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Abstract We construct higher-order Darboux transformations for Dirac equations in two
dimensions that feature a position-dependent mass. Our method allows to generate closed-
form expressions for both a transformed potential and a transformed position-dependent mass
function.

1 Introduction

Dirac materials [3] are lattice systems in which low-energy charge carriers behave like Dirac
fermions. The development of these materials started with the isolation of graphene [7,9], a
two-dimensional monolayer of carbon atoms forming a hexagonal honeycomb lattice. Further
examples for Dirac materials include d-wave superconductors [2,12], superfluids [14,21],
and topological insulators [20,23], just to name a few. Dirac materials exhibit many unusual
properties, one of which is Klein tunneling. This phenomenon, referring to perfect transmis-
sion of Dirac fermions impinging perpendicularly to a potential barrier, was theoretically
predicted some time ago [10] and experimentally observed in graphene [24]. The presence
of Klein tunneling inhibits the existence of bound states within a Dirac material due to high
mobility of the charge carriers. A variety of techniques have been proposed to achieve con-
finement of Dirac fermions, see [5,6] for an overview. One of the techniques proposed in
[6] is the introduction of a position-dependent mass function into the governing Dirac equa-
tion. It turned out that charge carriers associated with a spatially varying mass can undergo
confinement, provided the mass function is chosen suitably. This was shown by an example
featuring closed-form solutions in terms of Bessel functions, see [6] for details. In general,
closed-form solutions of Dirac equations are rare and therefore hard to find. One of the most
effective techniques to find such solutions is the Darboux transformation. The first version
of this transformation [4] that applied to linear second-order equations, meanwhile has been
generalized to be compatible with a variety of linear and nonlinear models [8,13], including
the Dirac equation. Particularly in the two-dimensional case governing Dirac materials, a
method was devised [17] to adapt the first-order Darboux transformation, based on a result
on Schrodinger models for quadratically energy-dependent potentials [11]. Besides the Dirac
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equation, these models can be linked to Korteweg-de Vries [22] and Klein—Gordon systems
[18].

The purpose of the present work is to construct higher-order Darboux transformations
for two-dimensional Dirac equations featuring a position-dependent mass in combination
with a diagonal potential matrix. Our method uses a recent generalization [15,16] of the
results from [11], as well as a connection between two-dimensional Dirac equations and
their Schrodinger counterparts for quadratically energy-dependent potentials. The remainder
of this note is organized as follows: in Sect. 2, we summarize main results from [15]. Section 3
is devoted to the construction of the Darboux transformation, while we give an example in
Sect. 4. Finally, “Appendix A” is devoted to stating a few excessively long expressions that
result from our example.

2 Preliminaries

For the sake of completeness, we briefly review the principal results from [15]. Our goal is to
establish a Darboux transformation between the following two Schrodinger equations with
quadratically energy-dependent potentials:

Yo (X) = [E? + E Vo(x) + Up(x)] Yo (x) =0 ey
Y (x) = [E* + E Vo (x) + Un(0)] Y (x) = 0. (@)

The energy E is areal constant, the functions V;, U;, j = 0, 2 are the potential terms that do
not depend on E, and v, 1, stand for the respective solutions, where the index » is a natural

number. Assume that 4, j = 0,...,n — 1, are auxiliary solutions to Eq. (1) at energies
Aj, j =0,...,n— I, respectively, such that the constants Ag, Ap,..., Ay—1, E are pairwise
different. Define functions v;, j =0, ...,n — 1, by means of
vj(x) =exp[(E —Aj)x] hj(x), j=0,....,n—1. 3)
Next, we introduce the n-th order Darboux transformation of the solution ¢ to (1) as
Wa...., 1,90 (X)
Do,y (Y0) () = —izmtec V0 : @)
W1 (@) Wag., @)
where Wy, . 4,, and Wy, . v, .y, denote the Wronskians of vg,..., v,—1 and of
vo, ..., Un—1, VYo, respectively. Furthermore, the quantities W,’ j=0,...,n—1, are
defined recursively by the rules
Wo(x) = 2 v(x) — vo(x) [Vo(x) + 2E] )
. W (0 Wy (6) Wjma ) Wi ()
Wix) =2 —
Wi_1(x) Wi 1(x)
Wi 1(x) W, (x
it Wi Oy op) j= 21 )

Wi—1(x)

Under these conditions, the function v, = Dy, 5, ,(¥0) solves Eq. (2), provided the
potential terms comply with the following constraints

MJM}

wm=%m+dm% ™
dx
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i 3 (W, 2
Un(x) = Uotox) = 5 Vg + 257 [d lo [ W1 €0 “+ W &)

2 |dx Weg..o.vy (X) 4 W1 (x)?
o ) W ()

,,,,,

.....

