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Abstract We study the timelike geodesics and the greybody radiation of the Schwarzschild
black hole surrounded by quintessence field. Quintessence field is one of the highly plausible
models for the dark energy. The effective potential along with the structure of the possible
orbits for test particles in view of the various values of quintessence parameter are analyzed in
detail. The exact solution of radial timelike geodesics for a test particle is obtained. Remark-
ably, it is shown that an increase in quintessence parameter decelerates the particles following
the radial timelike geodesics so that the particles reach the singularity slower than the bare
Schwarzschild case. The circular orbits of the test particles in case of non-radial geodesics
are studied. We also discuss the Lyapunov exponent and the effective force acting on the
particle in the presence of quintessence field. The effect of quintessence parameter on the
greybody factor is also investigated. We consider the Miller–Good transformation method to
compute the greybody factor and therefore to discuss how the Hawking radiation is affected
from the quintessence field.
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1 Introduction

In cosmology, dark energy (DE) is an unknown form of energy which is hypothesized to
constitute most of the space, leading to accelerate the expansion of Universe [1]. The most
widely accepted hypotheses since the 1990s are based on observations that support the current
DE [2] and show that the expansion of the Universe is accelerating. In quintessence models
of DE, the observed acceleration of the scale factor is caused by the potential energy of
a dynamic field, referred to as the quintessence field [3–5]. Quintessence differs from the
cosmological constant since it can vary both in space and in time. In order for it not to clump
and form structure like matter, the field must be very light so that it has a large Compton
wavelength. Although there is no evidence of quintessence is yet available, it has been getting
attention since the mystery on the accelerated expansion of Universe has not been resolved.
The existence of the quintessence generally predicts a slightly slower acceleration of the
expansion of Universe than the cosmological constant. Some scientists think that the best
evidence for quintessence would come from violations of Einstein’s equivalence principle and
variation of the fundamental constants in space or time. Moreover, scalar fields are considered
as another forms of DE where broad types of scalar field models have been suggested, such
as quintessence [6–11], phantom [12–14] , K-essence [15,16] and quintom [17]. Scalar fields
are predicted by the standard model of particle physics and string theory, but an analogous
problem to the cosmological constant problem (or the problem of constructing models of
cosmological inflation) occurs: Renormalization theory predicts that scalar fields should
acquire large masses. (For details, a reader is referred to [18].) Recently, Cicciarella and
Pieroni [19] have written an in-depth review of universality for quintessence and, moreover,
discussed the application of inflation methods to models of quintessence. Detailed discussion
has also been made for the quintessence that is non-minimally coupled with gravity.

On the other hand, the effect of quintessence on black holes (BHs) geodesics and
the thermodynamics have received considerable attention in recent published papers. For
example, Fernando [20] studied the null geodesics of Schwarzschild BH surrounded by
quintessence (SBHSQ) and extracted some of the physical proprieties of the BH. Further, the
null geodesics of Schwarzschild, Reissner–Nordström, Schwarzschild-de Sitter and Bardeen
BHs surrounded by quintessence are investigated in [21]. In Ref. [22], the marginally stable
circular orbits of a massive test particle are investigated in the geometry of the SBHSQ.

Our present paper is divided into two parts. In the first part, we derive the general formalism
of the geodesics in the SBHSQ spacetime and study the effect of quintessence parameter on
the timelike geodesics. Radial geodesics for massive particles are solved exactly. Study of
the effective potential in radial motion shows that all radial orbits are unstable due to the
presence of quintessence field. Circular timelike geodesics are also considered. All types of
possible orbits in non-radial timelike geodesics are analyzed. We also determine the Lyapunov
exponent and the effective force acting on the particle in the presence of quintessence field. In
the second part of the paper, we evaluate the greybody factor and transmission probability of
the SBHSQ. It is worth noting that semiclassical black holes emit thermal radiation: Hawking
radiation [23–59] . Such radiation, as seen by an asymptotic observer far outside the BH,
differs from the original radiation near the horizon of the black hole by a redshift factor
and the so-called greybody factor. (See for example [60,61].) We then discuss the effect of
quintessence on the greybody radiation and transformation probability. In fact, we derive
the greybody factor with the help of transmission probability via the method of Miller–
Good transformation [62]. To this end, we apply that particular transformation to the wave
equation, which is nothing but the one-dimensional Schrödinger equation, and obtain the
greybody factor.
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Our paper is organized as follows: In Sect. 2, we introduce the SBHSQ spacetime. In
Sect. 3, we derive the geodesic equations that give us a complete description of the motion of
the particle in the geometry of SBHSQ. In addition, the radial and circular timelike geodesics
for massive particles are investigated. In Sect. 4, we compute the Lyapunov exponent and
effective force on the particle. Section 5 is devoted to the effective potential of massless
scalar field. The Miller–Good transformation and greybody factor of SBHSQ are presented
in Sects. 6 and 7, respectively. Finally, we make concluding remarks and discuss future work
in Sect. 8.

