

0
φ3

1φ3dx + (ξ3 + ξ̃3)
3
∫ 1

0
φ4

3 dx

+3(ξ1 + ξ̃1)
2(ξ3 + ξ̃3)

∫ 1

0
φ2

1φ2
3 dx +3(ξ1 + ξ̃1)(ξ3 + ξ̃3)

2
∫ 1

0
φ1φ

3
3 dx

]

+D3

[
(ξ1 + ξ̃1)

3
∫ 1

0
φ3φ

′′
1 φ′2

1dx + 2(ξ1 + ξ̃1)
2(ξ3 + ξ̃3)

∫ 1

0
φ3φ

′′
1 φ′

1φ
′
3dx

+(ξ1 + ξ̃1)
2(ξ3 + ξ̃3)

∫ 1

0
φ3φ

′′
3 φ′2

1dx + 2(ξ1 + ξ̃1)(ξ3 + ξ̃3)
2
∫ 1

0
φ3φ

′′
3 φ′

3φ
′
1dx

+(ξ1 + ξ̃1)(ξ3 + ξ̃3)
2
∫ 1

0
φ3φ

′′
1 φ′2

3dx + (ξ3 + ξ̃3)
3
∫ 1

0
φ3φ

′′
3 φ′2
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]
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−E3

[
(ξ1 + ξ̃1)

3
∫ 1

0
φ3φ

′′
1 dx

∫ 1

0
φ′2

1dx + 2(ξ1 + ξ̃1)
2(ξ3 + ξ̃3)

∫ 1

0
φ3φ

′′
1 dx

∫ 1

0
φ′

1φ
′
3dx

+(ξ1 + ξ̃1)
2(ξ3 + ξ̃3)

∫ 1

0
φ3φ

′′
3 dx

∫ 1

0
φ′2

1dx + 2(ξ1 + ξ̃1)(ξ3 + ξ̃3)
2
∫ 1

0
φ3φ

′′
3 dx

∫ 1

0
φ′

1φ
′
3dx

+(ξ1 + ξ̃1)(ξ3 + ξ̃3)
2
∫ 1

0
φ3φ

′′
1 dx

∫ 1

0
φ′2

3dx + (ξ3 + ξ̃3)
3
∫ 1

0
φ3φ

′′
3 dx

∫ 1

0
φ′2

3dx

]

+Q3gs(φ
2
3 (xD)

˙̃
ξ3 − φ3(xD)

˙̃
ξ D) + Q3 fs [φ2

3 (xD)(ξ3 + ξ̃3) − φ3(xD)ξ̃D] = F3qe
i�τ . (69)

The parameters of each coefficient are defined in “Appendix B,” and the dynamic equation
of TMD is, as follows:

mD
¨̃
ξ D − fs[φ1(xD)(ξ1 + ξ̃1) + φ3(xD)(ξ3 + ξ̃3) − ξ̃D]

−gs[φ1(xD)
˙̃
ξ1 + φ3(xD)

˙̃
ξ3 − ˙̃

ξ D] = 0. (70)

Based on the above analysis, we know that when kw = 80.7, there is a weak I.R. between
the first and third modes of the system, and velocity v at this time is 0.01. When velocity v

is 0.7, that is, under the parameter condition of case (B-1)–(B-3) in Table 1, the resonance
phenomenon between the first and third modes of the main system will occur within 1:3.
Stability analysis was carried out for different flow velocities in these two cases, and an
attempt was made to determine the flow velocities that diverge from the system and stability
after adding shock absorbers. The results are discussed in subsequent sections.