Wlﬁ;) ~~~~~ Un—1 (x) ) (8)

The proof of these results and a separate consideration of the second-order case can be found
in [15,16], respectively.

3 Construction of the Darboux transformation

As mentioned above, we want to establish a Darboux transformation between two-
dimensional Dirac equations with a position-dependent mass. To this end, we start out from
our initial equation that we write in the form

0 Rl
—1io0] P U(x,y)—iop 5 U(x,y)+[mx)oz+Vx)]¥(x,y) =0, )

where o, j = 1,2, 3, are the Pauli matrices, m and V represent the position-dependent
mass function and the potential, respectively, and ¥ denotes the two-component solution.
The principal idea of our construction is to convert our Dirac equation (9) into Schrodinger
form (1), apply the Darboux transformation described in Sect. 2 , and afterward reinstate
Dirac form of the resulting transformed equation. Hence, the first step consists in decoupling
(9) and afterward convert it to a second-order equation that matches the form (1).

3.1 Decoupling the Dirac equation

In order to decouple the Dirac equation (9), we make use of the fact that both potential and
position-dependent mass do not depend on the variable y. We set

W(x,y) = exp(i ky y) [¥1(x), ¥2(x)]. (10)

Here, the constant k, stands for free motion in y-direction. We now relate the component

functions ¥; and ¥, to each other as follows
ky & -/
Uy(x) =i M (11)
m(x) — V(x)

Upon substituting this setting along with (10), the second component of the Dirac equation
(9) is satisfied, while the first component takes the form

V' (x) —m'(x)

T+ m(x) — V(x)

W (x) + [m(x) — V(x)] ! {— m(x)’ +k} V(x)

Fm()? V) = V! m) [VE? = k2] 4+ ky [ @) = V)] } W (x) = 0.

In the next step, we gauge away the first-derivative term by defining

Y1(x) = ym(x) = V(x) Yolx), 12)
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where the function v is a solution of

V/(x) —m'(x) 3 |:m/(x) —V/(x)
T el T R T

2
Yo (x) — {k§ + ] +m(x)? = V(x)?

m(x) — V(x) m(x) — V(x)
V//(x) _ m//(x) _
m} Yo(x) = 0. (13)

We observe that this linear second-order equation matches the form (1), provided we make
the following definitions

E=k (14)
Vi) —m'(x)
Vo) = s (15)
3w -V 5 , V') —m"(x)
up(x) = 1 [*m(x) Vi) } +m(x)" = V(x) + ) — Vo 16)

Due to Egs. (1) and (13) matching, we are now in position to perform a Darboux transfor-
mation.

3.2 The Darboux transformation

We will now apply our Darboux transformation (4) to the solution ¥y of Eq. (13). While the
transformed solution 1, is given by (4), the transformed potential terms V,,, U,, can be found
by inserting the above settings (15), (16) into (7) and (8), respectively. This yields

_V@-me 4l W)
Va(x) = o) — Vo +dx 10g|:Wv0,‘..,vn_1(x):| (17)
U"(x)_4[m(x)—V(x)] +m(x)" =Vx)" + me) — V)

ond [V’(x)—m’m} Vi —m' d ol W)
2 dx | m(x)— V() 2[m(x)—V(x)] dx © Woo....,vm_ (X)

A 2 2
3| W _ () 30 Woorowy @)
+7 —~ +7 . <
41 W1 (x) 41 Wyg,..vpy (X)

Wi ) Wy () W (x)

2 W1 () Weg, oy () 2 Wyt ()

— ng;) ~~~~~ Un—l(x) (18)
2 WU(),...,Un_l ()C) '

Thus, the function (4) with g from (13) is a solution of the transformed equation (2) for the
settings (14)—(16). Now that we have generated the transformed linear second-order equation
(2), the remaining task is to cast the latter equation in Dirac form.

