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Abstract Propagation of cylindrical shock wave in a self-gravitating perfect gas under the
influence of axial magnetic field using Lie group of transformation method is investigated.
The flow is considered to be isothermal. Density and magnetic field are assumed to be varying
in the undisturbed medium. Two different cases of solutions are brought out by the arbitrary
constants appearing in the expressions of infinitesimals of local Lie group of transformations.
One is with a power law shock path and the other one is with an exponential law shock path.
Numerical solutions are obtained for both the cases of power law and exponential law shock
paths. The effects of variation in Alfven-Mach number, gravitational parameter and ambient
density variation index for power law shock path and effects of variation in Alfven-Mach
number, gravitational parameter and ambient magnetic field variation index on the flow
variables in the case of exponential law shock path are studied. Also the effects of increase in
value of gravitational parameter and in the strength of ambient magnetic field on the shock
strength are investigated. The increase in value of Alfven-Mach number leads to the increase
in the density ratio which infers to the decrease in shock strength.

1 Introduction

The study of cylindrical shock wave in the presence of magnetic field has many applications.
Some of the applications include explosion of long thin wire, experiments on pinch effect, to a
few axially symmetric hypersonic problems such as the shock envelope trailing fast meteor or
missile, etc (see [1]). Other potential applications can be found in astrophysics in connection
with shock waves in interstellar gas clouds. The gravitational force has significant effect on
many astrophysical problems (see [2]). A qualitative behavior of the gaseous mass may be
examined with the aid of the equations of motion and equilibrium considering gravitational
forces (see [3,4]).

The expanded Lie group of transformations is commonly used to study the continuous
symmetry in mathematics, mechanics and theoretical physics. The complex problems of
the physical systems can be simplified to solvable mathematical equations with the help of
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transformation. The theory of Lie group of transformations and its applications in various
fields for working out problems of real world can be found in the works presented in Hydon
[5], Bluman and Cole [6], Bluman and Kumei [7], Stephani [8], Ibragimov [9], Olver [10],
Ovsiannikov [11] and in Logan and Perez [12]. Zedan [13] has obtained class of exact solu-
tions using Lie group analysis for one-dimensional motion of a gas under monochromatic
radiation. Till now, research has been emphasized on the alternative problem of categorizing
all initial or boundary conditions that are consistent with symmetries of a particular dif-
ferential equation. Solvable initial-value problems (IVPs) for evolution equations with two
independent variables can be classified as of Basarab and Zhdanov [14]. Some IVPs can
be solved by means of solving a simpler IVP, for linear (or linearizable) partial differential
equations (PDEs) (see [15]).

In the case when radiation heat transfer effects are present implicitly, the presumption of
flow to be isothermal is physically realistic. On the propagation of shock, the temperature
behind it increases and grows to very high value. By radiation there is intense transfer of
energy. This process leads to the approach of temperature gradient to zero, which means that
the dependent temperature behind the shock front becomes uniform and the flow becomes
isothermal [16–20]. Lerche [21,22] developed mathematical theory for one-dimensional
isothermal blast waves under the influence of magnetic field. Purohit [23] and Singh and
Vishwakarma [24] have studied homothermal flows behind a spherical shock wave in a self-
gravitating gas. For self-gravitating hydrodynamic problems in 3D, Truelove et al. [25] have
presented a new code for numerical solution. The numerical study for the simplest case of the
interaction between a spherical cloud and shock was presented by Klein et al. [26]. In their
work, shock is steady and planar, far from the cloud. Also, magnetic fields and gravitational
forces are not taken into account. The interaction procedure of supernova strong shock wave
and interstellar molecular cloud was studied by Rybakin et al. [27] in three dimensions by
numerical simulation.

The similarity solution in the context of formation of blast wave by very intense explosion
can be found in the works of Taylor [28,29]. Sedov [30] developed similarity solution in
the context of shock wave propagation. It is very difficult to obtain solution of system of
quasilinear hyperbolic PDEs without approximations. Hence, the attempt is to find self-
similar solutions in which solution exists along similarity curves and along these curves the
system of equations converts to a system of ODEs. There are two type of self-similar solutions.
In the first type, the similarity exponent is decided either by dimensional considerations or
by the conservation laws, whereas in the second type, the similarity exponent is determined
by integrating the ODEs for the reduced functions (see [31]).

