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Abstract The nonlocal defocusing nonlinear Schrödinger (ND-NLS) equation is compara-
tively studied via the Riemann–Hilbert approach. Firstly, via spectral analysis, the spectral
structure of the ND-NLS equation is investigated, which is different to those of the other three
NLS-type equations, i.e., the local focusing nonlinear Schrödinger (LF-NLS) equation, the
local defocusing nonlinear Schrödinger (LD-NLS) equation and the nonlocal focusing non-
linear Schrödinger (NF-NLS) equation. Secondly, by solving the Riemann–Hilbert problem
corresponding to the reflectionless cases, multi-soliton solutions are obtained for the ND-
NLS equation. Thirdly, we prove that, if parameters are suitably chosen, the multi-soliton
solutions of the ND-NLS equation can be reduced to those of the LF-NLS equation and the
LD-NLS equation, respectively. Fourthly, the multi-soliton solutions of the ND-NLS equa-
tion are demonstrated to possess repeated singularities generally, but they can also remain
analytic for appropriate soliton parameters. Moreover, the multi-soliton dynamics are graph-
ically illustrated using Mathematica symbolic computations. These results show that the
solution structure and the nonlinear dynamics in the ND-NLS equation are rather different
from those of the LF-NLS equation, the LD-NLS equation and the NF-NLS equation.

1 Introduction

The local focusing nonlinear Schrödinger (LF-NLS) equation

iqt (x, t) = qxx (x, t) + 2|q (x, t) |2q (x, t) (1.1)

and the local defocusing nonlinear Schrödinger (LD-NLS) equation

iqt (x, t) = qxx (x, t) − 2|q (x, t) |2q (x, t) (1.2)

are known to be two integrable equations in water wave theory, fiber optics, acoustics, Bose–
Einstein condensation, etc [1–3]. In these two equations, q = q(x, t) denotes a complex-
valued function of two real variables x, t . The focusing case and the defocusing case are
relevant to the positive nonlinearity and the negative nonlinearity, respectively. It is known
that there are many physical contexts where Eqs. (1.1) and (1.2) appear. For example, the
LF-NLS equation (1.1) describes the weakly nonlinear surface wave in the deep water, while
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the LD-NLS equation (1.2) governs the weakly nonlinear surface wave in the shallow water.
In optical fibers, the LF-NLS equation (1.1) models the envelope bright-soliton propagation
where the group velocity dispersion and the self-phase modulation effects are considered,
while the LD-NLS equation (1.2) does not admit bright-soliton solutions vanishing at infinity.
In fact, the LD-NLS equation (1.2) is obtained when the dispersion is normal, and it has dark-
soliton solutions having a nontrivial background intensity. Moreover, the LF-NLS equation
(1.1) is gauge equivalent to the Heisenberg ferromagnetic equation. Physically significant,
Eqs. (1.1) and (1.2) have many important relations to a few of celebrated equations, e.g.,
the Ginzburg–Landau equation, the Gross–Pitaevskii equation, and others. Mathematically,
Eqs. (1.1) and (1.2) are both known to be completely integrable and they can be solved via the
inverse scattering transform (IST) [4] based on the known Ablowitz–Kaup–Newell–Segur
(AKNS) spectral problem [5].

Recently, the nonlocal focusing nonlinear Schrödinger (NF-NLS) equation

iqt (x, t) = qxx (x, t) + 2q2 (x, t) q∗ (−x, t) (1.3)

and the nonlocal defocusing nonlinear Schrödinger (ND-NLS) equation

iqt (x, t) = qxx (x, t) − 2q2 (x, t) q∗ (−x, t) (1.4)