3.3 Reinstating Dirac form: matching conditions
In order to revert the decoupling procedure for the Dirac equation, we need to match the

transformed equation (2) for (17) and (18) with the general shape of (13). More precisely,
we require the transformed equation (2) to read
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v U =M () 3I[Mx)-U®T N
Y, (x) {ky + Mo —Tm T [7M(x) ) } +M(x)* —U(x)
U//(x) _ M//(x)

Mo — U } Yn(x) =0, 19)

introducing a transformed Dirac potential U and a transformed position-dependent mass
function M. We will now proceed by matching the coefficients pertaining to the k,-powers.
Since the term k% is already matching, we continue with the coefficient of ky in (19), using
its explicit form (17). This results in the equation

U M) _ Vo -me) 4 o1 (1)
M) —UGx)  m@)—V@) o dr | Wm0 |

‘We can solve this constraint for the transformed mass function M by means of logarithmic
integration. The result can be simplified as to remove all integrations in the following way:

R [Wwo} u
vo

m(t) — V@) dt et (D)
= U(x) —exp / v (t) m (t) /— log W" 10 dt
m(t)—V(t) v SUp— 1(t)
=Ux) - [Vx) —m@)] u (20
anl(x)

It remains to match the terms that do not depend on k. This gives a condition on the
transformed Dirac potential U in the form

3 [M’(x) - U’(x)}2 M Uy L@ M@

M(x) — U(x) M(x) —U(x)
3@ -V®T 5 ,  V'(x) —m(x)
= Z [m] +m(x)” = V(x) +m+Un(x)_U0(x)v

€2y

where the function U,, and the transformed mass M are displayed in (18) and (20), respec-
tively. We omit to include the explicit form of these functions, as the resulting expressions
would be very large. We can solve Eq. (21) with respect to the potential U, which gives the
lengthy result

W, ooony (X Wo—1(x
Ux) =/ V() —mx) { zov’i/,;nl(lx()) 5 Wvo,..,,lv(,,j(x) [V(x)+m(x)]}
1 {_ [U2(x) = Up@o)] Wt | 3 Wart @) I, (OF
V() —m(x) 2 Wagoooopy (0) 8 Wa, o1 (1)
Wi @) W, N W _ )1
4 Wy, v, (1) 8 W0 () Wy (x)
Wo1 () W) () W 1<x) }
AWopoin (2 AWy 0 ()
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-3 W1 (1) W) (%)
+[V(x) —m(x>] ’ {[v/(x)—m’(x)] 8IW — i ;;;
V05 --+» Un—1

W/

V0,---s Un—1

W,
+[V/f(x) - m”(x)] S l(x)(x) }

V0yeeey Up—1

7 Wy (x)

[ — [ )P +2m'(x) V' (x)

~ W1 (x) [v/(x)f“. (22)

In summary, if we choose the transformed mass M and the transformed Dirac potential U as
in (20) and (22), then equation (19) matches the form (2), where the potential terms V,, and
U, are given by (17) and (18), respectively. We are now ready to convert our transformed
linear second-order equation (2) for (17) and (18) to Dirac form.

3.4 Reinstating Dirac form: employing initial quantities

We obtain our desired Dirac form by reverting the decoupling process that was performed in
Sect. 3.1 . To this end, let us first state the transformed Dirac equation. It reads

d d
—i0 P ®(x,y) —iop 3 P, y)+[Mx)o3+UX) ]P(x,y) =0, (23)

where the mass M and the potential U are given in (20) and (22), respectively. The two-
component solution of (23) can be constructed in a similar way as its counterpart ¥. We
just need to rewrite our results (10), (11), (12), where we replace initial quantities by their
transformed partners. We find

D (x,y) = exp(i ky y) [@1(x), P2(x)]. 24
The component functions @1 and @, are interrelated by means of

ky @1(x) — D) (x)

o) =i S (25)

and the first component @1 of (24) is given by
Pi(x) = vV M(x) = U(x) ¥n(x)

= VM) — U)ottt o
\/anl(X) WUO,A--,vn,I (x)

At this point, there is one more task remaining: we observe that the transformed quantities
(20), (22), (25), (26) are expressed in terms of solutions Ypand i, j =0, ...,n — 1, to the
Schrodinger-type equation (1), see Sect. 2 for their definition. This is not desirable, since we
are aiming at constructing a Darboux transformation between Dirac equations without the use
of any intermediate result or equation. For this reason, we must now establish a connection
between solutions of (13) and corresponding solutions of the initial Dirac equation (9). The
first of these connections is given by (12). Inversion gives
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1
xX)= | ——— ¥ (x). 27
Yo(x) ) — VoD 1(x) (27)
Next, we need to consider the functions v;, j = 0,...,n — 1, that are defined in (3).
We will now relate these functions to auxiliary solutions uj, j =0, ..., n — 1, of the Dirac
equation (9) that pertain to ky-values A;, j = 0, ..., n — 1, respectively. Upon taking into

account (3) and (12), we obtain

1

mexp[(E—Aj)x]uj(x), j=0,....,n—1. (28)

vj =

For the sake of brevity, let us now introduce the abbreviation
Wg,...v; (X) = exp [(E — Aj) x]uj(x), j=0,....n—1. (29)