2 Structure of SBHSQ

In this section, we consider the SBHSQ spacetime, which was introduced by Kiselev [63]. To
this end, Kiselev assumed a spherically symmetric static gravitational field with the following
energy–momentum tensor:

T t
t = T r

r = ρq , T θ
θ = T φ

φ = −ρq

2
(3wq + 1), (1)

where wq is the quintessence state parameter having a range −1 < wq < − 1
3 . The equation

of the state for the quintessence field is given by

pq = wqρq , ρq = − 3cwq

2r3(1+wq)
, (2)

where pq is the pressure, ρq denotes the energy density and c stands for the positive normal-
ization factor. To have an accelerated expansion of Universe, the quintessence pressure pq
must be negative. Furthermore, the matter energy density ρq must also be positive. Therefore,
the normalization factor c must be positive for negative wq . The geometry of the SBHSQ is
given by [63]

ds2 = − f (r) dt2 + f −1(r)dr2 + r2(dθ2 + sin2 θdφ2), (3)

where the metric function f (r) reads

f (r) = 1 − 2M

r
− c

r3wq+1 , (4)

and M denotes the mass of the BH. One can compute the curvature of the above metric as
follows:

R = 2Tμ
μ = 3cwq

1 − 3wq

r3(wq+1)
, (5)

which has a singularity at r = 0 if wq �= {0, 1
3 ,−1}. Metric (3) satisfies all the required

limits as boundary conditions; when c = 0, we recover the Schwarzschild BH (SBH), and
when c �= 0 we have SBHSQ. Throughout this work, we shall concentrate on the special
case wq = − 2

3 . Hence,

f (r) = 1 − 2M

r
− cr. (6)

The metric of SBHSQ (3) with f (r) given in (6) has two horizons. For 8Mc < 1, the inner
(rin) and outer (rout) horizons are given by

rin = 1 − √
1 − 8Mc

2c
, (7)
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Fig. 1 f (r) versus r graph for various values of the parameter c. The plots are governed by Eq. (6). Here,
2M = 1

rout = 1 + √
1 − 8Mc

2c
, (8)

where rout likes the horizon in Schwarzschild–de Sitter BH. It should be noted that the
area between the two horizons is significant; therefore, in analyzing the motion of massive
particles we also consider this region. It is worth noting that for 8Mc > 1, the metric does
not have horizons (naked singularity case). On the other hand, when 8Mc = 1 we have an
extreme horizon. Figure 1 shows all three cases of possible horizons.

3 Geodesics of SBHSQ

In this section, we will derive the geodesic equations for massive particles in the geometry
of SBHSQ. For a generic spacetime with a line element ds2 = gμνdxμdxν , the Lagrangian
can be derived from

L = 1

2
gμν

dxμ

ds

dxν

ds
, (9)

where s is an affine parameter along the geodesics. For the SBHSQ spacetime, the Lagrangian
is

2L = − f (r)ṫ2 + f −1(r)ṙ2 + r2(θ̇2 + sin2 θφ̇2), (10)

in which a dot denotes a differentiation with respect to s. There are two conserved quantities,
the energy E and the angular momentum � in φ direction,

E = dL

dṫ
= −

(
1 − 2M

r
− cr

)
ṫ, (11)

� = dL

dφ̇
= r2 sin2 θφ̇. (12)

Let us choose θ = π/2 and
·
θ = 0 as the initial conditions. This means that the motion

is restricted to the equatorial plane. Using the two constants of motion (11) and (12), the
geodesics equation reduces to
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(
dr

dφ

)2

= r4

�2

(
E2 −

(
1 − 2M

r
− cr

)(
ε + �2

r2

))
. (13)

We can obtain the r equation as a function of s and t , respectively,
(

dr

ds

)2

= E2 −
(

1 − 2M

r
− cr

)(
ε + �2

r2

)
, (14)

(
dr

dt

)2

= 1

E2

(
E2 −

(
1 − 2M

r
− cr

)(
ε + �2

r2

))(
1 − 2M

r
− cr

)2

. (15)

Equations [(13)–(15)] give us a complete description of the motion of the particle. Here,
ε = 1 corresponds to timelike geodesics and ε = 0 is for the null geodesics. We can obtain
the effective potential by comparing Eq. (14) with the equation of motion for a unit mass

test particle 1
2

( dr
ds

)2 + Veff (r) = εeff , where the effective energy is εeff = 1
2 E

2. Hence, the
effective potential is given by

Veff (r) = 1

2

(
1 − 2M

r
− cr

)(
ε + �2

r2

)
. (16)