have been proposed in [6] by considering the nonlocal reductions of the AKNS spectral
problem. In Eqs. (1.3) and (1.4), the asterisk ∗ denotes the complex conjugation and q =
q(x, t) is complex-valued. Similar to Eqs. (1.1)–(1.2), the difference in Eqs. (1.3)–(1.4) is the
positive nonlinearity and the negative nonlinearity corresponding to the focusing case and
the defocusing case, respectively. The word nonlocal comes from the fact that the evolution
of the field depends on not only the solution values at x but also the values at −x . From
Refs. [6–8], we know that Eqs. (1.3)–(1.4) are also completely integrable since they have
Lax pair formulations and infinitely many conservation laws. Physically, (1.3) and (1.4) are
PT -symmetric [9,10] since they are invariant under the combined action of parity operator
P (x → −x) and time-reversal operator T (t → −t, i → −i). We note that the PT -
symmetric systems have attracted more and more attention recently, which is a hot topic in
modern physics. Moreover, the potential applications of these nonlocal NLS equations in
magnetics were reported in Ref. [11]. In the literature, a lot of exact solutions have been
found for (1.3) and (1.4), such as soliton solutions, breather solutions, rogue wave solutions,
periodic solutions, hyperbolic soliton solutions, and others [6–8,12–15]. In this paper, we
aim to investigate the nonlinear dynamics in the ND-NLS equation (1.4) by extending the
RH method [16–31] to this equation.

This paper is organized as follows. In Sect. 2, we will study the direct scattering transform
of the ND-NLS equation (1.4) by formulating its RH problems. Then the spectral structure
of the equation will be investigated and compared with the other three NLS-type equations.
In Sect. 3, multi-soliton solutions will be obtained for (1.4). Moreover, we will point out,
upon choosing suitable parameters, the soliton solutions of (1.4) can be reduced to special
kinds of solutions of the LF-NLS equation (1.1) and the LD-NLS equation (1.2). In Sect. 4,
the nonlinear dynamics in the ND-NLS equation (1.4) will be analyzed and demonstrated
by using Mathematica symbolic computations. In general, the multi-soliton solutions often
collapse repeatedly, but they can remain analytic for a wide range of soliton parameters.
Section 5 gives the conclusions.
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2 The Riemann–Hilbert approach

2.1 Riemann–Hilbert problem

The ND-NLS equation (1.4) admits the Lax pair [6]

�x =
(
iλ q (x, t)
q∗ (−x, t) −iλ

)
�, (2.1a)

�t =
(

2iλ2 + iq (x, t) q∗ (−x, t) 2λq − iqx (x, t)
2λq∗ (−x, t) + iq∗

x (−x, t) −2iλ2 − iq (x, t) q∗ (−x, t)

)
�, (2.1b)

where � = �(x, t; λ) is a column vector function of the complex iso-spectral spectral
parameter λ, and q(x, t) is a complex-valued function. In fact, one can check that (1.4)
comes as the compatibility condition of the system (2.1).

In order to perform spectral analysis conveniently, we first rewrite the original Lax pair
(2.1) in an equivalent form

Jx = iλ [σ3, J ] + QJ, (2.2a)

Jt = 2iλ2 [σ3, J ] + Q̃ J, (2.2b)

where the square bracket is the matrix commutator, and

σ3 =
(

1 0
0 −1

)
, Q=Q(x, t)=

(
0 q(x, t)
q∗(−x, t) 0

)
, Q̃ = 2λQ + i

(
Q2 + Qx

)
σ3.

Remark 1 The Lax pairs of the other three NLS-type equations (1.1)–(1.3) are all reduced
AKNS spectral problems admitting the same form as (2.2a)–(2.2b), except for the difference
in Q = Q(x, t) that

• Q(x, t) = ( 0 q(x, t)
−q∗(x, t) 0

)
for Eq. (1.1), which satisfies the symmetry relation

Q†(x, t) = −Q(x, t). Here the dagger † represents the Hermitian conjugation.

• Q(x, t) = ( 0 q(x, t)
q∗(x, t) 0

)
for Eq. (1.2), which satisfies the symmetry relation

Q†(x, t) = −σ3Q(x, t)σ3.

• Q(x, t) = ( 0 q(x, t)
−q∗(−x, t) 0

)
for Eq. (1.3), which satisfies the symmetry relation

Q∗(−x, t) = −σ1Q(x, t)σ1. Here σ1 =
(

0 1
1 0

)
.