We can now combine (27)—(29) in order to rewrite the Wronskians that appear in the

transformed quantities (20), (22), (25), (26). Starting out with the Wronskian Wy, ., , of
the functions v;, j =0, ...,n — 1, we obtain
Wagnoipy (1) = [m(x) = VT2 W, o, (). (30)

Here, we made use of the fact that a common factor in each entry of the matrix associated
with the Wronskian can be pulled out like a constant [19]. A similar argumentation leads to

Wm0 () = [m(x) = VT T Wy (). 31)

In the final step, we proceed to rewrite the quantity Wj, as defined in (6). To this end, we
note that the latter quantity can be stated in explicit form as an actual Wronskian [15]. To
summarize, we have

(=2)"

W1 (0) = 5 Wt F 00, (32)
where the function F is given by
x
F(x) =exp % / Vo) +2kydt|. (33)

Upon implementation of (28) and (29), we can cast (32) in the form

A~ _2 n n
Wi—1(x) = (F(x)) [m(x) — V()T Wosooo =7 F () (34)

We are now ready to state the Darboux transformation that connects the initial Dirac equation
(9) with its transformed counterpart (23). Substitution of (30), (31), (34) into (26) gives the
result

Pi(x) = <_1>'21 I ) — O o) W, ...,y (X)
2 [m(x) — V(x)]% Wwo ,,,,, U’n—l,mF(x) Wwo ,,,,, wn,l(x)
(35)

This is the first component of the solution to the transformed Dirac equation (23). The
second component can be obtained by plugging (35) into (25). We do not show the explicit
form of the resulting expression due to its length. Next, let us state the mass (20) that enters
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in the transformed equation (23). Since this mass is expressed in terms of a Wronskian ratio,
it is convenient to determine the latter ratio first. Combination of (30) and (34) gives

Wooomnd O :<_1> F) () — V() s ) (36)

Wn—l(x) 2 wo, ..., w,,_l,x/m—VF(x).

Upon plugging this expression into the mass function (20), we arrive at

1\" 3

M) =Ux) + (—5> F(x) [m(x) = V(0)]? (37)

Now that we have rewritten the mass function in terms of quantities related to the initial

Dirac equation, we can perform the same process with the transformed Dirac potential U by

substituting the Wronskian ratio (36) into (22). Since the resulting form of the latter potential
will become very long and involved, we omit to show it here.

4 Application: hyperbolic potential and mass

We will now demonstrate how the Darboux transformation between Dirac equations with
position-dependent mass is applied. To this end, let us start by considering a particular case
of our initial equation (9). We choose the potential and the mass functions as follows

V(x) = 20 sech®(x) + % m(x) = 20 sech?(x). (38)

Let us mention here that the primary reason for choosing these settings is to keep subse-
quent calculations as simple and transparent as possible. In general, even Darboux transfor-
mations of first order result in expressions that are not manageable due to their length. In the
following, we will perform a second-order transformation, where excessively long expres-
sions that result from it will be stated in “Appendix A.” Now, upon implementing the settings
(38), the Dirac equation (9) is taken at zero energy and admits solutions of bound-state type,
characterized by particular values of the parameter k,. We define these values as

1
ky=5 / +4n§y, (39)

where ny, stands for a nonnegative integer. A particular solution to the Dirac equation for
the settings (38) and (39) is given by (10) with components

W (x) = \’—5 P, [tanh(x)] (40)
U (x) = —V2 (ng, —5) Psn"y [tanh(x)] + \/g [ [1+4ng,
—10 tanh(x)] P, [tanh(x)]. (41)

Here, P stands for the associated Legendre functions of the first kind [1]. Note that the second
component can be obtained from its counterpart by means of (11). Figure 1 shows normalized
probability densities |¥ (x, 0) |2 for several values of ny, .

We will now apply a second-order Darboux transformation to our Dirac equation (9) for
the settings (38). To this end, we need to identify two auxiliary solutions of the latter equation.
We take the first components of these solutions from(40) as
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[¥(x,0)?

