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Abstract We construct higher-order Darboux transformations for Dirac equations in two
dimensions that feature a position-dependent mass. Our method allows to generate closed-
form expressions for both a transformed potential and a transformed position-dependent mass
function.

1 Introduction

Dirac materials [3] are lattice systems in which low-energy charge carriers behave like Dirac
fermions. The development of these materials started with the isolation of graphene [7,9], a
two-dimensional monolayer of carbon atoms forming a hexagonal honeycomb lattice. Further
examples for Dirac materials include d-wave superconductors [2,12], superfluids [14,21],
and topological insulators [20,23], just to name a few. Dirac materials exhibit many unusual
properties, one of which is Klein tunneling. This phenomenon, referring to perfect transmis-
sion of Dirac fermions impinging perpendicularly to a potential barrier, was theoretically
predicted some time ago [10] and experimentally observed in graphene [24]. The presence
of Klein tunneling inhibits the existence of bound states within a Dirac material due to high
mobility of the charge carriers. A variety of techniques have been proposed to achieve con-
finement of Dirac fermions, see [5,6] for an overview. One of the techniques proposed in
[6] is the introduction of a position-dependent mass function into the governing Dirac equa-
tion. It turned out that charge carriers associated with a spatially varying mass can undergo
confinement, provided the mass function is chosen suitably. This was shown by an example
featuring closed-form solutions in terms of Bessel functions, see [6] for details. In general,
closed-form solutions of Dirac equations are rare and therefore hard to find. One of the most
effective techniques to find such solutions is the Darboux transformation. The first version
of this transformation [4] that applied to linear second-order equations, meanwhile has been
generalized to be compatible with a variety of linear and nonlinear models [8,13], including
the Dirac equation. Particularly in the two-dimensional case governing Dirac materials, a
method was devised [17] to adapt the first-order Darboux transformation, based on a result
on Schrödinger models for quadratically energy-dependent potentials [11]. Besides the Dirac
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equation, these models can be linked to Korteweg-de Vries [22] and Klein–Gordon systems
[18].

The purpose of the present work is to construct higher-order Darboux transformations
for two-dimensional Dirac equations featuring a position-dependent mass in combination
with a diagonal potential matrix. Our method uses a recent generalization [15,16] of the
results from [11], as well as a connection between two-dimensional Dirac equations and
their Schrödinger counterparts for quadratically energy-dependent potentials. The remainder
of this note is organized as follows: in Sect. 2, we summarize main results from [15]. Section 3
is devoted to the construction of the Darboux transformation, while we give an example in
Sect. 4. Finally, “Appendix A” is devoted to stating a few excessively long expressions that
result from our example.

2 Preliminaries

For the sake of completeness, we briefly review the principal results from [15]. Our goal is to
establish a Darboux transformation between the following two Schrödinger equations with
quadratically energy-dependent potentials:

ψ ′′
0 (x) − [E2 + E V0(x) +U0(x)] ψ0(x) = 0 (1)

ψ ′′
n (x) − [E2 + E Vn(x) +Un(x)] ψn(x) = 0. (2)

The energy E is a real constant, the functions Vj , Uj , j = 0, 2 are the potential terms that do
not depend on E , and ψ0, ψn stand for the respective solutions, where the index n is a natural
number. Assume that h j , j = 0, . . . , n − 1, are auxiliary solutions to Eq. (1) at energies
λ j , j = 0, . . . , n − 1, respectively, such that the constants λ0, λ1,…, λn−1, E are pairwise
different. Define functions v j , j = 0, . . . , n − 1, by means of

v j (x) = exp
[
(E − λ j ) x

]
h j (x), j = 0, . . . , n − 1. (3)

Next, we introduce the n-th order Darboux transformation of the solution φ0 to (1) as

Dh0,...hn−1(ψ0)(x) = Wv0,...,vn−1,ψ0(x)√
Ŵn−1(x) Wv0,...,vn−1(x)