To the best of authors’ knowledge, the problem of cylindrical shock for isothermal flow
under the influence of axial magnetic field in a self-gravitating gas using Lie group of trans-
formations has not been studied. Also, similarity solutions for a magnetogasdynamic shock
in a self-gravitating gas under isothermal flow condition using the approach of Sedov [30]
were obtained in Nath and Sinha [32]. In the present work, we have considered axial magnetic
field while in Nath and Sinha [32] they have taken azimuthal magnetic field, and we have
used Lie group of transformations to obtain the solutions. Using Lie group of transformation
method, we are able to obtain similarity solutions in two cases. In the first case, we obtain
the similarity solution with power law shock path which is similar to the solution obtained by
Nath and Sinha [32], and in the second case, we have similarity solutions with exponential
law shock path. Thus, our solution is more general than the solution obtained in Nath and
Sinha [32]. The effects of varying the values of Alfven-Mach number, gravitational param-
eter, ambient density variation index and ambient magnetic field variation index on the flow
variables are studied for the cases of power law shock path and exponential law shock path.
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It is found that the flow variables magnetic field, mass and velocity decreases; however, den-
sity (pressure) increase and decrease after attaining a maximum value for power law shock
path. In the case of exponential law shock path, it is obtained that reduced density and fluid
velocity increase; however, mass decreases and magnetic field increases slightly and then
decreases after attaining a maximum. The increase in value of Alfven-Mach number leads
to an increase in the density ratio which infers to the decrease in shock strength.

2 Equations of motion and boundary conditions

We pursue for the solution of magnetogasdynamic cylindrical shock in a perfectly conducting
ideal gas across which the magnetic field is axial (i.e., normal to the flow). The gas is taken to
be self-gravitating and the flow is considered to be isothermal. Viscosity, thermal conductivity
and electrical resistivity are not considered in the present problem. The fundamental equations
are thus incorporating the statements of conservation of mass, momentum, magnetic field
equation, mass in the cylinder and the isothermal flow condition. The gas ahead of the shock
is considered to be at rest. Also the shock is assumed to be driven out by an inner expanding
surface which could physically be the surface of the stellar corona or the diaphragm containing
a very high pressure gas or the condensed explosive.

Thus, the fundamental equations of motion are given as (see [4,18–22,32])

∂ρ

∂t
+ u

∂ρ

∂r
+ ρ

∂u

∂r
+ uρ

r
= 0, (1)

∂u

∂t
+ u

∂u

∂r
+ 1

ρ

[
∂p

∂r
+ μh

∂h

∂r

]
+ Gm

r
= 0, (2)

∂h

∂t
+ u

∂h

∂r
+ h

∂u

∂r
+ hu

r
= 0, (3)

∂m

∂r
= 2πρr, (4)

∂T

∂r
= 0, (5)

where ρ denotes the density, u the fluid velocity, p the pressure, G the gravitational constant,
h the axial magnetic field, μ is the magnetic permeability, m the mass for cylinder of unit
length and radius r , t and r denote independent time and space coordinates and T is the
temperature.

The equation of state along with internal energy is given as

p = RρT ; em = p

(γ − 1)ρ
, (6)

where R is the universal gas constant, em is the internal energy per unit mass and γ is the
adiabatic exponent.

A strong cylindrical shock wave is assumed to be propagating outwards from the axis of
symmetry in the undisturbed ideal gas with variable density, variable axial magnetic field
and zero radial fluid velocity. The law of variation of ambient density and magnetic field
are considered according to different cases of shock path obtained, as in Eqs. (29) and (45).
Since shock is strong, p1 ≈ 0 and em1 ≈ 0.
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For strong shock, the Rankine–Hugoniot jump conditions across the shock front are given
as (see [32,33])

u2 = (1 − β)C, ρ2 = ρ1

β
, h2 = h1

β
, p2 = Lρ1C

2, m2 = m1, (7)

where (F2 − F1) is presumed to be negligible in comparison with the product of p2 and C for

strong shock (see [4,16,20]),F is the radiation heat flux; L =
[
(1 − β) + M−2

A

2

(
1 − 1

β2

)]
,

C is the shock velocity and, ‘1’ and ‘2’ denote the conditions just ahead and behind the shock.
The density ratio β (0 < β < 1) across the shock front is given by the quadratic equation

β2(γ + 1) − β
[
γ (1 + M−2

A ) − 1
]

+ (γ − 2)M−2
A = 0, (8)

where MA is the Alfven-Mach number defined as MA =
√

ρ1C2

μh2
1

.