Following the procedure in deriving RH problems of the AKNS spectral problem [16,17],
we can establish the RH problem of the ND-NLS equation (1.4) as

P−(λ)P+(λ) =
(

1 s12e2iλx

r21e−2iλx 1

)
, λ ∈ R, (2.3)

P1(λ) → I, λ ∈ C
+ → ∞, (2.4)

P2(λ) → I, λ ∈ C
− → ∞, (2.5)

where (2.4)–(2.5) are the canonical normalization conditions. Here P1 = P1(x, λ) and P2 =
P2(x, λ) are two matrix functions which are analytic in the upper half λ-plane C

+ and the
lower half λ-plane C

−, respectively. In fact, P1 and P2 are constructed as
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P1 = ([J+]1, [J−]2), P2 =
(

[J−1+ ]1

[J−1− ]2

)
,

where each [J±]l (l = 1, 2) denotes the lth column of the Jost solutions J± of (2.2a)
satisfying J± → I as x → ±∞, and each [J−1± ]l (l = 1, 2) represents the lth row of the
matrix inverse J−1± . In addition, the symbols P± are the limits of P1 or P2 taken from the
left-hand side (LHS) or the right-hand side (RHS) of the real λ-axis. In addition, s12 and r21

are two reflection coefficients defined on the real λ-axis in general.

2.2 Spectral structure

To solve the RH problem (2.3)–(2.5) for the ND-NLS equation (1.4), we have to investigate
its zero structure completely. Before we do this, let us first recall the zero structures of
the three NLS-type equations (1.1)–(1.3) [16,17]. It is known that the RH methods for the
NLS-type equations (1.1)–(1.3) rely heavily on their respective symmetry relations of the
potential matrix Q(x, t) in Remark 1. Indeed, these three symmetry relations lead to the
different zero structures of the three NLS-type equations. The zero structures of the LF-NLS
equation (1.1) and the LD-NLS equation (1.2) are similar [17]: detP1 has N simple zeros

{λ j }N1 in C
+, where λ j are complex-valued, while detP2 has N simple zeros { ˆλ j }N1 in C

−
with λ̂ j = λ∗

j . Obviously, the zeros λ j and λ̂ j are complex conjugate to each other. The zero
structure of the NF-NLS equation (1.3) corresponding to soliton solution is [16]: detP1 has
2N + M simple zeros {λ j }2N+M

1 in C
+, where λN+l = −λ∗

l (1 ≤ l ≤ N ) are non-purely
imaginary and λ2N+l (1 ≤ l ≤ M) are purely imaginary, while detP2 has 2N + M simple

zeros { ˆλ j }2N+M
1 in C

−, where λ̂n+l = −λ̂∗
l (1 ≤ l ≤ n) are non-purely imaginary and

λ̂2n+l (1 ≤ l ≤ 2N + M − 2n) are purely imaginary. In general, the zeros λ j and λ̂ j have
no definite relations.

Now, compared with Eqs. (1.1)–(1.3), there will be rather different symmetry relation of
the spectral data for the ND-NLS equation (1.4), which is the consequence of the symmetry
property of the potential matrix Q in (2.2a). This symmetry relation will be our main concern
hereafter. Notice that the matrix Q = Q(x, t) in (2.2a) satisfies the symmetry relation

Q∗(−x, t) = −σ−1Q(x, t)σ, (2.6)

where σ = ( 0 1
−1 0

)
. Obviously, the symmetry property (2.6) in the ND-NLS equation

(1.4) is different from the three symmetry relations for the NLS-type equations (1.1)–(1.3),
as indicated in Remark 1.