, (4)

where Wv0,...,vn−1 and Wv0,...,vn−1,ψ0 denote the Wronskians of v0, . . . , vn−1 and of
v0, . . . , vn−1, ψ0, respectively. Furthermore, the quantities Ŵ j , j = 0, . . . , n − 1, are
defined recursively by the rules

Ŵ0(x) = 2 v′
0(x) − v0(x) [V0(x) + 2E] (5)

Ŵ j (x) = 2
Ŵ ′

j−1(x) Wv0,...,v j (x)

Wj−1(x)
− 2

Ŵ j−1(x) W ′
v0,...,v j

(x)

Wj−1(x)

+ Ŵ j−1(x) Wv0,...,v j (x)

Wj−1(x)
[V0(x) + 2E], j = 1, 2, . . . , n − 1. (6)

Under these conditions, the function ψn = Dh0,...,hn−1(ψ0) solves Eq. (2), provided the
potential terms comply with the following constraints

Vn(x) = V0(x) + d

dx
log

[
Ŵn−1(x)

Wv0,...,vn−1(x)

]

(7)
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Un(x) = U0(x) − n

2
V ′

0(x) + V0(x)

2

{
d

dx
log

[
Ŵn−1(x)

Wv0,...,vn−1(x)

]}

+ 3 (Ŵ ′
n−1(x))

2

4 Ŵn−1(x)2

+3 (W ′
v0,...,vn−1

(x))2

4 Wv0,...,vn−1(x)
2 − Ŵ ′

n−1(x) W
′
v0,...,vn−1

(x)

2 Ŵn−1(x) Wv0,...,vn−1(x)
− Ŵ ′′

n−1(x)

2 Ŵn−1(x)

− W ′′
v0,...,vn−1

(x)

2 Wv0,...,vn−1(x)
. (8)

The proof of these results and a separate consideration of the second-order case can be found
in [15,16], respectively.

3 Construction of the Darboux transformation

As mentioned above, we want to establish a Darboux transformation between two-
dimensional Dirac equations with a position-dependent mass. To this end, we start out from
our initial equation that we write in the form

− i σ1
∂

∂x
Ψ (x, y) − i σ2

∂

∂y
Ψ (x, y) + [m(x) σ3 + V (x) ] Ψ (x, y) = 0, (9)

where σ j , j = 1, 2, 3, are the Pauli matrices, m and V represent the position-dependent
mass function and the potential, respectively, and Ψ denotes the two-component solution.
The principal idea of our construction is to convert our Dirac equation (9) into Schrödinger
form (1), apply the Darboux transformation described in Sect. 2 , and afterward reinstate
Dirac form of the resulting transformed equation. Hence, the first step consists in decoupling
(9) and afterward convert it to a second-order equation that matches the form (1).

3.1 Decoupling the Dirac equation

In order to decouple the Dirac equation (9), we make use of the fact that both potential and
position-dependent mass do not depend on the variable y. We set

Ψ (x, y) = exp(i ky y) [Ψ1(x), Ψ2(x)] . (10)

Here, the constant ky stands for free motion in y-direction. We now relate the component
functions Ψ1 and Ψ2 to each other as follows

Ψ2(x) = i
ky Ψ1(x) − Ψ ′

1(x)

m(x) − V (x)
. (11)

Upon substituting this setting along with (10), the second component of the Dirac equation
(9) is satisfied, while the first component takes the form

Ψ ′′
1 (x) + V ′(x) − m′(x)

m(x) − V (x)
Ψ ′

1(x) + [m(x) − V (x)]−1
{
− m(x)3 + k2

y V (x)

+m(x)2 V (x) − V (x)3 + m(x)
[
V (x)2 − k2

y

]
+ ky

[
m′(x) − V ′(x)

] }
Ψ1(x) = 0.