Equations (5) and (6) together give the relation

p

p2
= ρ

ρ2
. (9)

3 Similarity analysis

For the similarity reduction of equations of motion (1)–(5), the Lie group of transformations
method is used. We can write a one-parameter infinitesimal group of transformations as

r∗ = r + εχ(ρ, u, p, h,m, r, t), t∗ = t + ετ(ρ, u, p, h,m, r, t),

ρ∗ = ρ + εD(ρ, u, p, h,m, r, t), u∗ = u + εU (ρ, u, p, h,m, r, t),

p∗ = p + εP(ρ, u, p, h,m, r, t), h∗ = h + εH(ρ, u, p, h,m, r, t),

m∗ = m + εM(ρ, u, p, h,m, r, t), (10)

where χ , τ , D, U , P , H , M are the infinitesimal generators and ε is very small quantity such
that its second and higher power terms can be neglected. The system (1)-(5) along with the
shock conditions (7) remains invariant under the above group of transformation (10).

Introducing the notations for time coordinate t , space coordinate r and flow variables ρ,
u, p, h and m as

x1 = t, x2 = r, u1 = ρ, u2 = u, u3 = p, u4 = h, u5 = m, (11)

and

pij = ∂ui
∂x j

, (12)

where j = 1, 2 and i = 1, 2, 3, 4, 5. Equations (1)–(5) can be written in the form

Fq(x j , ui , p
i
j ) = 0, q = 1, 2, 3, 4, 5. (13)

Using (13), the system of Eqs. (1)–(5) are said to be invariant under Lie group of transfor-
mations (10) if they satisfy

K Fq = λqr Fr , (14)
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where r = 1, 2, 3, 4, 5 and K = ζ
j
x

∂

∂x j
+ ζ iu

∂

∂ui
+ ζ ipj

∂

∂pij
,

and

ζ 1
x = τ, ζ 2

x = χ, ζ 1
u = D, ζ 2

u = U, ζ 3
u = P, ζ 4

u = H, ζ 5
u = M. (15)

ζ ipj is given as

ζ ipj = ∂ζ iu

∂x j
+ ∂ζ iu

∂uk
pkj − ∂ζ lx

∂x j
pil − ∂ζ lx

∂un
pil p

n
j , (16)

where k = 1, 2, 3, 4, 5; l = 1, 2; n = 1, 2, 3, 4, 5.
From Eqs. (1) and (14), the determining equations are obtained as

∂D

∂ρ
− ∂τ

∂t
− u

∂τ

∂r
= λ11, u

∂D

∂m
+ ρ

∂U

∂m
= λ14,

∂D

∂m
= 0,

∂D

∂u
− ρ

∂τ

∂r
= λ12, D + u

∂D

∂u
+ ρ

∂U

∂u
− ρ

∂χ

∂r
= λ11ρ + λ12u + λ13h,

∂D

∂p
= 0, u

∂D

∂p
+ ρ

∂U

∂p
= λ12

1

ρ
+ λ15,

∂D

∂h
= λ13,

u
∂D

∂h
+ ρ

∂U

∂h
= μh

ρ
λ12 + uλ13,

∂τ

∂ρ
= 0, −∂τ

∂u
= 0,

U − ∂χ

∂t
+ u

∂D

∂ρ
− u

∂χ

∂r
+ ρ

∂U

∂ρ
= uλ11 − p

ρ
λ15,

Du

r
− uρ

r2 χ + ρU

r
+ ∂D

∂t
+ u

∂D

∂r
+ ρ

∂U

∂r
= uρ

r
λ11 + Gm

r
λ12 + hu

r
λ13 − 2πrρλ14.

