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Abstract Most basic models for the power (or equivalently, the neutron population) in a
nuclear core consider the power as a function of time (with an energetic and spatial dis-
tribution) and lead to deterministic description of the reactor kinetics. While these models
are of common use and are undoubtedly the main analytic tool in understanding the reactor
kinetics, the true nature of the power in a reactor core is stochastic and should be considered
as a stochastic process in time. The stochastic fluctuations of the power around the mean
field (which is given by the deterministic models) are referred to as “reactor noise”, and
understanding them is a basic topic in nuclear science and engineering. Traditionally, most
models for reactor noise consider a sub-critical core, reaching steady state after exposure to
an external source. The focus on a sub-critical setting is driven by two main factors. First,
from a practical point of view, measuring the power fluctuations in a sub-critical core (known
as “noise experiments”) has proven to be a very efficient tool for estimating the static and
kinetic parameters of the core. Second, once we assume a critical setting, the current models
become statistically unstable, while the mean field solution has a stationary solution, the
variance tends to ∞ linearly in time. The instability of the stochastic models is a known
problem, and it has been conjectured in the past that this (some what strange) increase in the
variance—that is not observed in physical systems—can be restrained by power feedback.
However, this conjecture was never proven. The outline of the present study is to present a
stochastic analysis to the point reactor kinetics model, proving that once the reactivity has
a negative feedback, it not only forces a specific steady-state solution (in terms of the mean
field equation), but also prevents the variance to “explode”, and the variance is bounded in
time.

1 Introduction

Most basic models for the power (or equivalently, the neutron population) in a nuclear core
consider the power as a function of time (with an energetic and spatial distribution) and
lead to deterministic description of the reactor kinetics, either in terms of the well-known
Boltzmann equation, or the point reactor kinetics [1]. While these models are of common
use and are undoubtedly the main analytic tool in understanding the reactor kinetics, the true
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nature of the power in a reactor core is stochastic and should be considered as a stochastic
process in time [2]. The stochastic fluctuations of the power around the mean field (which
is given by the deterministic models) are referred to in the literature as “reactor noise” and
form a basic topic in nuclear science and engineering.

The analysis of reactor noise originated in the seminal work of Feynman [3], and is
traditionally done via the Probability Generating Function (PGF) formalism, where the so-
called Master Equation (or the Chapman–Kolmogorov equation) is utilized to describe the
dynamics of the PGF [4]. In recent years, originating in the work of Hayes and Allen [5],
there is an ongoing effort to analyze reactor noise via stochastic differential equation (SDE)
and Ito calculus. The basic SDE model is obtained by applying the central limit theorem
on the master equation, an approximation referred to in the literature as the diffusion scale
approximation (see also [6]). We consider [5] to be the first paper to use SDE to model
reactor noise (although the Langevin equation was introduced in earlier studies, see [7] and
the references within), for two reasons: first, [5] was the first to construct the amplitude of
the noise term from first principles and analytically justify the use of the Brownian motion
increment. Second, it was the first to use the celebrated Ito calculus to analyze the process.

Looking at the literature on reactor noise, the vast majority deals with a sub-critical core,
reaching steady state in the presence of an external source. The focus on a sub-critical setting
is driven by two factors. First, from a practical point of view, measuring the power fluctuations
in a sub-critical core (known as “noise experiments”) has proven to be a very efficient tool
for estimating the static and kinetic parameters of the core and is standard practice in reactor
measurement and control [8]. Second, once we assume a critical setting (obtained by taking
the limit k → 1 on the multiplication factor, while nullifying the external source), the model
becomes statistically unstable: while the mean field solution has a stationary solution, the
variance tends to ∞ linearly in time [9].