For a real classical region r is limited by the constraint εeff ≥ Veff (r). When introducing
u = 1/r , we get the u-equation as follows:

(
du

dφ

)2

= E2

�2 −
(

1 − 2Mu − c

u

) ( ε

�2 + u2
)

= P(u). (17)

3.1 Radial timelike geodesics

First, we study the radial timelike geodesics corresponds to the motion of massive particles
in zero angular momentum (� = 0). Then, Eq. (14) becomes

(
dr

ds

)2

= E2 − 1 + 2M

r
+ cr. (18)

Choosing s to be the proper time τ , Eq. (18) can be rewritten as

d2r

dτ 2 = c

2
− M

r2 . (19)

For radial timelike geodesics, the effective potential is given by

Veff (r) = 1

2

(
1 − 2M

r
− cr

)
. (20)

The evolution of the effective potential for the radial particles at different values of the
normalization factor c is depicted in Fig. 2. Note that the horizons rin and rout are the
intersection of Veff with the r -axis. We observe from Fig. 2 that the effective potentials
curves are concave down and fall as the normalization factor c increases which implies that
there are no stable orbits in SBHSQ. One can check from Eq. (20) that Veff has one maximum
point only and no minimum points. Moreover, Fig. 2 shows that the radial motion of a massive
particle is unbounded which means that the particle in SBHSQ can escape to infinity.

Let us consider the particle falling toward the center, under the attraction of gravity, from a
finite distance r0 with zero initial velocity where the starting distance is related to the constant
E by E2 = 1 − 2M

r0
− cr0. Making the change of variable r = r0 cos2 η/2 and following the
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Fig. 2 Behavior of Veff [Eq. (20)] for different values of normalization factor c. Veff falls with the increasing
c. For increasing c, the radial paths become more unstable

Fig. 3 Particle fall into r = 0 singularity versus proper time in SBH (c = 0) and SBHSQ (c = 0.01 and
c = 0.02). The fall apparently delays in the presence of quintessence field

same steps in driving the timelike radial geodesic described by the test particle in SBH [64],
we obtain

τ = 2M(
2M
r0

− cr0

)3/2 tan−1

⎡
⎢⎢⎣

√
2
(

2M
r0

− cr0

)
sin(η/2)

√(
2M
r0

− cr0

)
(1 + cos η) + 2cr0

⎤
⎥⎥⎦

+

√(
2M
r0

+ cr0

)
(1 + cos η) + 2cr0

√
2
(

2M
r0

− cr0

) r0 sin (η/2) . (21)

For c = 0, the exact analytical expression (21) reduces to τ =
√

r3
0

8M (η + sin η) which
coincides with SBH case. To investigate the effect of quintessence matter on the timelike radial
motion, we plot Eq. (21) in Fig. 3 and compare it with the SBH (without quintessence). From
Fig. 3, it is observed that the quintessence field surrounding the Schwarzschild metric delays
the particle following the timelike radial geodesics so that the particles reach the singularity
slower than the SBH case.
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Fig. 4 The difference between circular geodesics radii rcmin and rh is shown as a function of c

3.2 Circular timelike geodesics

We shall study here the circular motion of massive test particle for the case � �= 0. From
(17), we obtain the conditions of the occurrence of circular orbits, namely g (u = uc) = 0
and g′ (u = uc) = 0 in which rc = 1

uc
is the circular orbit of the particle. Hence,

E2

�2 −
(

1 − 2Muc − c

uc

)(
1

�2 + uc

)
= 0, (22)

and
d

du

(
E2

�2 −
(

1 − 2Mu − c

u

)( 1

�2 + u2
)) ∣∣u=uc = 0. (23)

Using the above conditions [Eqs. (22) and (23)], we can obtain the expressions for the energy
E and the angular momentum � of the particle as

E2 = 2 (uc − 2Muc − c)2

uc (2uc − 6Muc − c)
, (24)

�2 = (2Muc − c)

uc (2uc − 6Muc − c)
. (25)

We notice from Eq. (24) that for a physical acceptable motion the constraint (2uc−6Muc−c)
>0 emerges naturally. Therefore,

rcmin = 1 − √
1 − 6Mc

c
< rc (26)

To have a physical orbit, rc > rin must hold. To justify this, we compare both radii [Eqs.

(7)and(26)]; it is seen that rcmin is larger so that rcmin − rin = 1+√
1−8Mc−2

√
1−6Mc

2c > 0. In
Fig. 4, we have plotted (rc min − rin) versus c; it is clear that (rcmin − rin) is always positive
and as c increases the circular geodesics approaches the horizon. Let us note that when
c → 0, rcmin → 3M we recover the radius of the unstable circular orbit of the SBH.