(17)

From Eqs. (2) and (14), the determining equations are obtained as

∂U

∂u
− ∂τ

∂t
− u

∂τ

∂r
= λ22, u

∂U

∂ρ
+ 1

ρ

∂P

∂ρ
+ μh

ρ

∂H

∂ρ
= uλ21 − p

ρ
λ25,

∂U

∂ρ
= λ21, U − ∂χ

∂t
+ u

∂U

∂u
− u

∂χ

∂r
+ 1

ρ

∂P

∂u
+ μh

ρ

∂H

∂u
= ρλ21 + uλ22 + hλ23,

∂U

∂p
− 1

ρ

∂τ

∂r
= 0, − D

ρ2 + u
∂U

∂p
+ 1

ρ

∂P

∂p
− 1

ρ

∂χ

∂r
+ μh

ρ

∂H

∂p
= λ22

ρ
+ λ25,

μH

ρ
− D

ρ2 μh + u
∂U

∂h
+ 1

ρ

∂P

∂h
+ μh

ρ

∂H

∂h
− μh

ρ

∂χ

∂r
= λ22

μh

ρ
+ λ23u,

∂U

∂h
− μh

ρ

∂τ

∂r
= λ23, u

∂U

∂m
+ 1

ρ

∂P

∂m
+ μh

ρ

∂H

∂m
= λ24,

∂U

∂m
= 0,

Gm

r
− χ

Gm

r2 + ∂U

∂t
+ u

∂U

∂r
+ 1

ρ

∂P

∂r
+ μh

ρ

∂H

∂r
= uρ

r
λ21 + Gm

r
λ22 + hu

r
λ23 − 2πρrλ24.

(18)
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From Eqs. (3) and (14), the determining equations are obtained as

∂H

∂ρ
= λ31, h

∂U

∂ρ
+ u

∂H

∂ρ
= uλ31 − p

ρ
λ35,

∂H

∂u
− h

∂τ

∂r
= λ32, H + h

∂U

∂u
− h

∂χ

∂r
+ u

∂H

∂u
= ρλ31 + uλ32 + hλ33,

∂H

∂p
= 0, h

∂U

∂p
+ u

∂H

∂p
= 1

ρ
λ32 + λ35,

∂H

∂h
− ∂τ

∂t
− u

∂τ

∂r
= λ33, h

∂U

∂m
+ u

∂H

∂m
= λ34,

U − ∂χ

∂t
+ h

∂U

∂h
+ u

∂H

∂h
− u

∂χ

∂r
= μh

ρ
λ32 + uλ33,

Uh

r
− χ

hu

r2 + Hu

r
+ ∂H

∂t
+ h

∂U

∂r
+ u

∂H

∂r
= uρ

r
λ31 + Gm

r
λ32 + hu

r
λ33 − 2πrρλ34.

(19)

From Eqs. (4) and (14), the determining equations are obtained as

∂M

∂ρ
= uλ41 − p

ρ
λ45,

∂M

∂u
= ρλ41 + uλ42 + hλ43,

∂M

∂p
= 1

ρ
λ42 + λ45,

∂M

∂h
= μh

ρ
λ42 + uλ43,

∂M

∂m
− ∂χ

∂r
= λ44,

∂M

∂r
− 2πρχ − 2πr D = uρ

r
λ41 + Gm

r
λ42 + hu

r
λ43 − 2πρrλ44. (20)

From Eqs. (5) and (14), the determining equations are obtained as

p

ρ

∂τ

∂r
= λ51,

Dp

ρ2 − P

ρ
− p

ρ

∂D

∂ρ
+ p

ρ

∂χ

∂r
+ ∂P

∂ρ
= uλ51 − p

ρ
λ55,

λ52 = 0, − p

ρ

∂D

∂u
+ ∂P

∂u
= ρλ51 + uλ52 + hλ53,

∂τ

∂r
= 0, − p

ρ

∂D

∂p
+ ∂P

∂p
− ∂χ

∂r
= 1

ρ
λ52 + λ55,

λ53 = 0, − p

ρ

∂D

∂h
+ ∂P

∂h
= μh

ρ
λ52 + uλ53,

∂P

∂m
− p

ρ

∂D

∂m
= λ54, − p

ρ

∂D

∂r
+ ∂P

∂r
= uρ

r
λ51 + Gm

r
λ52 + hu

r
λ53 − 2πρrλ54. (21)

On solving the set of Eqs. (17), (18), (19), (20) and (21) of the determining equations, the
infinitesimal generators are obtained as follows:

τ = αt + c, χ = (λ22 + 2α)r, U = (λ22 + α)u, D = (λ11 + α)ρ,

P = (2λ22)p, H = λ22h, M = 2(λ22 + α)m, (22)

where α and c are constants.