This instability, which is obviously not a physical phenomena (otherwise we would
encounter random meltdowns and shutdowns), has been a “constant source of irritation”
(Williams, 1977, [2]). The following is quoted from [2]: “The divergence of the auto-
correlation function, the variance to mean ratio and the Rossi-α formula, when the reactor is
critical, is a constant source of irritation in the interpretation of noise experiments. . .. Several
explanations have been advanced for the absence of this “critical catastrophe”, the most pop-
ular being that a reactor is never operated exactly at a critical state because there is always
a background source of some kind. This explanation, however, is not overly convincing and
it is more likely that either inherent and/or an operator-induced feedback mechanism exists
which is of low frequency and is sufficient to prevent any divergences at criticality”.

Although [2] was written some 50 years ago, and since then there were numerous pub-
lications on reactor noise, it is still safe to state that the stability issue has not been settled.
The above quotation not only surfaces the problem, but it also offers a possible solution:
the fluctuations are “restrained” by feedback mechanism—either inherent (such as thermal
feedback) or operator induced (such as the regulation system).

A reasonable consideration as to why a feedback analysis was never presented so far is
that most literature uses the PGF formalism, which typically involves a partial differential
equation. Since a power feedback is bound to involve a nonlinear term, it is much harder to
incorporate in the equations, and cannot be analyzed in a complete fashion. Using the SDE
formalism, on the other hand, allows easier treatment, both in terms of modeling and in terms
of analysis, of nonlinear terms (this, for instance, was demonstrated in [10] in the context of
dead time effect).

In recent years, there is a growing interest in understanding the noise phenomenon in
critical reactors in full working power (see, for instance [11–13] and the references there
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within), due to observations that aging reactors seem to admit a growing noise term (this
growth is not associated with the instability mentioned earlier, but rather with mechanical
aging of the facility). Thus, a stable and well-posed mathematical formalism might prove
very beneficial.

The outline of the present study is to show, using classic theory of SDE, that indeed once
a power feedback is inserted into the equations, regardless of the strength of the feedback,
the solution is stabilized, and has a bounded variance.

The paper is arranged as follows: In the next section, we provide the reader with the
necessary mathematical and physical background of the problem, and further discuss (through
numeric simulations) the motivation of the study. In Sect. 3, we prove the main theorem of
the study, and in Sect. 4 we conclude.

2 Preliminaries

2.1 Stochastic differential equations

Dynamic evolution that involves randomness, viewed at diffusion scale, gives rise to SDE in a
large variety of settings. This occurs in application fields such as population genetics, queuing
networks, finance, communication systems, and theoretical physics. When the fluctuations of
the dynamics are diffusive, working with SDE often simplifies their description considerably
while keeping the essence. The method by which evolution dynamics are approximated by
SDE is referred to in the literature as diffusion approximation. Diffusion approximations have
been successfully applied in various application fields in all the areas alluded to above.

The two most basic processes underlying the neutron population dynamics are the Poisson
process that provides a natural model for the particle injection, absorption and detection, and
branching processes, that model fission. Both processes lie in the classical realm of probability
theory, and specifically, their scaling limits, including law of large numbers (LLN) and CLT,
are well understood. It seems that [14] was first to provide rigorous derivation of LLN and CLT
results for the total progeny of sub-critical branching processes with immigration. For nearly
critical branching processes, the limiting behavior is given by continuous state branching
process with immigration when the initial condition is getting large, a direction that started
from [15]. The state of the art is described in the recent book [16] (see e.g., Theorem 3.43
there). In this work, we are interested in the formulation and study of SDE that arise as
diffusion approximations of nuclear dynamics.

An SDE is an equation of the form

dXt = b(t, Xt )dt + σ(t, Xt )dWt , X0 = x, (2.1)

where the unknown is a stochastic process X , that has continuous sample paths taking values
in R

d , for some positive integer d; b and σ are given coefficients; and W is a d-dimensional
Brownian motion (BM). We will refer to b as the drift of the equation, and σ will be referred
to as the noise amplitude or the noise term. A process X is regarded a solution if it satisfies, for
every t , Xt = x + ∫ t

0 b(Xs)ds + ∫ t
0 σ(Xs)dWs , where the last term in this integral equation

is an Ito integral. The special case where σ = 0 corresponds to an ordinary differential
equation.