By performing spectral analysis on (2.2a) by using (2.6), we have a relation of the matrix
spectral functions J± that J±(x, λ) = σ−1 J ∗∓(−x,−λ∗)σ. Then it follows from the defini-
tions of P1 and P2 that

P1 (x, λ) = σ−1P∗
1

(−x,−λ∗) σ, λ ∈ C
+, (2.7)

P2 (x, λ) = σ−1P∗
2

(−x,−λ∗) σ, λ ∈ C
−. (2.8)

Using (2.7)–(2.8), the zero structure of the RH problem of the ND-NLS equation (1.4) can
be given. In fact, from (2.7) we know that det[P1(x, λ)] = det[P∗

1 (−x,−λ∗)]. Therefore,
if λ j is a zero of detP1, so is −λ∗

j . Likewise, from (2.8) we know that det[P2(x, λ)] =
det[P∗

2 (−x,−λ∗)]. Therefore, if λ̂ j is a zero of detP2, so is −λ̂∗
j . We note that this property

for the zero structure is the same as that of the NF-NLS equation (1.3) [16]. However, a
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remarkable difference we shall show here is that the zero structure of the ND-NLS equation
(1.4) only involves pairwise zeros (λ j ,−λ∗

j ) and (λ̂ j ,−λ̂∗
j ), where λ j and λ̂ j are non-purely

imaginary, i.e., Re(λ j ) �= 0 and Re(λ̂ j ) �= 0. In other words, for the ND-NLS equation
(1.4), its RH problem cannot admit purely imaginary zeros. Now we shall prove this via the
contradiction approach. If detP1 and detP2 in the RH problem of the ND-NLS equation (1.4)
has purely imaginary simple zeros λ j , λ̂ j , we have λ j = −λ∗

j and λ̂ j = −λ̂∗
j . Now let us

consider the kernels of P1(λ j ) and P2(λ̂ j ) spanned by a nonzero column vector v j and a
nonzero row vector v̂ j , respectively,

P1
(
λ j

)
v j = 0, v̂ j P2

(
λ̂ j

)
= 0. (2.9)

Using the first equation in (2.9) and the Lax pair (2.2), we can obtain that

v j = e(iλ j x+2iλ2
j t)σ3v j,0,

where v j,0 is a nonzero two-component column vector. Then it follows from (2.7) and the
first equation in (2.9) that v∗

j,0 = c jσv j,0, where c j is a constant. Therefore, by setting

v j,0 = (α j , β j )
T with β j �= 0 without loss of generality, we can arrive at the conclusion

c j = 0. Here the symbol T represents the matrix transpose. This obviously means that
v j ≡ 0, which is a contradiction to the definition of v j . In a similar way, by using (2.8)
and the second equation in (2.9), we can arrive at v̂ j ≡ 0, which is a contradiction to the
definition of v̂ j .

Summarizing the above results, the general zero structure for the ND-NLS equation (1.4)
corresponding to soliton solution is: detP1 has 2K non-purely imaginary zeros {λ j }2K

1 in
C

+, where λK+l = −λ∗
l (1 ≤ l ≤ K ), while detP2 has 2K non-purely imaginary zeros

{ ˆλ j }2K
1 in C

−, where λ̂K+l = −λ̂∗
l (1 ≤ l ≤ K ). To solve the RH problem (2.3)–(2.5) with

this zero structure, we need the discrete scattering data {λ j , λ̂ j , v j , v̂ j }. Here λ j , λ̂ j are the
indicated zeros above, and v j , v̂ j are the corresponding vectors defined in (2.9). Following a
similar procedure for the NF-NLS equation (1.3) [16], the vectors v j and v̂ j for the ND-NLS
equation (1.4) can be determined via the definitions in (2.9) and the Lax pair (2.2)

v j =
{
eθ jσ3v j,0, 1 ≤ j ≤ K ,

σeθ∗
j−K (−x,t)σ3v∗

j−K ,0, K + 1 ≤ j ≤ 2K ,
(2.10a)

v̂ j =
{

v̂ j,0e
ˆθ jσ 3 , 1 ≤ j ≤ K ,

v̂∗
j−K ,0e

θ̂∗
j−K (−x,t)σ3σ, K + 1 ≤ j ≤ 2K ,

(2.10b)

with θ j = iλ j x + 2iλ2
j t, θ̂ j = −i λ̂ j x − 2i λ̂2

j t , and

λ j ∈ C
+, 1 ≤ j ≤ K , with Re (λ j ) �= 0,

ˆλ j ∈ C
−
, 1 ≤ j ≤ K , with Re (λ̂ j ) �= 0,

v j,0 =
(

α j

1

)
, 1 ≤ j ≤ K , with α j being complex constants,

v̂ j,0 = (
α̂ j , 1

)
, 1 ≤ j ≤ K , with α̂ j being complex constants.