4 Similarity solutions

Taking into consideration the constants arising in the expressions of infinitesimal generators
in Eq. (22), different cases of solutions can be obtained which are discussed below:

123



Eur. Phys. J. Plus (2020) 135:316 Page 7 of 15 316

Case (i): When α �= 0 and λ22 + 2α �= 0
The new variables r and t are defined as:

r = r, t = t + c

α
. (23)

We find that the set of Eqs. (13)–(22) remain invariant under the transformation (23). Using
(22) and (23), the new set of infinitesimals for this case in terms of r and t after suppressing
the bar sign is given as:

τ = αt, χ = (λ22 + 2α)r, D = (λ11 + α)ρ, U = (λ22 + α)u,

P = (2λ22)p, H = λ22h, M = 2(λ22 + α)m. (24)

The invariant surface conditions for the infinitesimal generators (24) are given as

τρt + χρr = D, τut + χur = U,

τpt + χpr = P, τht + χhr = H, τmt + χmr = M. (25)

Using (24) in (25), and after integration, we obtain

ρ = t

(λ11 + α)

α D∗(x), u = t

(λ22 + α)

a U∗(x), p = t

2λ22

α P∗(x),

h = t

λ22

α H∗(x), m = t

2(λ22 + α)

α M∗(x), (26)

where δ = λ22 + 2α

α
and similarity variable x is obtained as

x = r

Atδ
, (27)

where A is a dimensional constant.
Shock path and shock velocity are obtained as

R(t) = Atδ, C = dR

dt
= Aδtδ−1. (28)

The flow variables just ahead of the shock front are characterized as

ρ1 = ρ∗Rφ, h1 = h∗R−θ , m1 = m∗Rφ+2, (29)

where ρ∗, φ, h∗, θ are constants and m∗ = 2πρ∗

(φ + 2)
. The necessary condition for MA to be

a constant is

φδ + 2δ − 2 + 2θδ = 0. (30)

At the shock, i.e., at x = 1, using (26) the flow variables are given as

ρ |x=1= t

(λ11 + α)

α D∗(1), u |x=1= t

(λ22 + α)

α U∗(1), p |x=1= t

2λ22

α P∗(1),

h |x=1= t

λ22

α H∗(1), m |x=1= t

2(λ22 + α)

α M∗(1). (31)
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Using (7), (29) and (31), the boundary conditions for the infinitesimal generators are obtained
as follows

D∗(1) = ρ∗Aφ

β
, U∗(1) = (1 − β)Aδ, P∗(1) = Lρ∗δ2Aφ+2,

H∗(1) = δA(φ+2)/2√ρ∗
√

μMAβ
, M∗(1) = m∗Aφ+2, (32)

where φ = λ11 + α

λ22 + 2α
.

Using (26) and (29), the flow variables are obtained in the form

ρ = ρ1D(x), u = CU (x), p = ρ1C
2P(x),

√
μh = ρ

1/2
1 CH(x), m = m1M(x),

(33)

where D = D∗

ρ∗Aφ
, U = U∗

δA
, P = P∗

ρ∗Aφ+2δ2 , H = H∗√μ

δA(φ+2)/2
√

ρ∗ , M = M∗

m∗Aφ+2 .

The set of Eqs. (1)–(4), using (33) and after suppressing the bar sign are transformed as

φD + (U − x)D
′ + DU

′ + DU

x
= 0, (34)

(δ − 1)

δ
UD + (U − x)U

′
D + P

′ + HH
′ + G0MD

δ2x
= 0, (35)

1

2
φH + (δ − 1)

δ
H + (U − x)H

′ + HU
′ + HU

x
= 0, (36)

M
′ = (φ + 2)xD, (37)

where G0 = Gm∗ is the gravitational parameter, δ = −2

φ
and (′) represents differentiation

w.r.t. x . Using Eq. (7) and similarity transformations (33) in (9), we obtain a relation between
P(x) and D(x) as

P(x) = LβD(x). (38)

The set of ODEs (34)–(37) are solved numerically. The boundary conditions obtained from
(32) using (33) after suppressing the bar sign are obtained as

D(1) = 1

β
, U (1) = (1 − β), P(1) = L , H(1) = 1

MAβ
, M(1) = 1. (39)

Normalizing the flow variables ρ, u, p, h and m, we get

ρ

ρ2
= D(x)

D(1)
,

u

u2
= U (x)

U (1)
,

p

p2
= P(x)

P(1)
,

h

h2
= H(x)

H(1)
,

m

m2
= M(x)

M(1)
. (40)