The radial dependence of both �2 (25) and E2 (24) of the test particle moving on circular
orbits is shown in Figs. 5 and 6, respectively. It is seen from Fig. 5 that as rc → rcmin the
angular momentum goes to minus infinity. We also deduce from Eq. (25) and Fig. 5 that
rc
M = 4 is the only orbit in which irrespective to the value of c, �2

M2 = 16. However, Fig. 6
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Fig. 5 Angular momentum Eq. (25) behavior of a massive particle versus distance rc for various c values. It
is observed that all curves coincide at rc

M = 4

Fig. 6 Radial dependence of energy Eq. (24) of circular orbits around SBHSQ for different values of c

clearly shows that with the decrease in the quintessence parameter c, energy possesses a
minimum value.

The effective potential in the circular timelike motion is given by

Veff (r) = 1

2

(
1 − 2M

r
− cr

)(
1 + �2

r2

)
. (27)

To investigate the stability of the equilibrium circular motion of a massive test particle,
we make a plot of Eq. (27) in Fig. 7. The figure represents the behavior of the effective
potentials of SBHSQ and SBH, jointly. Both figures are concave down, and particles can
escape to infinity for a given energy larger than the asymptotic value of Veff . There are two
main differences between the two curves, the stable orbits and the asymptotic behavior. There
are no stable parts in the curve Veff for SBHSQ because of the steeply falling down, whereas
the Veff of SBH has some stable parts and is asymptotically constant. We conclude that there
are no stable circular orbits due to the presence of quintessence matter. A plot of Veff (27)
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Fig. 7 Veff for massive particles versus r for the Schwarzschild BH without quintessence (c = 0) and with
quintessence (c = 0.01). The steeply falling potential barrier in SBHSQ explains why the orbits remain
unbounded. Here, l2 = 14 and M = 1

Fig. 8 The graph shows the relation of Veff with the energy E

with three energy levels for a particular value for �2 = 14, c = 0.01 and M = 1 is shown in

Fig. 8. Since the relation
( dr

ds

)2 + Veff (r) = E2, the motion of the particles (orbits) depends
on the energy levels. To have a complete analytic description of different types of orbits, we
will consider three cases according to different values of E . Separate cases are highlighted
in the following:

Case I The energy level E = E1 > Ec gives E2 − Veff (r) > 0 and dr
ds > 0; hence, if the

particle starts its motion from larger r, it will cross the rin and falls into the singularity. The
corresponding orbit is shown in Fig. 9.

Case II The energy level E = E2 < Ec gives E2 −Veff (r) ≥ 0; here, we have two regions. if
the particle starts its motion at r > rc., it will fall to a minimum radius and escape to infinity.
But if the particle starts the motion at r < rc, then it will fall into the black hole. An example
to this case is shown in Fig. 10.
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Fig. 9 The graph shows the timelike geodesics for E1 = 0.45 > Ec , with c = 0.01, l2 = 14 and M = 1.
The orbit (blue) starts from larger distance and ends below rin

Fig. 10 The graph shows the timelike geodesics for E2 = 0.4 < Ec , with c = 0.01, l2 = 14 and M = 1.
The orbit (blue) starts from larger distance and escapes to infinity

Case III The energy level E = Ec gives E2 − Veff (r) = 0, and dr
ds = 0; hence, we have

circular orbits. Because of the nature of the effective potential at r = rc., the orbits are
unstable. The corresponding orbit is shown in Fig. 11.
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Fig. 11 The graph shows the timelike geodesics for E = 0.425 = Ec , with c = 0.01, l2 = 14 and M = 1.
The orbit (blue) starts from larger distance, approaches the BH and merges to the circular orbit at r = rc

Using Eq. (17), we can obtain the circular orbit of a massive particle with unit mass at
rc = rmin as (

du

dφ

)2

= E2

�2 −
(

1 − 2Mu − c

u

)( 1

�2 + u2
)

. (28)

For �2 = 200, we have E2 = 356.8143470 = (
1 − 2

r − 0.01r
) (

1 + 200
r2

)
; hence, the

minimum circular radius becomes rmin = 3.093402159, while rin = 2.041684766. Figure
12 shows the circular orbit of a massive particle at rc = rmin.

It is possible to obtain a general solution to the equation of the orbits Eq. (28); hence,

(
du

dφ

)2

= 2Mu4 − u3 +
(

2M + c�2

�2

)
u2 +

(
E2 − 1

�2

)
u + c

�2 = P (u) . (29)

The geometry of the geodesics will depend on the roots of the function P (u) . For c → 0,

Eq. (29) reduces to P(u) = u4 − ( 1
2M

)
u3 +

(
1
�2

)
u2 +

(
E2−1
2M�2

)
as expected; we recover

the non-radial geodesics for the SBH. For u → ∓∞, P(u) → ∞. Also when u → 0,

P(u) → c
�2 . Therefore, P(u) definitely has one negative real root.