Questions of existence and uniqueness of solutions to SDE such as (2.1), their Markov
structure, properties of the solutions, as well as solution methods have been of great interest
and enjoyed a remarkable success ever since the 1960’s, although the pioneering work goes
back to Ito [17] and Gihman [18]. The rich literature includes qualitative theory such as
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boundedness and stability of solutions, solution methods, representation of solutions, most
notably via the Girsanov transformation, the study of fine properties of solutions, as well as
the description of time evolution and steady-state distribution by means of Kolmogorov’s
forward and backward equations; a small sample of books addressing the subject is [19–23].

Perhaps the most basic tool in analysis of SDE’d is Ito’s formula, stating that:

XtYt =
∫ t

0
XdYt +

∫ t

0
YdXt +

∫ t

0
dXtdYt (2.2)

where in the last we may use the “multiplication table” of the Ito calculus, according to which
if dWt , dW̃t are two independent BM increments, then (dt)2 = 0, dtdWt = 0, dtdW̃t = 0,
dWtdW̃t = 0, while (dWt )

2 = (dW̃t )
2 = dt (see Theorems 4.1.2 and 4.2.1, especially

equation (4.1.8), in the book [20]).

2.2 The point reactor equation

The most general description of the power in a nuclear reactor is given by the well-known
Boltzmann equation, which is an integro-differential equation, governing the dynamics of
the energetic and spatial distribution of the neutron flux through time. Due to its complexity,
it is often not practical to solve the Boltzmann equation in flux transients, we assume that
the flux has a shape function that does not vary in time [24] and the dynamics through time
are analyzed in much simpler setting, referred to as the point reactor kinetics (PRK). This
allows us to consider the following ODE for the dynamics:

⎧
⎨

⎩

dP
dt = ρ(t)−β

�
P + λC + S(t)

dC
dt = β

�
P − λC

(2.3)

Here P is the power, C is the power generated by neutrons from the decay of the delayed
neutron precursor (which is clearly proportional to the precursor concentration), S is the
external source amplitude, ρ is the reactivity, � is the generation time, λ is the decay constant
of the delayed neutrons and β the reactivity fraction of the delayed neutrons. The PRK is a
fundamental tool in reactor kinetics, as it correlates between two very different time scales:
the power multiplication rate ρ(t)−β

�
and the delayed neutron decay rate λ. In steady-state

analysis the different time scale have a small effect, but in modeling power transients, it is
crucial. The equation was formulated to provide a theoretical basis for transient measurements
such as rod drop experiments [24,25], but applications of the PRK equation can be found
in control and feedback analysis [26], reactivity measurements through the transfer function
[27,28] and solution techniques for arbitrary reactivity functions [29,30].

In a critical setting, both ρ = S = 0, and the solution converges (exponentially fast)
to a steady state. Equation (2.3) assumes that the reactivity may be a function of time, but
in real physical systems, the reactivity is a function of the power: the macroscopic cross
sections of both the fuel and the moderator are strongly effected by core temperature, which
is in an obvious correspondence with the power and the neutron flux. This feedback is
usually modeled via thermal feedback, which adds two dimensions to the state space: the
fuel temperature and the moderator temperature (see [26] and the references there within). To
obtain a more tractable system from a mathematical view point, we consider a direct power
feedback of the form:
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⎧
⎪⎪⎨

⎪⎪⎩

dP
dt = δρ(t)−β

�
P + λC

dC
dt = β

�
P − λC

δρ(t) = −ε2 (P(t) − P0)

(2.4)

or:
⎧
⎨

⎩

dP
dt = −β

�
P + λC − ε2

�
(P(t) − P0) P

dC
dt = β

�
P − λC

(2.5)