7 Results and discussion

7.1 Discussion on the effect of fluid flow velocity on the system

The purpose of this study is to use the fluid-conveying nonlinear beam as the main model to
simulate the fluid-conveying tube system and, then, place the system on a nonlinear elastic
foundation to discuss its flow-induced vibration. To analyze the effects of fluid on the tan-
gential shear force and centripetal force on the tube wall, which are caused by velocity (v),
we used v = 0 to represent centripetal force and tangential force and used the increase of v

to represent the increase of these two forces.
First, we assumed that the velocity of the fluid is v = 0, which means that the flow field

is stationary in the pipe, and therefore, the pipe wall will not be affected by the tangential
shear force or centripetal force produced by the fluid flow. We drew Table 4 to observe the
amplitude change of the system with or without considering the shear force and centripetal
force, and four examples are given for analysis and discussion. The first is when the elastic
constant kw of the elastic foundation is 80.7, the system will produce weak I.R., and velocity
v at this time is 0.01; the other three are cases of I.R., which have the parameter condition
of cases (B-1)–(B-3) in Table 1, and velocity v at this time is 0.7. Then, we observed the
amplitudes of the first and third modes of the four cases, respectively, where Amp. in Table 4
is the maximum amplitude of the first and third modes. Table 4 shows that the amplitudes of
the first and third modes of the excitation system are larger when the tangential shear force
and centripetal force are taken into account (v �=0). It is worth noting that, in the case of
weak I.R., although the amplitude difference between the first and third modes is not large
when v = 0.01 and v = 0, this means that, even if the fluid velocity is not large, there will be
energy exchange between the modes of the main system, which will lead to the generation
of weak I.R. In addition, in the three cases (B-1)–(B-3) that occur in I.R., if the effect of
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Table 4 Effect of fluid flow velocity on the system

Case v = 0 v �= 0

Amp. Amp.

1st mode 3rd mode 1st mode 3rd mode

Weak I.R. (v =0.01)

Excite 1st mode 1.127205 0.000135 1.127288 0.000142

Excite 3rd mode 0.014116 0.051175 0.014131 0.051183

I.R.(v =0.7) (case B-1)

Excite 1st mode 1.508375 0.098923 1.939473 0.497393

Excite 3rd mode 0.011267 0.097285 0.433577 0.238624

I.R.(v =0.7) (case B-2)

Excite 1st mode 1.233706 0.048368 1.91056 0.490027

Excite 3rd mode 0.009999 0.13021 0.431481 0.223076

I.R.(v =0.7) (case B-3)

Excite 1st mode 1.57014 0.05677 1.938199 0.557339

Excite 3rd mode 0.01259 0.098604 0.455131 0.229315

Table 5 Damping effects of the TMD

Case Mode Amp (No TMD) Amp (With TMD) Effect (%)

Weak I.R.

Excite 1st mode 1st mode 1.127288 0.074703 93.37

Excite 3rd mode 1st mode 0.014131 0.000357 97.47

3rd mode 0.051183 0.031042 39.35

I.R. (case B-1) 1st mode 0.433577 4.32×10−5 99.99

3rd mode 0.238624 0.06264 73.74

I.R. (case B-2) 1st mode 0.431481 1.17×10−5 99.99

3rd mode 0.223076 0.040873 81.67

I.R. (case B-3) 1st mode 0.455131 2.56×10−10 99.99

3rd mode 0.229315 0.033025 85.59

tangential shear and centripetal force (v =0) is not considered, I.R. will not occur between
the first and third modes of the system. This result also proves that the effect of fluid on the
main system cannot be ignored.

7.2 Analysis of vibration reduction effects of the system with TMD

This section discusses the fluid-conveying elastic beam system with TMD, and analyzes the
vibration reduction effects of TMD according to different mass (mD), location (lD), spring
constant ( fs), and damping coefficient (gs). We drew the 3DMAP and MACP by combining
the vibration reduction results of various parameters, in order to observe and determine the
best vibration reduction combination of TMD.
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Fig. 6 3D MAPs of the 1st mode when the 1st mode is excited, a gs = 0.1, b gs = 0.5, (c) gs = 0.9