Note that the second components of v j,0 and v̂ j,0 are normalized without loss of generality.
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2.3 Solutions of the Riemann–Hilbert problem

Now, for the ND-NLS equation (1.4), we can regulate the RH problem (2.3)–(2.5) with the
indicated zero structure above to a regular one without zeros. Then its RH problem (2.3)–(2.5)
in the reflection-less case can be uniquely solved via (2.10a)–(2.10b) as

P1(λ) = I −
2K∑
k=1

2K∑
j=1

vk v̂ j
(
A−1

)
k j

λ − λ̂ j
, (2.11a)

P2(λ) = I +
2K∑
k=1

2K∑
j=1

vk v̂ j
(
A−1

)
k j

λ − λk
, (2.11b)

where A = (akj ) is a 2K th-order matrix whose elements are

akj = v̂kv j

λ j − λ̂k
, 1 ≤ k, j ≤ 2K .

3 Multi-soliton solutions

Now we are ready to derive a multi–soliton solution of the ND-NLS equation (1.4). To this
end, we expand P1(λ) in (2.11a) as

P1(λ) = I + λ−1P(1)
1 + λ−2P(2)

1 + . . . , λ → ∞. (3.1)

Then substituting it into (2.2a) and equating the O(1) terms, we get

Q = −i
[
σ3, P

(1)
1

]
, (3.2)

which implies that

q(x, t) = −2i
(
P(1)

1

)
12

, (3.3a)

q∗(−x, t) = 2i
(
P(1)

1

)
21

(3.3b)

where (P(1)
1 )12 is the (1, 2)-element of the matrix function P(1)

1 . Here the matrix P(1)
1 can

be found from (2.11a) as

P(1)
1 = −

2K∑
k=1

2K∑
j=1

vk v̂ j
(
A−1)

k j , (3.4)

Remark 2 It should be noted that the explicit expression P1(λ) in (2.11a) can be shown to
satisfy the relation in (2.7) through some algebraic calculations. Then using the expansion
(3.1), one can verify the consistency of Eqs. (3.3a)–(3.3b).

Now let us substitute the corresponding vectors in (2.10a)–(2.10b) into (3.4). Then a
general multi-soliton solution is obtained for the ND-NLS equation (1.4) from (3.3a)

q(x, t) = 2i
K∑

k=1

K∑
j=1

αke
θk−θ̂ j

(
A−1)

k j + 2i
K∑

k=1

2K∑
j=K+1

αk α̂
∗
j−K e

θk+θ̂∗
j−K (−x,t) (

A−1)
k j
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+2i
2K∑

k=K+1

K∑
j=1

e−θ∗
k−K (−x,t)−θ̂ j

(
A−1)

k j

+2i
2K∑

k=K+1

2K∑
j=K+1

α̂∗
j−K e

−θ∗
k−K (−x,t)+θ̂∗

j−K (−x,t)
(A−1)k j , (3.5)

where A = (akj )(2K )×(2K ) with the matrix entries

ak j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ˆαkα j e
θ̂k+θ j +e−θ̂k−θ j

λ j−λ̂k
, 1 ≤ k, j ≤ K ;

α̂k e
θ̂k−θ∗

j−K (−x,t)−α∗
j−K e

−θ̂k+θ∗
j−K (−x,t)

−λ∗
j−K −λ̂k

, 1 ≤ k ≤ K , K + 1 ≤ j ≤ 2K ;
−α j e

−θ̂∗
k−K (−x,t)+θ j +α̂∗

k−K e
θ̂∗
k−K (−x,t)−θ j

λ j+λ̂∗
k−K

, K + 1 ≤ k ≤ 2K , 1 ≤ j ≤ K ;
−α̂∗

k−K α∗
j−K e

θ̂∗
k−K (−x,t)+θ∗

j−K (−x,t)−e
−θ̂∗

k−K (−x,t)−θ∗
j−K (−x,t)

−λ∗
j−K +λ̂∗

k−K
, K + 1 ≤ k, j ≤ 2K .