Equation (29) can be written as

du

dφ
= ∓√P (u), (30)
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Fig. 12 The inner horizon and the minimum circular radius for the values l2 = 200, c = 0.01 and M = 1

where P(u) is given by

P(u) = 2M(u − u4)(u − u3)(u − u2)(u − u1). (31)

We will choose the “+” sign without lose of generality. When integrating Eq. (30), a relation
between u and φ in terms of Jacobi elliptic integral F(x, y) is obtained as

φ =
√

2F(x, y)√
M(u2 − u3)(u1 − u4)

+ const, (32)

where

sin x =
√

(u − u2)(u1 − u4)

(u − u1)(u2 − u4)
, (33)

y = (u1 − u3)(u2 − u4)

(u2 − u3)(u1 − u4)
, (34)

F(x, y) =
∫ x

0

dλ√
1 − y sin2 λ

. (35)

4 Lyapunov exponent and effective force

The Lyapunov exponent is a quantity that characterizes the rate of separation of infinitesimally
close trajectories of the average rate at which nearby trajectories converge or diverge in the
phase space. If the Lyapunov exponent is positive, then it implies a divergence between nearby
trajectories, which means high sensitivity to initial conditions. To evaluate the Lyapunov
exponent for the unstable timelike circular orbits, we use the expression derived by Cardoso
et al. [65] as
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Fig. 13 The Lyapunov exponent
λ versus c with M = 0.5

λ =
√√√√−V ′′

eff (rc)

2
·
t(rc)2

(36)

=
√

−c2

2
+ 6M2

r4
c

− M

r3
c

− 6Mc

r2
c

+ 3c

2rc
. (37)

The plot of the Lyapunov exponent λ as a function of c for the SBHSQ is shown in Fig.
13. We notice that the instability of the timelike circular orbits is more for the SBHSQ in
comparison with SBH. To calculate the critical exponent for instability of orbits, we use [65]

γ = Tλ

T
, (38)

where Tλ is the instability timescale given by Tλ = 1/λ and the time period T =
∣∣∣ 2πr2

c
�

∣∣∣
(Eq. 12). Therefore, as the values of c increases, λ becomes smaller for the same critical
exponent.

When we expand the effective potential (27), it looks like

Veff (r) = −
(
r + �2

r

)
c − 2�2M

r3 + �2

r2 − 2M

r
+ 1. (39)

It is seen that the contribution to the effective potential from the quintessence matter is

−
(
cr + c�2

r

)
compared to the SBH. We can also obtain the effective force on the particle as

F = −1

2

dVeff (r)

dr
= −

(
3M�2

r2 + M + c�2

2

)
1

r2 + �2

r3 + c

2
. (40)

The first terms in (40) are the attractive force acting on the particle since they are negative,
while the last two terms are repulsive. The plot of Eq. (40) is shown in Fig. 14 in which
� = 2, M = 1, and c = 0.08. Consequently, we have rin = 2.5, rc = 5, and rout = 10.

and F = 0 at r = 1.86728. From this figure, we can deduce that there are no stable circular
orbits for a massive particle and the force on the particle is positive for r > rin which implies
that the force is repulsive. This result agrees with the observations in cosmology that the DE
is associated with a repulsive force tending to accelerate the expansion of the Universe.
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Fig. 14 The graph shows the
effective force F as a function
of r

5 Effective potential of a massless scalar field

In this section, we derive the effective potential of a massless scalar field propagating in the
geometry of SBHSQ. To this end, we first consider the Klein–Gordon equation [66]:

1√−g
∂μ

(√−ggμν∂ν

)
� = 0, (41)

in which
√−g = r2 sin θ for the metric (3). Thus, Eq. (41) reads

− 1

f
∂2
t � + 1

r2 ∂r
(
r2 f ∂r

)
� + 1

r2 ∂2
θ � + cos θ

r2 sin θ
∂θ� + 1

r2 sin2 θ
∂2
φ� = 0. (42)

Considering the symmetries of the SBHSQ spacetime, one can set the scalar field � as