In the next step, we gauge away the first-derivative term by defining

Ψ1(x) = √
m(x) − V (x) ψ0(x), (12)
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where the function ψ0 is a solution of

ψ ′′
0 (x) −

{
k2
y + V ′(x) − m′(x)

m(x) − V (x)
ky + 3

4

[
m′(x) − V ′(x)
m(x) − V (x)

]2

+ m(x)2 − V (x)2

+V ′′(x) − m′′(x)
m(x) − V (x)

}
ψ0(x) = 0. (13)

We observe that this linear second-order equation matches the form (1), provided we make
the following definitions

E = ky (14)

V0(x) = V ′(x) − m′(x)
m(x) − V (x)

(15)

u0(x) = 3

4

[
m′(x) − V ′(x)
m(x) − V (x)

]2

+ m(x)2 − V (x)2 + V ′′(x) − m′′(x)
m(x) − V (x)

. (16)

Due to Eqs. (1) and (13) matching, we are now in position to perform a Darboux transfor-
mation.

3.2 The Darboux transformation

We will now apply our Darboux transformation (4) to the solution ψ0 of Eq. (13). While the
transformed solution ψn is given by (4), the transformed potential terms Vn , Un can be found
by inserting the above settings (15), (16) into (7) and (8), respectively. This yields

Vn(x) = V ′(x) − m′(x)
m(x) − V (x)

+ d

dx
log

[
Ŵn−1(x)

Wv0,...,vn−1(x)

]

(17)

Un(x) = 3

4

[
m′(x) − V ′(x)
m(x) − V (x)

]2

+ m(x)2 − V (x)2 + V ′′(x) − m′′(x)
m(x) − V (x)

−n

2

d

dx

[
V ′(x) − m′(x)
m(x) − V (x)

]
+ V ′(x) − m′(x)

2 [m(x) − V (x)]
d

dx
log

[
Ŵn−1(x)

Wv0,...,vn−1(x)

]

+3

4

[
Ŵ ′

n−1(x)

Ŵn−1(x)

]2

+ 3

4

[
W ′

v0,...,vn−1
(x)

Wv0,...,vn−1(x)

]2

− Ŵ ′
n−1(x) W

′
v0,...,vn−1

(x)

2 Ŵn−1(x) Wv0,...,vn−1(x)
− Ŵ ′′

n−1(x)

2 Ŵn−1(x)

− W ′′
v0,...,vn−1

(x)

2 Wv0,...,vn−1(x)
. (18)

Thus, the function (4) with ψ0 from (13) is a solution of the transformed equation (2) for the
settings (14)–(16). Now that we have generated the transformed linear second-order equation
(2), the remaining task is to cast the latter equation in Dirac form.

3.3 Reinstating Dirac form: matching conditions

In order to revert the decoupling procedure for the Dirac equation, we need to match the
transformed equation (2) for (17) and (18) with the general shape of (13). More precisely,
we require the transformed equation (2) to read
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ψ ′′
n (x) −

{
k2
y + U ′(x) − M ′(x)

M(x) −U (x)
ky + 3

4

[
M ′(x) −U ′(x)
M(x) −U (x)

]2

+ M(x)2 −U (x)2

+U ′′(x) − M ′′(x)
M(x) −U (x)

}
ψn(x) = 0, (19)

introducing a transformed Dirac potential U and a transformed position-dependent mass
function M . We will now proceed by matching the coefficients pertaining to the ky-powers.
Since the term k2

y is already matching, we continue with the coefficient of ky in (19), using
its explicit form (17). This results in the equation

U ′(x) − M ′(x)
M(x) −U (x)

= V ′(x) − m′(x)
m(x) − V (x)

+ d

dx
log

[
Ŵn−1(x)

Wv0,...,vn−1(x)

]

.