Till now, we have derived a general multi-soliton solution for the ND-NLS equation (1.4).
Indeed, it is the zero structure of the RH problem that leads to this multi-soliton solution. Then,
a mathematically interesting question arises that: Whether we can establish any relationships
between the multi-soliton solution (3.5) of the ND-NLS equation (1.4) and those of the other
three NLS-type equations (1.1)–(1.3) in the framework of RH approach? In the following
remark, we shall establish the relationships of the multi-soliton solutions between the ND-
NLS equation (1.4) and Eqs. (1.1)–(1.2).

Remark 3 We note that if λ̂ j = λ∗
j and α̂ j = α∗

j for each j in the vectors in (2.10a)–(2.10b),
the multi-soliton solution (3.5) of the ND-NLS equation (1.4) can be reduced to a kind of
analytic 2K -soliton solution of the LF-NLS equation (1.1). In fact, in this case, detP1 and
detP2 have the same number of zeros which are complex conjugate to each other. Moreover,
the vectors v j , v̂ j in (2.10a)–(2.10b) satisfy the relations v̂ j = v

†
j . This case just corresponds

to the scattering data that generates analytic multi-soliton solutions of the LF-NLS equation
(1.1) [17]. Similarly, if λ̂ j = λ∗

j and α̂ j = −α∗
j for each j in (2.10a)–(2.10b), then the vectors

v j and v̂ j obey the relations v̂ j = −v
†
jσ3. In this case, the multi-soliton solution (3.5) of

the ND-NLS equation(1.4) can be reduced to a kind of singular 2K -soliton solution of the
LD-NLS equation (1.2). In fact, this case corresponds to the scattering data that generates
singular multi-soliton solutions of the LD-NLS equation (1.2) [17].

4 Nonlinear dynamics

It is easy to see that for a positive integer K , the multi-soliton solution (3.5) of the ND-NLS
equation (1.4) totally involves 4K independent parameters

λ1, λ2, . . . , λK , α1, . . . , αK ,

λ̂1, λ̂2, . . . , λ̂K , α̂1, . . . , α̂K ,

where λ j ∈ C
+, λ̂ j ∈ C

−, Re(λ j ) �= 0, Re(λ̂ j ) �= 0, α j and α̂ j are complex-valued for
1 ≤ j ≤ K . In what follows, to demonstrate the corresponding nonlinear dynamics via (3.5),
we shall investigate a representative case: K = 1, which corresponds to two-soliton solutions
of the ND-NLS equation (1.4).
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Fig. 1 Two-soliton solution (3.5) with the parameters in (4.1): 3d plot and density plot

To demonstrate, we firstly choose the corresponding parameters in (3.5) as

λ1 = 0.8 + 1.5i, λ̂1 = 0.6 − 0.5i, α1 = 1, α̂1 = i. (4.1)

With the parameters in (4.1), Eq. (3.5) gives a two-soliton solution for the ND-NLS equation
(1.4). In this case where Re(λ1) �= Re(λ̂1), the left-direction wave gradually becomes smaller
and even disappear after some time, while the right-direction wave emerges from a zero
background and becomes larger and larger during the propagation process. The interaction
characteristic is shown in Fig. 1.

Secondly, we choose the parameters in (3.5) as

λ1 = 0.2 + 0.5i, λ̂1 = 0.2 − 1.2i, α1 = 1, α̂1 = i. (4.2)

Under these parameters, Eq. (3.5) also denotes a two-soliton solution for ND-NLS equation
(1.4), which is displayed in Fig. 2. As shown in Fig. 2, this two-soliton collision is more regular
compared with that in Fig. 1. It is obvious that the breathers have one breather-form before
the interaction and keep another breather-form after the interaction. The collision visually
looks like the two breathers are bounced back by the collision. Therefore, we call this kind
of collision as breather reflection. We note that a kind of bell-soliton reflection phenomenon
has been reported for a general coupled NLS equation [19]. However, to our knowledge, the
breather-type reflection in Fig. 2 has not been discovered before for the ND-NLS equation
(1.4).