Using the solvability conditions of the excitation to the first mode and the third mode
of the system, we drew fixed-point plots according to the different combinations of TMD
parameters (mD = 0.02–0.1, lD = 0.0001-0.5, fs = 1, 5, 9, gs = 0.1, 0.5, 0.9) and extracted
their maximum amplitudes from each fixed-point plot, in order that we could clearly know the
maximum amplitude of each mode when the system is affected by different TMD parameters.
In addition, since the amplitude of the third mode is much smaller than that of the first mode
when the first mode is excited, this study did not analyze the vibration reduction of the
third mode when the first mode was excited. The results of vibration reduction are shown
in Figs. 6 and 7. The 3D MAP easily shows the trend of overall vibration reduction, in
which the x-axis is the mass of TMD, the y-axis is the position of TMD, and the z-axis is the
maximum amplitude corresponding to x and y. In the figure, different amplitude intervals are
divided by different colors: red indicates the higher amplitude interval, while blue indicates
the lower amplitude interval, which represents the better effect of vibration reduction. Then,
we compared and analyzed the 3D MAP (Fig. 6a–c) of the first mode when exciting the first
mode. Figure 6 shows that, regardless of the value of the fixed gs , the minimum amplitude
of the first mode occurs when fs = 9. In addition, the minimum amplitude of the first mode
occurs when TMD is placed at 0.5, and the greater the mass of the TMD, the better the
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Fig. 7 3D MAPs of each mode when the 3rd mode is excited. a 1st mode, gs = 0.1, b 1st mode, gs = 0.5, c
1st mode, gs = 0.9, d 3rd mode, gs = 0.1, e 3rd mode, gs = 0.5, f 3rd mode, gs = 0.9

vibration reduction effect. It is noteworthy that, when comparing the minimum amplitudes
of each mode in Fig. 6, it is not found that the larger the gs , the better the effect of vibration
reduction for the first mode, but the best effect for the first mode occurs when gs = 0.1.
This trend also appears in the 3D MAP (Fig. 7a–c) of the first mode when the third mode
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Fig. 8 MACPs of the 1st mode when the 1st mode is excited ( fs = 9), a gs = 0.1, b gs = 0.5, c gs = 0.9

is excited. In the 3D MAP (Fig. 7d–f) of the third mode when the third mode is disturbed,
the minimum amplitude appears at fs = 9. Detailed analysis of the different 3D MAP maps
found that TMD has the smallest amplitude when placed at 0.2 and 0.5, but when placed
at 0.5, its vibration reduction efficiency is better than 0.2. Although the effects of the three
maps are not obvious at fs = 1, it can be seen when fs = 5 and fs = 9. Comparison of the
minimum amplitudes of Fig. 7d–f found that the third mode vibration reduction has the best
effect when gs = 0.9.

Although the 3D MAP can provide the general design concept of the shock absorber ( fs ,
gs), it is difficult to see the optimal combination of TMD due to the numerous TMD param-
eters. Therefore, this study drew the MACP and analyzed the influence of TMD placement
and mass on the system one by one. According to the results of the 3D MAP, we fixed fs = 9,
which has the best shock absorber effect, and selected different gs to draw its MACP, as shown
in Figs. 8 and 9. Figure 8 is the MACP of the first mode when exciting mode 1, and Fig. 9 is
the MACP of the third mode when exciting mode 3. Figure 8 shows that all three maps have
the best vibration reduction effect when the TMD is placed at 0.5 and its mass is 0.1. After
detailed comparison, it can be seen that, when gs = 0.1, the lowest amplitude range (blue
area) is obtained. It is obvious in Fig. 9 that when the mass of TMD is 0.1, it has the lowest
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Fig. 9 MACPs of the 3rd mode when the 3rd mode is excited ( fs = 9), a gs = 0.1, b gs = 0.5, c gs = 0.9

amplitudes at 0.2 and 0.5, as compared with the other locations, but it can still be found that
the amplitude range at 0.5 is smaller; therefore, the effect of vibration reduction here is the
best. After comparing the three maps, it is clear that the lowest amplitude range (blue area)
is found when gs = 0.9. By analyzing the 3D MAP and MACP, we can conclude that the
optimal TMD vibration reduction combination for the first mode is mD = 0.1, lD = 0.5,
fs = 9, gs = 0.9, whereas the best combination is mD = 0.1, lD = 0.5, fs = 9, gs = 0.9 for
the third mode. It is worth noting that no matter what combination of fs and gs , when TMD
is placed in the center of the elastic beam (lD = 0.5), the first mode can achieve the best
effect of vibration reduction. However, the third mode has the smallest amplitude when TMD
is placed at lD = 0.2 and 0.5, but has the best effect when lD = 0.5. The reason is that the
maximum amplitude of the first mode shape of the elastic beam is 0.5, while the maximum
amplitude of the third mode shape is 0.5 and close to 0.2 (about 0.16–0.18), as shown in
Fig. 10. Therefore, the optimal vibration reduction effect can be achieved by placing TMD at
the maximum amplitude of each mode. To observe and analyze the vibration reduction effects
of the TMD under different conditions, we drew the results shown in Table 5, where Amp.
(no TMD) is the maximum amplitude of each mode without additional TMD under different
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Fig. 10 Mode shapes of a
hinged-hinged beam