We can solve this constraint for the transformed mass function M by means of logarithmic
integration. The result can be simplified as to remove all integrations in the following way:

M(x) = U (x) − exp

⎧
⎨

⎩

x∫
−V ′(t) − m′(t)

m(t) − V (t)
− d

dt
log

[
Ŵn−1(t)

Wv0,...,vn−1(t)

]

dt

⎫
⎬

⎭

= U (x) − exp

⎡

⎣
x∫
−V ′(t) − m′(t)

m(t) − V (t)
dt

⎤

⎦ exp

⎧
⎨

⎩
−

x∫
d

dt
log

[
Ŵn−1(t)

Wv0,...,vn−1(t)

]

dt

⎫
⎬

⎭

= U (x) − [
V (x) − m(x)

] Wv0,...,vn−1(x)

Ŵn−1(x)
. (20)

It remains to match the terms that do not depend on ky . This gives a condition on the
transformed Dirac potential U in the form

3

4

[
M ′(x) −U ′(x)
M(x) −U (x)

]2

+ M(x)2 −U (x)2 + U ′′(x) − M ′′(x)
M(x) −U (x)

= 3

4

[
m′(x) − V ′(x)
m(x) − V (x)

]2

+ m(x)2 − V (x)2 + V ′′(x) − m′′(x)
m(x) − V (x)

+Un(x) −U0(x),

(21)

where the function Un and the transformed mass M are displayed in (18) and (20), respec-
tively. We omit to include the explicit form of these functions, as the resulting expressions
would be very large. We can solve Eq. (21) with respect to the potential U , which gives the
lengthy result

U (x) = √
V (x) − m(x)

{
Wv0,...,vn−1(x)

2 Ŵn−1(x)
+ Ŵn−1(x)

2 Wv0,...,vn−1(x)

[
V (x) + m(x)

]}

+
√

1

V (x) − m(x)

{
− [U2(x) −U0(x)] Ŵn−1

2 Wv0,...,vn−1(x)
+ 3 Ŵn−1(x) [W ′

v0,...,vn−1
(x)]2

8 Wv0,...,vn−1(x)
3

−W ′
v0,...,vn−1

(x) Ŵ ′
n−1(x)

4 Wv0,...,vn−1(x)
2 − [Ŵ ′

n−1(x)]2

8 Wv0,...,vn−1(x) Ŵn−1(x)

− Ŵn−1(x) W ′′
v0,...,vn−1

(x)

4 Wv0,...,vn−1(x)
2 + Ŵ ′′

n−1(x)

4 Wv0,...,vn−1(x)

}
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+
[
V (x) − m(x)

]− 3
2
{[

V ′(x) − m′(x)
] Ŵn−1(x) W ′

v0,...,vn−1
(x)

8 Wv0,...,vn−1(x)
2

−
[
V ′(x) − m′(x)

] Ŵ ′
n−1(x)

8 Wv0,...,vn−1(x)

+
[
V ′′(x) − m′′(x)

] Ŵn−1(x)

8 Wv0,...,vn−1(x)

}

+
[
V (x) − m(x)

]− 5
2
{

7 Ŵn−1(x)

32 Wv0,...,vn−1(x)

[
− [m′(x)]2 + 2 m′(x) V ′(x)

−Ŵn−1(x) [V ′(x)]2
]}

. (22)

In summary, if we choose the transformed mass M and the transformed Dirac potential U as
in (20) and (22), then equation (19) matches the form (2), where the potential terms Vn and
Un are given by (17) and (18), respectively. We are now ready to convert our transformed
linear second-order equation (2) for (17) and (18) to Dirac form.

3.4 Reinstating Dirac form: employing initial quantities

We obtain our desired Dirac form by reverting the decoupling process that was performed in
Sect. 3.1 . To this end, let us first state the transformed Dirac equation. It reads

− i σ1
∂

∂x
Φ(x, y) − i σ2

∂

∂y
Φ(x, y) + [M(x) σ3 +U (x) ] Φ(x, y) = 0, (23)

where the mass M and the potential U are given in (20) and (22), respectively. The two-
component solution of (23) can be constructed in a similar way as its counterpart Ψ . We
just need to rewrite our results (10), (11), (12), where we replace initial quantities by their
transformed partners. We find