� (t, r, θ, φ) = S (r)

r
exp (−iωt) Ylm (θ, φ) , (43)

where exp (−iωt) represents the oscillating function and Ylm (θ, φ) is nothing but the
spheroidal harmonics [67] (l: angular quantum number, m: magnetic quantum number).
The radial part of the Klein–Gordon equation is obtained as follows:

f

S (r)
S ′′ (r) + f ′

S (r)
S ′ (r) +

{
ω2

f
− f ′

r
− λ

r2

}
= 0, (44)

where λ = −l (l + 1). When Eq. (44) is rewritten as

1

S (r)

d

dr

(
f

dS (r)

dr

)
+
{

ω2

f
− f ′

r
− λ

r2

}
= 0, (45)

and introducing the tortoise coordinate

dr∗
dr

= 1

f (r)
, (46)

then, after some algebra, the one-dimensional Schrödinger equation is obtained as

d2S (r)

dr2∗
+ (ω2 − Veff

)
S (r) = 0, (47)
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where the effective radial potential in the Schrödinger-like wave equation (47) reads

Veff = f

r

(
f ′ + λ

r

)
. (48)

6 Miller–Good transformation of SBHSQ

Greybody factor is one of the quantum quantities of a BH. In short, it is the fraction of Hawking
radiation that can reach spatial infinity. In this section, we shall focus on the Miller–Good
transformation method [62] to derive the greybody factor of the SBHSQ. The Miller–Good
transformation generates a general bound on quantum transmission probabilities. In this
method, a particular transformation is applied to the Schrödinger equation (47) in such a way
that the effective potential (48) is modified in order to yield a better transmission probability
for the Hawking quanta [68].

Defining the new radial function S (r) = ψ(r)√
f

, Eq. (47) can be rewritten in the following
compact form:

d2ψ (r)

dr2 + k2 (r) ψ (r) = 0, (49)

where

k2 (r) =
{

ω2

f 2 − f ′

r f
− λ

r2 f
− f ′′

2 f
+ f

′2

4 f 2

}
. (50)

Considering the Miller–Good transformation method, we first apply the following special
transformation:

ψ (r) = 1√
R′ (r)

� [R (r)] , (51)

in which R is the new position variable such that R (r) is an invertible function, which implies
that dR(r)

dr �= 0. Without loss of generality, one can assert dR(r)
dr > 0, whence also dr

dR(r) > 0.
Thus, the derivatives of the new function (51) yield

ψ ′ (r) = √R′ (r)�R (R (r)) − 1

2

R′′ (r)
R′ (r)

√
R′ (r)

� (R (r)) , (52)

ψ ′′ (r) = R′ (r)
√
R′ (r)�RR (R (r)) − 1

2

R′′′ (r)
R′ (r)

√
R′ (r)

� (R (r))

+ 3

4

R′′2 (r)

R′2 (r)
√
R′ (r)

� (R (r)) , (53)

where �R indicates d�
dR . Thus, Eq. (51) recasts in

�RR (R (r)) +
{

k2

R′2 (r)
+ 3

4

R′′2 (r)

R′4 (r)
− 1

2

R′′′ (r)
R′3 (r)

}
� (R (r)) = 0. (54)

Letting

K 2 = 1

R′2 (r)

{
ω2

f 2 − f ′

r f
− λ

r2 f
− f ′′

2 f
+ f´2

4 f 2 − 1

2

R′′′ (r)
R′ (r)

+ 3

4

R′′2 (r)

R ′2 (r)

}
, (55)

one can rewrite Eq. (54) as a new Schrödinger-like wave equation:

�RR + K 2� = 0. (56)

123



219 Page 16 of 21 Eur. Phys. J. Plus (2020) 135:219

Namely, Schrödinger equation (51) expressed in terms of ψ (r) and k (r) has been trans-
formed into a new Schrödinger equation in terms of � (R (r)) and K (R (r)). Meanwhile,
the following combination

√
R′ (r)

(
1√
R′ (r)

)′′
= −1

2

R′′′ (r)
R′ (r)

+ 3

4

R′′2 (r)

R′2 (r)
(57)

is named as the “Schwarzian derivative” [69,70]. Thus, K can be simplified as

K 2 = 1

R ′2 (r)

{
ω2

f 2 − f ′

r f
− λ

r2 f
− f ′′

2 f
+ f ′2

4 f 2 +√R′ (r)
(

1√
R′ (r)

)′′}
. (58)

As we have mentioned above, the parameter R′ (r) must be positive. To this end, we
choose another parameter as

j (r) ≡ R′ (r) ; (59)

with j (r) > 0, we can then write

K 2 = 1

j2 (r)

{
ω2

f 2 − f ′

r f
− λ

r2 f
− f ′′

2 f
+ f ′2

4 f 2 − 1

2

j ′′ (r)
j (r)

+ 3

4

j ′2 (r)

j2 (r)

}
. (60)

Furthermore, setting

j (r) = 1

J 2 (r)
, (61)

with J (r) > 0, we get

j ′ (r) = −2J ′ (r)
J 3 (r)