conditions, and Amp. (with TMD) is the maximum amplitude of each mode with additional
TMD. The parameters of TMD are the combination of the best vibration reduction effects
for each mode, while the “Effect” is expressed as a percentage of the vibration reduction
effects for each mode under different cases. Table 5 shows that under any case, the vibration
reduction effect for the first mode is greater than that of no TMD. In addition, by comparing
with each other, it can be seen that the vibration reduction effect of the TMD for the first
mode is greater than that for the third mode under any case.

To further verify the correctness of the MACP plot, we used the 4th-order Runge–Kutta
method to solve the perturbation equations in time domain (Eqs. 68–70) and then to verify the
amplitude for a certain frequency response on the fixed-point plot to determine the credibility
of the results of this study. For example, Fig. 11 shows the MACP plot for the first mode when
exciting the first mode at fs = 9, gs = 0.1. This study chose two representative combinations
to draw the fixed-point plots and time response plots for validation. The displacement of the
time response plot is gradually stable with the increase of time. At this time, the average value
of stability is consistent with the maximum amplitude of the corresponding fixed-point plot;
for example, Fig. 12a, b can also be verified by the above fixed-point plot and time response
plot. The results coincide with each other, which verifies that the accuracy of the proposed
MACP is extremely high.

7.3 Analysis of system stability

To observe the stability of the system under different initial conditions, the Floquet theory
was used to discuss the cases of weak I.R. and cases (B-1)–(B-3) with internal resonance,
as shown in Table 1. The corresponding dimensionless velocities are v = 0.01 and v = 0.7,
respectively. We changed the different velocities (v) and used the judgment rule of F.M; if it
is in a stable state, it will be expressed by a black dot, and if it is in an unstable state, it will
not be marked, in order to draw the basin of attraction (BOA) plot and observe the stability of
the system with a shock absorber. The BOA is a set of initial conditions leading to long-time
dynamic motion that approaches to an attractor. The motion of the long-time behavior of a
given system can be different depending on which basin of attraction the initial condition lies
in. The BOA is a useful way to verify the nonlinear system’s stability for a different set of
beam initial conditions. Based on flow velocity v = 0.01, this study analyzed the stability of
the system near this velocity and drew the corresponding 3D BOA plot, as shown in Fig. 13.
Figure 13a is a BOA plot drawn from v = 0.01 to 0.075 at 0.005 intervals. In Fig. 13a, it
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Fig. 11 MACPs of the 1st mode when the 1st mode is excited, ( fs = 9, gs = 0.1) a Fixed-point and time
response plots for mD =0.1 and lD =0.5. b Fixed-point and time response plots for mD =0.08 and lD =0.4
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Fig. 12 MACPs of the 1st mode when the 3rd mode is excited, ( fs = 9, gs = 0.1) a Fixed-point and time
response plots for mD = 0.1 and lD = 0.5. b Fixed-point and time response plots for mD = 0.04 and
lD = 0.1.
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Fig. 13 Basin of attraction of the case of weak I.R. (no TMD) a v = 0.01–0.075, b v = 0.065–0.076 (zoom)

Fig. 14 Basin of attraction of the case of weak I.R. (no TMD). a v = 0.065–0.076 basin of attraction, b v