Φ(x, y) = exp(i ky y) [Φ1(x),Φ2(x)] . (24)

The component functions Φ1 and Φ2 are interrelated by means of

Φ2(x) = i
ky Φ1(x) − Φ ′

1(x)

M(x) −U (x)
, (25)

and the first component Φ1 of (24) is given by

Φ1(x) = √
M(x) −U (x) ψn(x)

= √
M(x) −U (x)

Wv0,...,vn−1,ψ0(x)√
Ŵn−1(x) Wv0,...,vn−1(x)

. (26)

At this point, there is one more task remaining: we observe that the transformed quantities
(20), (22), (25), (26) are expressed in terms of solutions ψ0 and h j , j = 0, . . . , n − 1, to the
Schrödinger-type equation (1), see Sect. 2 for their definition. This is not desirable, since we
are aiming at constructing a Darboux transformation between Dirac equations without the use
of any intermediate result or equation. For this reason, we must now establish a connection
between solutions of (13) and corresponding solutions of the initial Dirac equation (9). The
first of these connections is given by (12). Inversion gives
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ψ0(x) =
√

1

m(x) − V (x)
Ψ1(x). (27)

Next, we need to consider the functions v j , j = 0, . . . , n − 1, that are defined in (3).
We will now relate these functions to auxiliary solutions u j , j = 0, . . . , n − 1, of the Dirac
equation (9) that pertain to ky-values λ j , j = 0, . . . , n − 1, respectively. Upon taking into
account (3) and (12), we obtain

v j =
√

1

m(x) − V (x)
exp

[
(E − λ j ) x

]
u j (x), j = 0, . . . , n − 1. (28)

For the sake of brevity, let us now introduce the abbreviation

wv0,...,v j (x) = exp
[
(E − λ j ) x

]
u j (x), j = 0, . . . , n − 1. (29)

We can now combine (27)–(29) in order to rewrite the Wronskians that appear in the
transformed quantities (20), (22), (25), (26). Starting out with the Wronskian Wv0,...,vn−1 of
the functions v j , j = 0, . . . , n − 1, we obtain

Wv0,...,vn−1(x) = [m(x) − V (x)]−
n
2 Ww0,...,wn−1(x). (30)

Here, we made use of the fact that a common factor in each entry of the matrix associated
with the Wronskian can be pulled out like a constant [19]. A similar argumentation leads to

Wv0,...,vn−1,ψ0(x) = [m(x) − V (x)]−
n+1

2 Ww0,...,wn−1,Ψ1(x). (31)

In the final step, we proceed to rewrite the quantity Ŵ j , as defined in (6). To this end, we
note that the latter quantity can be stated in explicit form as an actual Wronskian [15]. To
summarize, we have

Ŵn−1(x) = (−2)n

F(x)
Wv0,...,vn−1,F (x), (32)

where the function F is given by

F(x) = exp

⎛

⎝1

2

x∫
V0(t) + 2 ky dt

⎞

⎠ . (33)

Upon implementation of (28) and (29), we can cast (32) in the form

Ŵn−1(x) = (−2)n

F(x)
[m(x) − V (x)]−

n+1
2 Ww0,...,wn−1,

√
m−V F (x). (34)

We are now ready to state the Darboux transformation that connects the initial Dirac equation
(9) with its transformed counterpart (23). Substitution of (30), (31), (34) into (26) gives the
result

Φ1(x) =
(

−1

2

) n
2

√
F(x) [M(x) −U (x)]
[m(x) − V (x)]

1
4

Ww0,...,wn−1,Ψ1(x)

Ww0,...,wn−1,
√
m−V F (x) Ww0,...,wn−1(x)

.