Case (ii): When α = 0, λ22 �= 0 and c �= 0
From (22), the infinitesimal generators for the present case are obtained as

τ = c, χ = λ22r, D = λ11ρ, U = λ22u,

P = (2λ22)p, H = λ22h, M = 2λ22m. (41)
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The invariant surface conditions in this case is same as (25) in case (i). Using (25) and (41)
on integration, we obtain

ρ = exp

(
λ11t

c

)
D∗(x), u = exp(δt)U∗(x), p = exp(2δt)P∗(x),

h = exp(δt)H∗(x), m = exp(2δt)M∗(x), (42)

where δ = λ22

c
and similarity variable x is obtained as

x = r

Aeδt
. (43)

Shock path and shock velocity are obtained as

R(t) = Aeδt , C = dR

dt
= Aδeδt . (44)

As the shock path and shock velocity vary according to the exponential law, given by Eq.
(44). Thus, to obtain the similarity solutions we need to consider the flow variables just ahead
of the shock front varying according to the exponential law such as,

ρ0 = ρ∗exp(φt), h0 = h∗exp(−θ t). (45)

From (42), the flow variables at the shock, i.e., at x = 1 are given as

ρ |x=1= exp

(
λ11t

c

)
D∗(1), u |x=1= exp(δt)U∗(1), p |x=1= exp(2δt)P∗(1),

h |x=1= exp(δt)H∗(1), m |x=1= exp(2δt)M∗(1). (46)

The boundary conditions for infinitesimal generators are as given by (32), with φ = λ11

λ22
. For

the existence of similarity solution in this case, the density needs to be necessarily constant.
Using (42) and (45), we obtain the flow variables in the form

ρ = ρ1D(x), u = CU (x), p = ρ1C
2P(x),

√
μh = ρ

1/2
1 CH(x), m = m1M(x),

(47)

where D = D∗

ρ∗Aφ
, U = U∗

Aδ
, P = P∗

ρ∗δ2Aφ+2 , H =
√

μH∗

δA(φ+2)/2
√

ρ∗ , M = M∗

m∗Aφ+2 .

The condition for MA to be a constant in the present case is

δ = −θ. (48)

Using (47) the set of Eqs. (1)–(4), after suppressing the bar sign is transformed as

(U − x)D
′ + DU

′ + DU

x
= 0, (49)

UD + (U − x)U
′
D + P

′ + HH
′ + G0MD

δ2x
= 0, (50)

H + (U − x)H
′ + HU

′ + HU

x
= 0, (51)

M
′ = 2xD, (52)
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where (′) represents differentiation w.r.t. x . The relation between P(x) and D(x) will be
same as given by (38). The system of Eqs. (49)–(52) can be integrated numerically using
(38), boundary conditions (39) and the value of δ from equation (48).

Case (iii): When α = 0 and λ22 = 0. In this case, the similarity variable is not obtained as
a combination of the space coordinate and the time coordinate; thus, the similarity solutions
cannot be obtained.

Case (iv): When α �= 0 and λ22 = 0. In this case, the boundary conditions obtained for
the flow variables are not independent of the time coordinate; thus, the similarity solutions
cannot be obtained.

5 Results and discussion

Using Lie group of transformation method, similarity solutions in two cases are obtained. In
Case (i), we obtain the similarity solution with power law shock path which is similar to the
solution obtained by Nath and Sinha [32]; in Case (ii), we obtain similarity solutions with
exponential law shock path. The set of Eqs. (34)–(37) for power law shock path, i.e., Case
(i) and Eqs. (49)–(52) for exponential law shock path, i.e., Case (ii), using relation (38) and
the boundary conditions (39) are integrated numerically for the distribution of flow variables
density D, magnetic field H , mass M and fluid velocity U between the shock front and
the inner expanding surface by the Runge-Kutta method of fourth order using the software
Mathematica. For numerical integration in Case (i), the values of flow parameters are taken
to be: M−2

A = 0.02, 0.03; φ = −1.8,−1.85 and G0 = 0.1, 0.15. For Case (ii), the values of
flow parameters are taken to be: M−2

A = 0.02, 0.06; θ = −0.4,−0.8 and G0 = 0.1, 0.2. The
influence of magnetic field on the flow behind the shock is noteworthy when M−2

A ≥ 0.01
(Rosenau and Frankenthal [34]); thus, in the present problem values of M−2

A are taken to be
0.02, 0.03 and 0.06. The value of adiabatic exponent γ is taken to be as 5/3 in both the cases.
For fully ionized gas γ = 5/3, which is significant to the interstellar medium and it is the
most general value seen in real stars.