Fig. 1 Graph of the initial probability density |¥ (x, 0))2 for ng, = 4 (black curve), ng, = 3 (gray curve),
and ny, = 2 (dashed curve) i

uo(x) = \sz ui(x) = \Lﬁz

while the second components of the auxiliary solutions are irrelevant here. In accordance
with (29), we define

! N
wo(x) = exp |:<E — 5) xi| uo(x) wi(x) =exp| | E — > x (ui(x), (42)

note that the values for Ag and 2} in (29) are obtained from (39) for ny, = 0 and ng, = 1,
respectively. We are now ready to apply our Darboux transformation that is determined by
the transformed solution @1, the mass function M, and the associated potential U, as given in
(35), (20), and (22), respectively. Let us first consider the difference between the transformed
mass M and the potential U. Substitution of (42) into (20) gives

P [tanh(x)] P} [tanh(x)],

Mx)—Ux) =— {2 coshz(x)|:2 cosh(x) + 36 cosh(3x) — 4 cosh(5x) + 2 cosh(7x)

+(5-1) [— 329 sinh(x) 4 138 sinh(3x) — 22 sinh(5x)

+ sinh(7x)]] }

x {6 (2873 + 14 v/5) cosh(x) + 10 (—1159 + 14 +/5) cosh(3x)

+30 (191 4 2 +/5) cosh(5x) + (=2 + 4 +/5) cosh(9x) — 2 [ — 4020
+3860 /5 + 5 (567 — 575 v/5) cosh(2x) — 14 (=9 + +/5) cosh(4x)
-1

+(-9+ \/g) cosh(6x)] |: — 6 sinh(x) + sinh(3x)] } . (43)

Figure 2 shows two graphs of this expression. We observe that away from zero, both
transformed mass and potential differ by a constant amount, where close to zero they are
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M(x) = U(x) M(x) — U(x)
3.0}

25F

20F

Fig. 2 Graphs of the function M — U, as given in (43)

m(x), M(x)

o

-3

Fig. 3 Left plot: vertically scaled graph of initial mass (38) (dashed curve) and transformed mass (20) (solid
curve). Right plot: vertically scaled graph of initial potential (38) (dashed curve) and transformed potential
(22) (solid curve)

almost equal. Let us now state the results of our Darboux transformation. Starting out with
the transformed mass (20), it turns out that after substitution of (22), (33), (38), and (42),
we obtain a very long and involved expression. After having this expression simplified by
Mathematica (Wolfram Research Inc.), the result is shown in “Appendix A.” Similarly, we
use the latter result for finding the explicit form of the transformed Dirac potential (22) by
means of (43), see “Appendix A.” Figure 3 shows graphs of the initial mass and potential,
along with their transformed counterparts. Note that the graphs are scaled in vertical direction,
as the transformed quantities take much larger values as compared to their initial partners. It
remains to determine the solution (35) for the present case. We follow the same route as for
the transformed mass and potential functions by stating the explicit form of the latter solution
in “Appendix A.” The second component of the solution can be obtained through (25); we
omit to present its explicit form. Figure 4 shows normalized probability densities |® (x, 0)|>
for several values of the parameter 7y, .

Inspection of the figure indicates that the probability densities pertain to solutions of
bound-state type.

5 Concluding remarks
We have constructed arbitrary-order Darboux transformation for Dirac equations with

position-dependent mass. Even though applications typically result in large expressions for
the transformed quantities, our method can be easily implemented by means of symbolic
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calculators. In particular, no symbolic integration is required except for the typically sim-
ple integral in (33). Our method has a technical shortcoming that concerns the transformed
position-dependent mass function (37). In order to be physically meaningful, this function
must be nonnegative. However, due to its complicated form and involved dependence on
parameters, we do not have a condition for nonnegativity. A similarly important task is to
obtain regularity constraints for the transformed potential terms (7) and (8), as they exist
in the conventional Darboux transformation (SUSY formalism). Finally, we point out that
our method can be extended in a straightforward manner to work with non-diagonal matrix
potentials.