(35)

This is the first component of the solution to the transformed Dirac equation (23). The
second component can be obtained by plugging (35) into (25). We do not show the explicit
form of the resulting expression due to its length. Next, let us state the mass (20) that enters
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in the transformed equation (23). Since this mass is expressed in terms of a Wronskian ratio,
it is convenient to determine the latter ratio first. Combination of (30) and (34) gives

Wv0,...,vn−1(x)

Ŵn−1(x)
=
(

−1

2

)n

F(x)
√
m(x) − V (x)

Ww0,...,wn−1(x)

Ww0,...,wn−1,
√
m−V F (x)

. (36)

Upon plugging this expression into the mass function (20), we arrive at

M(x) = U (x) +
(

−1

2

)n

F(x)
[
m(x) − V (x)

] 3
2

Ww0,...,wn−1(x)

Ww0,...,wn−1,
√
m−V F (x)

. (37)

Now that we have rewritten the mass function in terms of quantities related to the initial
Dirac equation, we can perform the same process with the transformed Dirac potential U by
substituting the Wronskian ratio (36) into (22). Since the resulting form of the latter potential
will become very long and involved, we omit to show it here.

4 Application: hyperbolic potential and mass

We will now demonstrate how the Darboux transformation between Dirac equations with
position-dependent mass is applied. To this end, let us start by considering a particular case
of our initial equation (9). We choose the potential and the mass functions as follows

V (x) = 20 sech2(x) + 1

2
m(x) = 20 sech2(x). (38)

Let us mention here that the primary reason for choosing these settings is to keep subse-
quent calculations as simple and transparent as possible. In general, even Darboux transfor-
mations of first order result in expressions that are not manageable due to their length. In the
following, we will perform a second-order transformation, where excessively long expres-
sions that result from it will be stated in “Appendix A.” Now, upon implementing the settings
(38), the Dirac equation (9) is taken at zero energy and admits solutions of bound-state type,
characterized by particular values of the parameter ky . We define these values as

ky = 1

2

√
1 + 4 n2

ky
, (39)

where nky stands for a nonnegative integer. A particular solution to the Dirac equation for
the settings (38) and (39) is given by (10) with components

Ψ1(x) = i√
2
P
nky
4 [tanh(x)] (40)

Ψ2(x) = −√
2 (nky − 5) P

nky
5 [tanh(x)] +

√
1

2

[√
1 + 4 nky

−10 tanh(x)] P
nky
4 [tanh(x)] . (41)

Here, P stands for the associated Legendre functions of the first kind [1]. Note that the second
component can be obtained from its counterpart by means of (11). Figure 1 shows normalized
probability densities |Ψ (x, 0)|2 for several values of nky .

We will now apply a second-order Darboux transformation to our Dirac equation (9) for
the settings (38). To this end, we need to identify two auxiliary solutions of the latter equation.
We take the first components of these solutions from(40) as
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Fig. 1 Graph of the initial probability density |Ψ (x, 0)|2 for nky = 4 (black curve), nky = 3 (gray curve),
and nky = 2 (dashed curve)

u0(x) = i√
2
P0

4 [tanh(x)] u1(x) = i√
2
P1

4 [tanh(x)] ,

while the second components of the auxiliary solutions are irrelevant here. In accordance
with (29), we define

w0(x) = exp

[(
E − 1

2

)
x

]
u0(x) w1(x) = exp

[(

E −
√

5

2

)

x

]

u1(x), (42)

note that the values for λ0 and λ1 in (29) are obtained from (39) for nky = 0 and nky = 1,
respectively. We are now ready to apply our Darboux transformation that is determined by
the transformed solution Φ1, the mass function M , and the associated potentialU , as given in
(35), (20), and (22), respectively. Let us first consider the difference between the transformed
mass M and the potential U . Substitution of (42) into (20) gives

M(x) −U (x) = −
{

2 cosh2(x)

[
2 cosh(x) + 36 cosh(3x) − 4 cosh(5x) + 2 cosh(7x)

+(
√

5 − 1)
[

− 329 sinh(x) + 138 sinh(3x) − 22 sinh(5x)

+ sinh(7x)
]]}

×
{

6 (2873 + 14
√

5) cosh(x) + 10 (−1159 + 14
√

5) cosh(3x)