The values of density ratio β and position of inner expanding surface are obtained in Table 1
by considering different values of M−2

A , φ, G0 and γ = 5/3 for Case (i). Table 2 exhibits the
values of density ratio β and position of inner expanding surface for different values of M−2

A ,
θ , G0 and γ = 5/3 for Case (ii). From Tables 1 and 2 it is obtained that with increase in
value of Alfven-Mach number, the density ratio increases, i.e., the shock strength decreases
which can also be inferred by the increase in distance between the shock front and the inner
expanding surface with increase in M−2

A . Also with increase in G0, the distance of the shock
front from the inner expanding surface increases, i.e., the shock strength decreases in the case
of power law shock path. But in the case of exponential law shock path, the distance of the
shock front from the inner expanding surface decreases with increase in G0, i.e., the shock
strength increases. The dispersal of reduced flow variables density (pressure), magnetic field,
mass and fluid velocity for Case (i) for different values of flow parameters M−2

A , φ and G0 are
illustrated through Fig. 1a–d. And the dispersal of reduced flow variables density (pressure),
magnetic field, mass and fluid velocity for Case (ii) with different values of flow parameters
M−2

A , θ and G0 are illustrated through Fig. 2a–d. It is obtained from Fig. 1, i.e., for Case
(i) that reduced magnetic field, reduced mass and reduced fluid velocity decrease, whereas
the reduced density ( reduced pressure) increase and decrease after attaining a maximum.
From Fig. 2, i.e., for Case (ii), it is obtained that reduced density and fluid velocity increase;
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Table 1 Values of β and
position of inner expanding
surface for different values of
M−2

A , φ and G0 with γ = 5/3
for power law shock path

M−2
A β φ G0 Position of inner

expanding surface

0.02 0.271701 −1.8 0.1 0.7542271

0.15 0.690301

−1.85 0.1 0.797127

0.15 0.750392

0.03 0.282046 −1.8 0.1 0.719309

0.15 0.639148

−1.85 0.1 0.7708311

0.15 0.71319

Table 2 Values of β and
position of inner expanding
surface for different values of
M−2

A , θ and G0 with γ = 5/3 for
exponential law shock path

M−2
A β θ G0 Position of inner

expanding surface

0.02 0.271701 −0.4 0.1 0.909665

0.2 0.9166

−0.8 0.1 0.9032254

0.2 0.905517

0.06 0.311572 −0.4 0.1 0.902398

0.2 0.908665

−0.8 0.1 0.8966532

0.2 0.8986891

however, mass decreases and magnetic field increases slightly and the then decreases after
attaining a maximum.

5.1 Effects of increase in strength of ambient magnetic field on the flow variables and
shock strength are

With increase in the strength of magnetic field, i.e., the increase in value of M−2
A , the density

ratio β increases, i.e., the shock strength decreases for both Cases (i) and (ii). Also the distance
of the shock front from the inner expanding surface increases (see Table 1 and Table 2). For
power law shock path (Case (i)), the reduced density (pressure), reduced magnetic field and
reduced fluid velocity increase with increase in M−2

A (see Fig. 1a, b, d) but the mass decreases
near the inner expanding surface (see Fig. 1c). For exponential law shock path (case (ii)),
reduced mass and fluid velocity increase (see Fig. 2c, d); however, magnetic field increases
in general (see Fig. 2b). Reduced density decreases near shock but increases as the inner
expanding surface is approached in general (see Fig. 2a).

5.2 Effects of increase in values of ambient density variation index φ on the flow variables

With increase in ambient density variation index φ, the reduced density (pressure), reduced
magnetic field and reduced fluid velocity increase (see Fig. 1a, b, d); however, the reduced
mass decreases (see Fig. 1c).
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Fig. 1 Dispersal of the flow variables in the region behind the shock front with γ = 5/3 for power law
shock path (Case (i)). a Reduced density (ρ/ρ2) (= reduced pressure p/p2); b reduced magnetic field (h/h2);
c reduced mass (m/m2); d reduced velocity (u/u2): 1.M−2