Appendix A: explicit form of the Darboux transformation

The transformed mass function M, as given in (20), takes a long and involved form. For
this reason, we do not show it as part of Sect. 4, but rather display its simplified form here

|B(x,0)1*

\

Lmoc i

-1.0 -0.5 0.5 1.0 1.5 2.0 2.5

Fig. 4 Graphs of the probability density |® (x, O)I2 for ng, = 4 (black curve), ng, = 3 (gray curve), and
ny, = 2 (dashed curve) ’

[secnix]* (3788769480278 793390 - 1625081 8434961377865 -4 (-1674851 617983534 395 - 719636701 627230553 5 | Cosh(2x] -
560 (8257260052 666931 - 3539 903019307978 V'S | Cosh[4x] - 2481 967 971 935486 055 Cosh[6 x] - 1059 590448 708 460653 V'S Cosn{6x] -
1028 625571 095233950 Cosh [ x] - 436173 053895 059066 \'5 Cosh[8x] - 325432 415432 312975 Cosh[10x] - 136575 899019 118597 V5 Cosh[10x] -
77392 507159 719000 Cosh[12 x] - 31971 170648 078808 5 Cosh[12x) - 13610 679942 588 630 Cosh[14 x) - 5485 913786 904952 V5 Cosh{14x] -
1760307561 817 660 Cosh [16 x] - 682223 764299 956 /5 Cosh[16x] - 173129296 567 500 Cosh[18 x] - 63932 623091 9405 Cosh[18x] -
14980 868 804 920 Cosh[20x] - 5519365054 872 V5 Cosh[20x] - 1414 682 669 265 Cosh[22 ] - 587329277659 \'5 Cosh[22x] -
143618 715910 Cosh (24 X] - 67486 025286 /5 Cosh{24 x] - 12161 691705 Cosh{26 x] - 6250 448563 V5 Cosh{26 x] - 656 98€ 720 Cosh[28 X] -
354846000 V5 Cosh[28x] - 15424 965 Cosh[30x] - 9417 495 V5 Cosh[30x] - 30890 Cosh{32x] - 11310 V'S Cosh[32x] - 645Cosh[34x] -
2155 Cosh{34x] - 531467084715 170880 Sinh[2 x] - 264005 503865 589184 V'S Sinh[2x) - 743126 394207 754080 Sinh[4x] -
369653304210588448 V5 Sinh[4x] - 609015 164149 942560 Sinh[6x] - 303725215180351200 V5 Sinh[6x) - 342997 179757 203360 Sinh([Ex] -
171784 338954 708704 V5 Sinh[8x] - 138158 457887 794080 Sinh[10 x] - 69667 038076 927328 V5 Sinh[10x] - 40109 877026 560200 Sinh[12x] -
20442 9419668701125 Sinh[12x] - 8336 301940 154880 Sinh[14x] - 4322 681147 128576 V5 Sinh[14x] - 1219 767972 850560 Sinh[16x] -
651281888679040 V5 Sinh[16x] - 123777706383 360 Sinh{18x] - 69117 983398 656 V5 Sinh[18 x] - 9693 613228 320 Sinh[20x] -
5554819214 432 V5 Sinh[20x) - 982169 064 480 Sinh[22 x] - 489289061088 V'S Sinh[22x) - 136366 705440 Sinh (24 x] -

5704781654445 Sinh[24x] - 13661200800 Sinh{26x] - 5322 323040 V5 Sinh(26x] - 792624 480 Sinh([28 x] - 293079328 V5 Sinh(28x] -
21080160 Sinh[30x] - 6911136 V5 Sinn[30x] - 24960 5inn[32x] - 13696 /5 Sinh[32x] - 480 Sinn[34x] -288 V'S Sinn(34x]||/

(64 V2 [2Cosn(x] - 36 Coshi3x] - 4 Cosh[5x] - 2 Cosh[7x] - 329 Sinh[x] - 329 V'S Sinh[x] - 138 Sinh[3x] -
1385 Sinh{3x] -22Sinh[5x] - 225 Sinh[Sx] - Sinh(7x] -5 Sinn(7x) )’
(612873 -14V5 | Cosnix] - 10 [-1159-14 V5 | Cosh{3x] - 5730 Cosh[5x] - 605 Cosh[5x] - 2Cosh{gx] - 4+5 Cosn[8x] -
67959 Sinh[x] - 66431 V5 Sinh[x] - 24285 Sinh([3x] - 24885 V5 Sinh[3x] - 2025 Sinh{Sx] -
2785 ‘\’? Sinh{5x] - 180 Sinh[7 x] - 20 \/? Sinh{7x] - 9 Sinh{9x] - "\’? Sinh{9x] | “

Fig. 5 The transformed mass function (20), calculated by Mathematica (Wolfram Research Inc.)
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2Cosh(x] - 36 Cosh[3x] - 4Cosh{5x] - 2Cosh[7x] - [-1-+/5 | (-329Sinh(x] - 138 Sinh(3x] - 22 Sinh([5x] - Sinh[7x]) || /