, j ′′ (r) = 6J ′2 (r)

J 4 (r)
− 2J ′′ (r)

J 3 (r)
, (62)

and

K 2 = J 4 (r)

{
ω2

f 2 − f ′

r f
− λ

r2 f
− f ′′

2 f
+ f ′2

4 f 2 + J ′′ (r)
J (r)

}
. (63)

In the case of J = 1, one can immediately observe that K 2 (R) = k2 (r); therefore,
both potentials [K 2 (R) and k2 (r)] have the same transmission amplitudes and consequently
the same transmission probability. The second probability is to find the relation between
two parameters J and f such that we will have different potentials and whence different
transmission probabilities. For the later case, one can get the transmission probability from
the following definition [62]:

T ≥ sec h2
{∫ +∞

−∞
℘dr

}
, (64)

in which ℘ is given by

℘ =
√

(h′)2 + [k2 − h2
]2

2h
, (65)

with h (r) > 0. Let us redefine function ℘ as
∼

℘ in order to show the difference between k (r)
and K (R). Then, we have

T ≥ sec h2
{∫ +∞

−∞
∼

℘dR

}
, (66)

where
∼

℘ is the function with respect to new transformation parameters and

dR = R′dr = jdr, (67)
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so that Eq. (66) is given by

T ≥ sec h2

⎧⎨
⎩
∫ +∞

−∞

√
(hR)2 + [K 2 − h2

]2
2h

dR

⎫⎬
⎭ . (68)

After substituting Eqs. (60) and (67) into Eq. (68) and further using hR = dh
dr

dr
dR , one can

obtain

T ≥ sec h2
{∫ +∞

−∞
1

2h

×
√(

h′
R′

)2

+
[

1

j2

{
ω2

f 2 − f ′
r f

− λ

r2 f
− f ′′

2 f
+ f ′2

4 f 2 −1

2

j ′′ (r)
j (r)

+3

4

j ′2 (r)

j2 (r)

}
− h2

]2

jdr

⎫⎬
⎭ .

(69)

As we have mentioned before R′ = j , Eq. (69) recasts in

T ≥ sec h2
{∫ +∞

−∞
1

2h

×
√

(h′)2 +
[

1

j

{
ω2

f 2 − f ′
r f

− λ

r2 f
− f ′′

2 f
+ f ′2

4 f 2 −1

2

j ′′ (r)
j (r)

+3

4

j ′2 (r)

j2 (r)

}
− jh2

]2

dr

⎫⎬
⎭ ,

(70)

which gives us the first form of the improved bound with the condition of h (r) > 0; then,
j (r) > 0, too. One can further improve the bound by transforming j to J as follows [62]:

dR = R′dr = J−2dr; (71)

therefore, the second form of the improved bound for the transmission probability is given
by

T ≥ sec h2
{∫ +∞

−∞
1

2h

×
√

(h′)2 +
[
J 2

{
ω2

f 2 − f´
r f

− λ

r2 f
− f ′′

2 f
+ f ′2

4 f 2 + J ′′
J

}
− h2

J 2

]2

dr

⎫⎬
⎭ . (72)

Here, we consider J±∞ �= 1 with the help of h (+∞) = h (−∞) = ω and then h′ = 0.
So, one can write Eq. (72) as

T ≥ sec h2

{
1

2ω

∫ +∞

−∞

[
J 2

{
ω2

f 2 − f´
r f

− λ

r2 f
− f´́

2 f
+ f´2

4 f 2 + J ′′

J

}
− ω2

J 2

]
dr

}
. (73)

Moreover, we assume that the first and second terms of the integral are equal to make Eq.
(73) more expressive. To this end, we set

J 2 = f, (74)

so then
f ′ = 2J J ′, and f ′′ = 2J ′2 + 2J J ′′. (75)
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We finally compute the transmission probability of the SBHSQ as follows:

T ≥ sec h2
{
− 1

2ω

∫ +∞

−∞

(
2J J ′

r
+ λ

r2

)
dr

}
. (76)

7 Greybody factor of SBHSQ

In this section, we shall focus on the greybody factor of Schwarzschild black hole surrounded
by quintessence, namely the SBHSQ. Within a semiclassical approximation, greybody factors
can be investigated by using the Schrödinger-like one-dimensional wave equation to study the
field scattering by the BH background. Actually, with the help of this method, we will be able
to define the transmission and reflection coefficients of the BH [62]. Here, we concentrate
on Eqs. (48) and (60) to define two kinds of the greybody factors and compare the obtained
results over their graphs. The formula of the general semi-analytic bounds for the greybody
factors is given by