+30 (191 + 2
√

5) cosh(5x) + (−2 + 4
√

5) cosh(9x) − 2

[
− 4020

+3860
√

5 + 5 (567 − 575
√

5) cosh(2x) − 14 (−9 + √
5) cosh(4x)

+(−9 + √
5) cosh(6x)

][
− 6 sinh(x) + sinh(3x)

]}−1

. (43)

Figure 2 shows two graphs of this expression. We observe that away from zero, both
transformed mass and potential differ by a constant amount, where close to zero they are
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Fig. 2 Graphs of the function M −U , as given in (43)

3 2 1 1 2 3 x

m x , M x

4 2 2 4 x

V x , U x

Fig. 3 Left plot: vertically scaled graph of initial mass (38) (dashed curve) and transformed mass (20) (solid
curve). Right plot: vertically scaled graph of initial potential (38) (dashed curve) and transformed potential
(22) (solid curve)

almost equal. Let us now state the results of our Darboux transformation. Starting out with
the transformed mass (20), it turns out that after substitution of (22), (33), (38), and (42),
we obtain a very long and involved expression. After having this expression simplified by
Mathematica (Wolfram Research Inc.), the result is shown in “Appendix A.” Similarly, we
use the latter result for finding the explicit form of the transformed Dirac potential (22) by
means of (43), see “Appendix A.” Figure 3 shows graphs of the initial mass and potential,
along with their transformed counterparts. Note that the graphs are scaled in vertical direction,
as the transformed quantities take much larger values as compared to their initial partners. It
remains to determine the solution (35) for the present case. We follow the same route as for
the transformed mass and potential functions by stating the explicit form of the latter solution
in “Appendix A.” The second component of the solution can be obtained through (25); we
omit to present its explicit form. Figure 4 shows normalized probability densities |Φ(x, 0)|2
for several values of the parameter nky .

Inspection of the figure indicates that the probability densities pertain to solutions of
bound-state type.

5 Concluding remarks

We have constructed arbitrary-order Darboux transformation for Dirac equations with
position-dependent mass. Even though applications typically result in large expressions for
the transformed quantities, our method can be easily implemented by means of symbolic
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calculators. In particular, no symbolic integration is required except for the typically sim-
ple integral in (33). Our method has a technical shortcoming that concerns the transformed
position-dependent mass function (37). In order to be physically meaningful, this function
must be nonnegative. However, due to its complicated form and involved dependence on
parameters, we do not have a condition for nonnegativity. A similarly important task is to
obtain regularity constraints for the transformed potential terms (7) and (8), as they exist
in the conventional Darboux transformation (SUSY formalism). Finally, we point out that
our method can be extended in a straightforward manner to work with non-diagonal matrix
potentials.

Appendix A: explicit form of the Darboux transformation

The transformed mass function M , as given in (20), takes a long and involved form. For
this reason, we do not show it as part of Sect. 4 , but rather display its simplified form here

1.0 0.5 0.5 1.0 1.5 2.0 2.5 x

0.5

1.0

1.5

x,0 2

Fig. 4 Graphs of the probability density |Φ(x, 0)|2 for nky = 4 (black curve), nky = 3 (gray curve), and
nky = 2 (dashed curve)

Fig. 5 The transformed mass function (20), calculated by Mathematica (Wolfram Research Inc.)
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Fig. 6 The transformed potential function (20), calculated by Mathematica (Wolfram Research Inc.)

Fig. 7 The first component (35) of the transformed solution, calculated by Mathematica (Wolfram Research
Inc.)

in Fig. 5. The latter form was obtained by the symbolic calculator package Mathematica
(Wolfram Research Inc.). By substituting this mass function into (43), we can construct the
explicit form of the associated Dirac potential U , as defined in (22). The result is shown in
Fig. 6. Finally, in Fig. 7, we state the first component Φ1 of the transformed solution, obtained
by substitution of (20), (22), (33), (40), (42), (43) into (35).
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