(2 cosnix]
[€{2873-14V'5 | Coshix] - 10 [-1159-14v5 | Cosni3x] - 30 [191-2V5 | Cosn{5x] - [-2-4V5 | Coshiox] -

2 (-4020-3860VS -5 [567-575V5 | Cosh[2x] -14 [-9-5 | Cosh[4x] - |

(-6Sinh[x] - Sinh[3x]) | -
[secnx]® (3788 769480278 793390 - 1629081843 496137786 'S -4 (1674851617 983534395 - 719636 701627230553 V5 | Cosh{2x] -
560 (-8257260 052666 931 - 3539903 0193079785 | Cosh[4x] - 2481967 571935436 055 Cosh[6x] - 1059590 4427028460 €53V 5 Coshl6x] -

1028 625 571095 233 950 Cosh[8 x] - 436 173053 895059066 ' 5 Cosh[8x] - 325432415 432312975 Cosh[10x] - 136575899 019118597 V5 Cosh[10x] -
31971170 6480722808 V5 Cosh[12x] - 13610679 942588 680 Cosh[14x] - 5485913 786904952 V5 Cosh[14x] -

77392507 159719 000 Cosh {12 x]
1760307 561817 660 Cosh[16 x] - 682223764 299956 V5 Cosh[16x] - 173129296 567500 Cosh[18 x] - 63932623 091940 5 Cosh[18x) -
1414 682 669265 Cosh[22x] - 587329277 659V 5 Cosh[22x]

14980868 804 920 Cosh[20 ] - 5519365054872 V5 Cosh(20
143618715810 Cosh[24 X] - 674860252865 Cosh[24x] - 12161691 705 Cosh[26 x] - 6250448 563\ 5 Cosh[26x] - 656 986720 Cosh[28 x] -
354846000 V5 Cosh[28x] - 15424 965 Cosh[30x] - 94174955 Cosh{30x] - 30890 Cosh[32x] - 113105 Cosh[32x] - 645 Cosh[34x] -

2155 Cosh[34x] - 531467084 715170880 Sinh[2x] - 264005503 865589184 V5 Sinh[2x] - 743126394 207754080 Sinh[4x] -

369653304210588 448\ 5 Sinh[4x) - 609015164 149942560 Sinh[6x) - 303725215 180351200 V 5 Sinh[6x] - 342997179 757203 360 Sinh[8x] -
171784338 954708704\ 5 Sinh[8x) - 138158457 887794080 Sinh[10x) - 69667038 076927328 V' 5 Sinh[10x] - 40109877 026560 800 Sinh[12x] -
20442941 966970 112V'5 Sinh([12x] - 8336301 940154880 Sinh[14x) - 4322681 147128576 V5 Sinh[14x] - 1218767 972850560 Sinh[16xX] -
651281822 679040 V5 Sinh[16x] - 123777706 383360 Sinh{18x] - 69117983392 €56 V5 Sinh[18x] - 9€93 613228320 Sinh(20x] -
5554819214432 5 Sinh[20x] - 982 169064 420 Sinh[22 x] - 489289061 088V 5 Sinn[22X] - 136366705 440 Sinh (24 X] -

57047816544V5 Sinh[24x] - 13661200800 Sinh[26 x] - 5322323040V 5 Sinh[26x] - 792624480 Sinh[28 ] - 293079328 V'S Sinh[28x] -
21080160 Sinh([30x] - 69111365 Sinh[30x] - 24960 Sinh(32x) - 136965 Sinh(32x] - 480 Sinh[34x] - 2885 Sinh(34x) ]|
[64V2 [2Coshix] -36Coshi3x] - 4Cosh{Sx] - 2Cosh[7x] - 329 Sinh[x] - 329V 5 Sinh(x] - 138 Sinh[3x] - 1385 Sinh[3x] -

* (6 [2873-1a5 | Coshix] - 10 [-1159- 145 | Cosn{3x] -

225inn[5x) -22 V5 Sinh(Sx] - Sinh[7x] - V5 Sinh[7x
5730 Cosh{Sx] - 60V 5 CoshiSx]) -2Cosh{&x] -4V 5 Cosh{Gx] - 67958 Sinhix] - 66431+ 5 Sinnix) - 24285Sinn[3x] -

24885V'5 Sinn[3x] - 20255inh[5x] -2785V 5 Sinn[5x] - 1805inn[7x] -20%5 Sinn[7x] - 95inn(9x] -V 5 Sinh[9x]

Fig. 6 The transformed potential function (20), calculated by Mathematica (Wolfram Research Inc.)