A = 0.02, φ = −1.8,G0 = 0.1; 2. M−2
A =

0.02, φ = −1.8,G0 = 0.15; 3. M−2
A = 0.02, φ = −1.85,G0 = 0.1; 4. M−2

A = 0.02, φ = −1.85,G0 =
0.15; 5. M−2

A = 0.03, φ = −1.8,G0 = 0.1; 6. M−2
A = 0.03, φ = −1.8,G0 = 0.15; 7.M−2

A = 0.03, φ =
−1.85,G0 = 0.1; 8.M−2

A = 0.03, φ = −1.85,G0 = 0.15

5.3 Effects of increase in values of G0 on the flow variables and shock strength

For power law shock path (Case (i)), with increase in the value of gravitational parameter
G0, the distance of the shock front from the inner expanding surface increases (see Table 1)
which infers to the decrease in shock strength. Whereas in case of exponential law shock path
(Case (ii)), the gravitational parameter has reverse effect on shock strength as that of the Case
(i). For Case (i), the reduced density (pressure), reduced magnetic field and reduced fluid
velocity increase (see Fig. 1a, b, d); however, reduced mass decreases with increase in G0

(see Fig. 1c). For Case (ii), reduced density increases in general and fluid velocity increases
(see Fig. 2a, d); however, mass decreases (see Fig. 2c). Reduced magnetic field increases
near shock but decreases as the inner expanding surface is approached (see Fig. 2b).

5.4 Effects of increase in values of ambient magnetic field variation index θ on the flow
variables

Reduced density and fluid velocity increase (see Fig. 2a, d) however, mass decreases (see
Fig. 2c) with increase in θ . Reduced magnetic field increases near shock but decreases as the
inner expanding surface is approached (see Fig. 2b).
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Fig. 2 Dispersal of the flow variables in the region behind the shock front with γ = 5/3 for exponential
law shock path (Case (ii)). a Reduced density (ρ/ρ2) (= reduced pressure p/p2); b reduced magnetic field
(h/h2); c reduced mass (m/m2); d reduced velocity (u/u2): 1.M−2

A = 0.02, θ = −0.4,G0 = 0.1; 2. M−2
A =

0.02, θ = −0.4,G0 = 0.2; 3. M−2
A = 0.02, θ = −0.8,G0 = 0.1; 4. M−2

A = 0.02, θ = −0.8,G0 = 0.2; 5.

M−2
A = 0.06, θ = −0.4,G0 = 0.1; 6. M−2

A = 0.06, θ = −0.4,G0 = 0.2; 7.M−2
A = 0.06, θ = −0.8,G0 =

0.1; 8.M−2
A = 0.06, θ = −0.8,G0 = 0.2

6 Conclusions

Propagation of cylindrical shock wave in a self-gravitating perfect gas in the presence of axial
magnetic field under isothermal flow condition using Lie group of transformation method is
investigated. Numerical solutions for both the cases of power law shock path and exponential
law shock path are obtained. This study can have potential applications like analysis of data
from exploding wire experiments and axially symmetric hypersonic flow problems associated
with meteors or re-entry vehicles (see [35,36]). From the present study, the following can be
concluded:

(i) The increase in value of Alfven-Mach number leads to an increase in the density ratio
across the shock, which infers to the decrease in shock strength for both the cases of
power law and exponential law shock path.

(ii) In case of power law shock path, with increase in G0, the distance of the shock front
from the inner expanding surface increases, i.e., the shock strength decreases; however,
increase in value of G0 in case of exponential law shock path has reverse effect on shock
strength as that of G0 in case of power law shock path.
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(iii) The reduced fluid velocity, density (pressure) and magnetic field increase with an increase
in the strength of ambient magnetic field in case of power law shock path. Increase
in values of gravitational parameter has similar effects on reduced density (pressure),
magnetic field and fluid velocity as that of ambient magnetic field on these flow variables.

(iv) In case of exponential law shock path, the increase in G0 or θ has similar effects on flow
variables reduced mass and fluid velocity.

(v) It is found that the flow variables reduced magnetic field, reduced mass and reduced veloc-
ity decrease; however, reduced density (pressure) increase and decrease after attaining
a maximum value as we move from the shock front to the inner expanding surface for
case of power law shock path. In case of exponential law shock path, it is obtained that
reduced density and fluid velocity increase; however, mass decreases and magnetic field
increases slightly and the then decreases after attaining a maximum.
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