= 0.07 basin of attraction, c Poincaré map of initial condition (2.0, −0.6), (stable), d Poincaré map of initial
condition (2.0, −0.8), (unstable).
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Fig. 15 Basin of attraction of the case of weak I.R. (with TMD) a v = 0.065–0.076 basin of attraction, b
v = 0.07 basin of attraction, c Poincaré map of initial condition (0.4,2.4), (stable), d Poincaré map of initial
condition (0.4,2.8), (unstable)

can be found that the change of the stability range of the system is not obvious at v =0.01
to 0.065, but begins to decrease sharply at v = 0.065 to 0.075. We reduced the flow velocity
interval to 0.001 and drew the BOA plot from v = 0.065 to 0.076 to observe the changes,
as shown in Fig. 13b. Figure 13b shows that the stability range of the system decreases with
the increased flow velocity, and when the flow velocity is v = 0.076, the system has no
stability range. This shows that although this case triggers the energy exchange between the
system modes and leads to the generation of weak I.R. when v = 0.01, it does not mean that
the system is in the most unstable state at this velocity. To verify the stability prediction of
Fig. 13b, we chose the BOA plot at v = 0.07 as an example and verified its stability range
with the Poincaré map, as shown in Fig. 14. Figure 14b is a BOA plot when v = 0.07, while
Fig. 14c, d is the initial conditions of the stable area (2.0, -0.6) and the initial conditions of
the unstable area (2.0, −0.8) when v = 0.07, respectively. By observing Fig. 14c, it can be
found that the Poincaré map of the stable region is in a stable state, while Fig. 14d shows a
chaotic state. In addition, in order to analyze the effect of additional dampers on the stability
of the system, we drew a BOA plot of a weak I.R. case with TMD at flow velocity v =
0.065-0.076, as shown in Fig. 15. Comparing Fig. 14 with Fig. 15 shows that the stability
range of the system increases obviously after adding TMD regardless of the flow velocity.
By observing Fig. 15a, it also can be found that the system has a stable region even when
v = 0.076, meaning that TMD can reduce the amplitude, increase the stability of the system,
and improve the divergence of the system. Similarly, to verify the accuracy of the BOA plot
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Fig. 16 Basin of attraction of the I.R. case B-1 (no TMD) a v = 0.1–0.7 basin of attraction, b v = 0.6 basin of
attraction, c Poincaré map of initial condition (−2.4, 1.2) (stable), d Poincaré map of initial condition (−1.2,
1.2), (unstable)

after TMD is added to the system, we also took the BOA plot at v = 0.07 as an example and
verified it with a Poincaré map, as shown in Fig. 15b–d. From Fig. 15c, d, it can be confirmed
that the dotted block is indeed stable, while the white block is unstable.

In the stability analysis of I.R., we can take the case of Table 1 (B-1) as an example and
draw its 3D BOA plot, as shown in Fig. 16. Figure 16a shows a BOA plot with velocity
v = 0.1-0.7, as drawn at intervals of 0.05. Figure 16a shows that the stability range decreases
with the increased flow velocity, and the system has fully diverged when the flow velocity
increases to v = 0.7, meaning that the fluid-conveying tube system will produce I.R. when
v = 0.7, and the velocity is the diverge speed under this case. The BOA plot after adding
TMD is shown in Fig. 17. Comparing Fig. 16a and Fig. 17a, we can see that the range of
stability of the system increases under any flow velocity after adding TMD, and Fig. 17a
shows that, even whenv = 0.7, there are local stable areas. The results confirm that TMD
can increase the range of the stable area and the divergence speed of the system to a certain
extent. In addition, for the verification of I.R. stability, we take the BOA plot at v = 0.6 as an
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Fig. 17 Basin of attraction of the I.R. case B-1 (with TMD) a v = 0.1–0.7 basin of attraction, b v = 0.6 basin
of attraction, c Poincaré map of initial condition (−2.4, 4.8), (stable), d Poincaré map of initial condition
(−2.4, 6.0), (unstable)

example in Fig. 16a, 17a and validate the initial conditions of the stable area and the unstable
area in Figs. 16c, d and 17c, d, respectively. The results of the Poincaré map are consistent
with the prediction of the BOA plot.
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8 Conclusions

In this study, a fluid-conveying nonlinear beam is used as the main model to simulate the
vibration of a fluid-conveying tube, and then, nonlinear spring support is used to simulate the
system on an elastic foundation. The TMD is added to the system to determine the optimal
vibration reduction combination of TMD by changing its mass, position, elastic constants,
and damping coefficients. The flow-structure coupled system includes the phenomena of
mutual coupling and internal resonance among modes; therefore, MOMS, fixed-point plots,
Poincaré map, MACP, and basin of attraction are used to analyze and compare the system to
verify the correctness of our theory. In addition to providing the vibration characteristics of
the nonlinear flow-structure coupled system, the influence of TMD parameters on the whole
system is analyzed, and the stability of the system is analyzed by changing the flow velocity
of the fluid. Finally, the following conclusions are proposed for this study.