Thirdly, we set the parameters in (3.5) to be

λ1 = 0.3 + 0.5i, λ̂1 = 0.4 − 0.5i, α1 = 1, α̂1 = i. (4.3)

In this case where Im(λ1) = −Im(λ̂1), the two-soliton solution (3.5) via (4.3) is demon-
strated in Fig. 3. It is obvious here that the right-direction wave gradually becomes smaller
and smaller, while the left-direction wave becomes larger and larger along the propagation
process. Therefore, a lot of power has been transferred from one wave to the other. In addition,
in Fig. 3, the right-direction wave after the interaction has finite amplitude at all times and
even approaches to zero when t → +∞. On the other hand, the left-direction wave emerges
from the zero background and its amplitude is finite before the collision.
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Fig. 2 Two-soliton solution (3.5) with the parameters in (4.2): 3d plot and density plot

Fig. 3 Two-soliton solution (3.5) with the parameters in (4.3): 3d plot and density plot

Now our further task is to demonstrate the relationships between the ND-NLS equation
(1.4) and Eqs. (1.1)–(1.2). To this end, we take the following two cases of parameters:

λ1 = 0.2 + 0.5i, λ̂1 = 0.2 − 0.5i, α1 = 0.5 + 0.7i, α̂1 = −0.5 + 0.7i, (4.4)

λ1 = 0.2 + 0.5i, λ̂1 = 0.2 − 0.5i, α1 = 0.5 + 0.7i, α̂1 = 0.5 − 0.7i. (4.5)

Obviously, the parameters in (4.4) satisfy λ̂1 = λ∗
1 and α̂1 = −α∗

1 . While, the parameters
in (4.5) satisfy that λ̂1 = λ∗

1 and α̂1 = α∗
1 . Therefore, using the assertions in Remark 3,

we obtain two conclusions: (a) under the parameters in (4.4), the two-soliton solution via
(3.5) for the ND-NLS equation (1.4) is reduced to a two-soliton solution for the LD-NLS
equation (1.2); (b) under the parameters in (4.5), the two-soliton solution via (3.5) for the
ND-NLS equation (1.4) is reduced to a two-soliton solution for the LF-NLS equation (1.1).
The two-soliton interactions corresponding to (4.4) and (4.5) are graphically illustrated in
Figs. 4 and 5, respectively. In Fig. 4, the two-soliton involves two singular bell solitons with
the same widths. In Fig. 5, it is a two-soliton with two analytic bell solitons. These two bell
solitons have the same amplitudes.
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Fig. 4 Two-soliton solution (3.5) with the parameters in (4.4): 3d plot and density plot

Fig. 5 Two-soliton solution (3.5) with the parameters in (4.5): 3d plot and density plot

For the multi-soliton solution (3.5), if it is also a solution of the LD-NLS equation (1.2),
it will be singular. However, if (3.5) is singular, it is not always a solution of the LD-NLS
equation (1.2). In fact, we observe that if the parameters in (3.5) are chosen as

λ1 = 0.2 + 0.5i, λ̂1 = 0.2 − 0.5i, α1 = 0.1i, α̂1 = 0.6i, (4.6)

then the solution (3.5) is demonstrated in Fig. 6. We notice that though this solution is singular,
it does not satisfy the LD-NLS equation (1.2). Otherwise, due to the form of Eq. (1.2), we
can conclude that q(x, t) = q(−x, t) for arbitrary time t . This means that |q(x, t)| must be
symmetric in x . However, as can be seen clearly in Fig. 6, |q(x, t)| is asymmetric in x .