σl (ω) ≥ sec h2
(∫ +∞

−∞
℘dr∗

)
, (77)

where ℘ is the dimensionless greybody factor:

℘ =
√

(h′)2 + (ω2 − Veff − h2
)2

2h
, (78)

in which h′ implies the derivation with respect to r . By considering the conditions for h [h
must be positive and h (+∞) = h (−∞) = ω], we can simplify Eq. (78) as

℘ = 1

2ω
Veff , (79)

by using the tortoise coordinate as dr∗
dr = 1

f (r) . Hence, greybody factor reads

σl (ω) ≥ sec h2
(

1

2ω

∫ +∞

rh
Veff

dr

f (r)

)
. (80)

After substituting the effective potential (48) and the derivative of the metric function into
Eq. (80), we obtain

σl (ω) ≥ sec h2
(

1

2ω

∫ +∞

rh

(
2M

r3 − c

r
+ λ

r2

)
dr

)
. (81)

But the result of Eq. (81) has a natural logarithm (ln) term, which means that the greybody
factor of SBHSQ is measureless. Namely, the method that we have followed is failed. To
overcome this difficulty, we shall consider the Miller– Good transformation [62].To this end,
let us rewrite Eq. (76) in the form of

T ≥ sec h2
{
− 1

2ω

∫ +∞

rh

(
2M − cr2 + λr

r3

)
rdr

r − 2M − cr2

}
, (82)

which can be rewritten as

T ≥ sec h2

{
1

2ω

∫ +∞

rh

(
2M − cr2 + λr

) ( 1

r4

)
dr

c + 2M
r2 − 1

r

}
. (83)
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c= 0.9

c= 1.1

c= 1

c= 1.2

σ l
(

)

ω

ω

Fig. 15 σl (ω) versus ω graph. The plots are governed by Eq. (85). For different c values, the corresponding
greybody factors are illustrated. The physical parameters for this plot are chosen as M = l = 1

By considering the following asymptotic expansion

1

c + 2M
r2 − 1

r

� 1

c
+ 1

c2r
+ − 2M

c + 1
c2

cr2 . . . , (84)

we find (for the similar procedure, the reader is refereed to [71])

σl (ω) ≡ T ≥ sec h2

⎧⎨
⎩

1

2ω

⎡
⎣ 2M

3cr3
h

+ 2M

4c2r4
h

+
2M

(
1
c2 − 2M

C

)
5cr5

h

− 1

rh
− 1

2cr2
h

− − 2M
c + 1

c2

3r3
h

+ λ

2cr2
h

+ λ

3c2r3
h

+
λ
(
− 2M

c + 1
c2

)
4cr4

h

⎤
⎦
⎫⎬
⎭ . (85)

The above result represents the greybody factor of SBHSQ, which is obtained by the
Miller–Good transformation. It is obvious that the specific form of the greybody factor
depends on some parameters which are related to the potential barrier. This is indeed the case
that gives the greybody factor in terms of the transmission coefficient corresponding to the
potential barrier. The result obtained in Eq. (85) is depicted in Fig. 15.

8 Conclusion

In this article, we have investigated the effect of quintessence field on the timelike geodesic
and Hawking radiation in the background of SBHSQ. To see the effect on the motion for
timelike geodesics, we have analyzed the radial and non-radial geodesics. We have then
obtained an exact solution for a test particle falling from rest toward the singularity. It is shown
that due to the presence of quintessence field around the Schwarzschild BH, the particles are
delayed along the timelike radial geodesics. An increase in quintessence parameter causes
more delay for the falling time of the particles. In non-radial timelike geodesics, it is shown
that there are no stable circular orbits. All possible motion of orbits, i.e., unstable circular
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orbits, radially plunge and fly-by types of orbits, are obtained. Moreover, we have calculated
the effective force acting on massive particles. It is shown that the force is always repulsive,
which agrees with the observations in cosmology that the DE is associated with a repulsive
force tending to accelerate the expansion of the Universe. The Lyapunov exponent for the
unstable timelike circular orbits, which gives the instability timescale for the geodesics of
the particle, is discussed. We observed that the instability of the timelike circular orbits is
more in the case of SBHSQ in comparison with the SBH.

For the thermal radiation analysis of the SBHSQ, we have used the Miller–Good transfor-
mation for obtaining the greybody factor. By this way, we have uncovered the effect of the
quintessence parameter on the Hawking radiation, which could be detected by an observer at
spatial infinity. We also supported our results with graphics. In particular, we have found that
the decrease in normalization parameter (c) causes the greybody factor to rapidly approach
one.

In the near future, we want to generalize our work for the spinning particles and for the
rotating spacetimes. Thus, we want to examine the quintessence effect on the geodesics and
Hawking radiation in more depth.
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