1. Under a certain combination of elastic foundation spring constants, taking kw = 80.7
as an example, the energy exchange between the first and third modes of the system
will occur, and weak I.R. does exist in the fluid-conveying tube system. When v = 0.7
and Ī = 0.01, and ω = 0.5 and kw = 113.1, ω = 0.8 and kw = 285.3 and ω = 1
and kw = 444, the 1:3 internal resonance between the first and third modes of the main
system will occur.

2. The placement of TMD is very important for the vibration reduction effect of the system.
If TMD is placed in the position with the maximum amplitude of the vibration mode of
the elastic beam (e.g., 0.5l for the first mode, and 0.5l & near 0.2l for the third mode),
the system will have the best vibration reduction effect. Relatively, if TMD is placed in
the position where the vibration amplitude is the smallest (e.g., 0.0001l at the end point),
there is no vibration reduction effect. Therefore, the optimal placement of TMD depends
on the maximum amplitude of each mode shape.

3. This TMD can effectively avoid I.R. and suppress vibration for this fluid-conveying tube.
In addition, for the first mode, the optimal combination of vibration reduction parameters
is mD = 0.1, lD = 0.5, fs = 9, gs = 0.1, and mD = 0.1, lD = 0.5, fs = 9, gs = 0.9
for the third mode.

4. The influence of fluid on the vibration behavior of the main system should not be
neglected; for example, when the tangential shear force and centripetal force acting
on the tube wall are considered, the amplitude of the system is larger, and when velocity
v of the fluid increases gradually, the amplitude of the flow-structure coupled system
tends to increase.

5. In the stability analysis of weak I.R., it can be found that, although weak I.R. will be
triggered when v = 0.01, there is still a stable area in the system at this flow velocity,
and the system will diverge completely when the flow velocity is increased to v = 0.076.
In the stability analysis of I.R., it is found that v = 0.7 happens to be the divergent
velocity of this case, which means that I.R. will occur at this velocity, and the system will
diverge in an all-round manner. In addition, the stability range of any case will increase
significantly after TMD is added, indicating that TMD plays an important role.

Data Availability Statement This manuscript has associated data in a data repository. [Authors’ comment:
The datasets generated during and/or analysed during the current study are available from the corresponding
author on reasonable request.]
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Appendix A: Dimensionless definition of the coefficients

ū = u

l
, w̄ = w

l
, ωu =

√
E Ab

mbl2
, ωw =

√
E Ib
mbl4

, v̄ = v

ωul
, τ = tωu,

μ̄u = μu

mbωu
, μ̄w = μw

mbωu
, k̄w = kw

mbω2
u
, B̄w = Bwl2

mbω2
u
,

q̄ = q

mblω2
u
, Ī = (Imb + Im f )

mbl2
, M = m f

mb
m̄D = mD

mb
f̄s = fs

mblω2
u
, ḡs = gs

mblωu

Appendix B: Definition of the coefficients

Am = 2 + 2 Īγ 2
m

1 + Īγ 2
m

, βm = μw

1 + Īγ 2
m

, Cm = Bw

(1 + Īγ 2
m)

∫ 1
0 φ2

mdx
,

Dm = 3Mv2

2(1 + Īγ 2
m)

∫ 1
0 φ2

mdx

Em = (Mv2 + 1)

2(1 + Īγ 2
m)

∫ 1
0 φ2

mdx
, Fm =

∫ 1
0 φmdx

(1 + Īγ 2
m)

∫ 1
0 φ2

m dx
,

Qm = 1

(1 + Īγ 2
m)

∫ 1
0 φ2

m dx
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