Similarly, if the multi-soliton solution (3.5) is also a solution of the LF-NLS equation (1.1),
it will be analytic. However, if (3.5) is analytic, it is not always a solution of the LF-NLS
equation (1.1). In fact, if the parameters in (3.5) are chosen as

λ1 = 0.2 + 0.5i, λ̂1 = 0.2 − 0.5i, α1 = 0.2i, α̂1 = 0.6i, (4.7)

the solution (3.5) of the ND-NLS equation (1.4) is demonstrated in Fig. 7. We note that though
this solution still consists of two analytic bell solitons, it does not satisfy the LF-NLS equation
(1.1). Otherwise, in view of the form of Eq. (1.1), we can conclude that q(x, t) = −q(−x, t)
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Fig. 6 Two-soliton solution (3.5) with the parameters in (4.6): 3d plot and density plot

Fig. 7 Two-soliton solution (3.5) with the parameters in (4.7): 3d plot and density plot

for arbitrary time t . This means that |q(x, t)| must also be symmetric in x . However, as can
be seen in Fig. 7, |q(x, t)| is obviously asymmetric in x .

5 Concluding remarks

In this paper, the RH approach for nonlinear evolution equations [16–31] is extended to
the ND-NLS equation (1.4). By performing spectral analysis and considering the symmetry
relation (2.6), we have explored the novel spectral structure of the RH problem, from which
the multi-soliton solution (3.5) is presented. Specifically, we prove that the RH problem of
the ND-NLS equation (1.4) admit only pairwise non-purely imaginary zeros. That is to say,
the zero structure of the ND-NLS equation (1.4) has sharp difference compared with those of
Eqs. (1.1)–(1.3). This difference is the main basis for performing RH approach throughout
this paper.

Concerning the mathematical aspects of the multi-soliton solution (3.5), we have proved
that under some parameter selections, the solution (3.5) can be reduced to special kinds of
solutions of Eqs. (1.1)–(1.2). For physical aspects, we graphically illustrated some soliton
interactions via the multi-soliton solution (3.5) by choosing suitable parameters via Mathe-
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matica symbolic computations. Some figures correspond to the multi-soliton solution with
repeated singularities, e.g., Figs. 1 and 2. Some figures reveal the multi-soliton solution with
persistent singularities, e.g., Figs. 4 and 6. Some figures are about the analytic multi-soliton
solutions, e.g., Figs. 5 and 7. Interestingly, Fig. 2 reveals a kind of collision as breather-type
reflection, which is novel for Eq. (1.4). In Fig. 3, the solution remains analytic before a
certain time and will become singular after a period of time. More interesting, each individ-
ual soliton in Fig. 4 possesses the same width and this solution is also that of the LD-NLS
equation (1.2). Similarly, each individual soliton in Fig. 5 possesses the same amplitude
and this solution is also that of the LF-NLS equation (1.1). However, though the solution
demonstrated in Fig. 6 is singular, we have proved that this solution is not a solution of the
LD-NLS equation (1.2). Likewise, though the solution demonstrated in Fig. 7 is analytic, we
have proved that this solution is not a solution of the LF-NLS equation (1.1). These results
indicate that the zero structure of the ND-NLS equation (1.4) is novel and has sharp contrast
to those of Eqs. (1.1)–(1.3). In addition, the obtained solution (3.5) has very rich solution
structures since it can be repeatedly singular, persistently singular, even analytic, depending
on the parameter selections.

Compared with the other methods for investigating multi-soliton structures of soliton
equations, such as the Darboux transformation [32,33], the bilinear method [34,35], the
Wronskian technique [36,37], and others, the RH method in this paper not only paves a way
for deriving multi-soliton solutions for the ND-NLS equation (1.4) but also can reveal the
novel spectral structure of the corresponding equation. Therefore, our findings expand the
understanding of the spectral structure of the ND-NLS equation (1.4). We hope that this
method can be applied to other nonlocal integrable systems in the future. In addition, it is
known that once the RH problem is formulated, the Cauchy problem and the initial-boundary
value problem as well as the long time behaviors can be discussed using the nonlinear steepest
descent method [38,39]. More recently, based on the RH approach, the nonlinear steepest
descent method was also extended to study soliton equations associated with the 3×3 matrix
spectral problems [40,41]. Naturally, we hope that the nonlinear steepest descent method can
also be applied to Eq. (1.4) and other nonlocal integrable systems in the future.
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