1 -36Cosh[3x] -4Cosn[5x] -2Cosh[7x] -

- [2 (-5 -nky) Cosh[x] [»2 (-6 -nky) Coshix] LegendreP[é, nky, Tanh[x]] {2Cosh[
329 Sinh(x] - 329V 5 Sinh(x] - 138 Sinh(3x] -138V5 Sinh[3x) -22Sinh[5x) -22V'5 Sinh(5x] - Sinh(7x] -5 Sinn[7x]) -

2 ( 2
6575-6561\/—‘-2\/1-41)@"-L-ES77«&939V’?-38\41-1nky' cOshux;.az|_es.ssJ_.\'1_anky Cosh[4x] -

LegendreP (S, nky, Tanhix]]

nky® Cosh[8x] - 1138 Sinh[2x] -

333 Cosh[6x) - 3355 Cosn[6x] -2/ 1-4nky® Coshéx] -11Cosniex] - 135 Coshlex] -2+

— IR T —
191 1- 4nky® Sinn{2x]-191V/ 5-20nky? Sinn[2x] - 904 Sinh[4x] - 116\ 1- 4nky® Sinh[4x] - 116y 5 - 20nky® Sinh{dx] -

150 Sinh[€ x] .21V'1-any’ Sinh[6x) -21\]5-2\3:11:3(z Sinh{6x] - 26 Sinh[8x] -1/ 1 - 4nky® Sinh{8x) -4/ 5 -20nky® Sinh[&x] ‘ ‘ -
LegendreP[4, nky, Tann(x]] |zx |-230-+5 -znky* - 95 1-4nky’ - 96 5 - zonky” | cosnix] -
35 |-290‘ V5 ~2nky* -85 \/l-any’ -84 \/s-zonkf ‘Cosh{sx] - 5250Cosh[5x] - 155 Cosh[5x] - 30 nky® Cosh (5 x] -

Ty | rE—y — —
11251~ 4niky® Cosnisx] - 11405 - 20nky® Coshi5x] - 600 Cosh[7x] - 150/ 1 - 4nky® Cosh[7x] - 150/ 5 - 20 nky? Cosh7x] -

87287 Sinh(x]

70 Cosh[9x] - V5 Cosh{9x) - 2nky® Cosh[9x] - 5+ 1- 4nky’ Cosh{9x] -6+ 5-20nky® Cosh(8x]
26735 V'S Sinn[x] - 181 nky® Sinh(x] - 191V'5 nky? Sinh{x] - 552V 1- 4nky® Sinh(x] - 43005 Sinh{3x] - 43125V Sinh(3x] -
75 nky® Sinh[3x] - 755 nky® Sinh{3x] - 120 \fl-anyz Sinh{3x] - 9865 Sinh[5x] - 102255 Sinh(5x] - 95 nky® Sinh[5x] -
955 nky? Sinh[Sx) - 360\/1- 4nky" Sinh[Sx] - 940 S5inh[7x] - 1000 VS Sinh(7x] - 20 nky® Sinh[7x] - 205 nky® Sinh[7x] -
60/ 1-4nky® Sinh{7x] -23Sinh{x] -35V5 Sinh[6x] - nky’ Sinh{6x] - V5 nky® Sinh[9x] - 12 1~ 4nky® Sinn{ox] | |/

(2" (6 [2873-14V'5 | Coshix] - 10 [-1159- 145 | Cosh{3x] - 5730 Cosh{5x] - 60V 5 Cosh[Sx] - 2Cosh[9x] -4 5 Cosh(9x] -

2025Sinh[5x] -

€7959 Sinh([x] - 66431 \/? Sinh(x] -24285Sinh[3 x] - 24885 \/g Sinh[3 x]
278575 Sinn(Sx] - 180Sinh([7x] -20V'5 Sinh(7x] - 9Sinn[9x]) -5 Sinnigx]|)
Fig. 7 The first component (35) of the transformed solution, calculated by Mathematica (Wolfram Research
Inc.)

in Fig. 5. The latter form was obtained by the symbolic calculator package Mathematica
(Wolfram Research Inc.). By substituting this mass function into (43), we can construct the
explicit form of the associated Dirac potential U, as defined in (22). The result is shown in
Fig. 6. Finally, in Fig. 7, we state the first component @ of the transformed solution, obtained
by substitution of (20), (22), (33), (40), (42), (43) into (35).
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