(in both, P0 is the working power of the reactor).
Traditionally, the point reactor model has been used to analyze the power in a system out

of the steady state. Such transient calculations include rod drops, reactivity oscillations and
accident analysis. In the past decade, starting in the work of Hayes and Allen [5], the PRK is
modulated into a stochastic differential equation (SDE), by adding a Brownian motion (BM)
increment, resulting with a system of the form [5]:

{
dP = ρ(t)−β

�
Pdt + λCdt + S + σ1,1dW (1) + σ1,2dW (2)

dC = β
�
Pdt − λCdt + σ2,1dW (1) + σ2,2dW (2)

(2.6)

where dW (1), dW (2) are two independent BM increments, and σi, j i, j = 1, 2 are the
amplitudes of the BM increments. In most applications, it is assumed the both and σi, j i, j =
1, 2 are constant [5,6]. This is often due to a first-order approximation, and in their true nature,
σi, j i, j = 1, 2 may be functions of P and C [5,6]. To allow a general as possible theory,
we will only assume that they are bounded.

Looking at (2.6) in a critical setting, meaning S = ρ = 0, we can easily observe the upper
mentioned instability: simply by summing both equations, we have that:

d(P + C) = (σ1,1 + σ2,1)dW
(1) + (σ1,2 + σ2,2)dW

(2) (2.7)

which means that P +C have properties of a BM: while the mean value is fixed, the variance
grows linearly in time. It should be clear that this instability is not a property of the modeling
scheme, and the exact same phenomenon is observed when using the more classic PGF
formalism [4]. So, is this instability a true reflection of the nature of things? clearly not, and
for two reasons. First, from a pragmatic point of view, random shutdowns or meltdowns are
not observed. Second, a critical system is always subjected to feedback response. Either an
engineering feedback, through the regulation system, or inherent physical feedback, such
as temperature feedback (it is worth mentioning that according to all licensing protocols,
any reactivity feedback must be negative). As mentioned earlier, it has been suggested in
[2] that the feedback mechanism is responsible for the stability, but this was never validated.
Motivated by these observations, the present study addresses the following problem: consider
an SDE of the form:

{
dP = −β

�
Pdt + λCdt − ε2

�
(P(t) − P0) Pdt + σ1,1dW (1) + σ1,2dW (2)

dC = β
�
Pdt − λCdt + σ2,1dW (1) + σ2,2dW (2)

(2.8)

It is a clear observation that for the mean field equation, obtained by taking σi, j = 0 i, j =
1, 2, the solution is stable (as is (2.3) in critical conditions). Is the variance of the solution to
Eq. (2.8) bounded uniformly for all values of t?
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Fig. 1 Sample mean

2.3 On the stochastic instability

In the present section, we discuss a very basic question regarding the above-mentioned
stability issue: First, what does “instability” mean, and second what is the motivation for
proving the stability of a feedback system. For the first question, we will address the issue
through some numeric simulation. A computer-based simulation is used to sample paths of the
solutions to Eqs. (2.6) and (2.8). The parameters used were typical to a Three Mile Island type
reactor, taken from [26]. Simulations were done using an For Euler–Maruyama [31] numeric
scheme. For each equation, the solution was sampled for 20 s, and 1000 paths (histories) were
sampled. Figure 1 shows the sample mean for both equations. For both equations, we see
a very similar mean field solution: the mean value is very close to the steady-state solution
P0. It should be mentioned that the properties of the steady state are different: Eq. (2.8)
has exactly two steady-state solutions: at P = 0 and P = P0. Equation (2.6), on the other
hand, has infinitely many steady-state solution (the entire kernel of the state matrix), and
the asymptotic solution is determined by the initial conditions. In this simulation, the initial
conditions were chose such that both equations have the exact same asymptotic solution. As
we can see, on the right-hand side there is a certain deviation between the two simulations,
but the results are very similar (the fact that the two sample means also have similar trends is
not accidental: to avoid any statistical artifacts, we have used the exact same sampled values
for dW (1), dW (2) in simulating the paths for both equations).

However, looking at the sample variance, as shown in Fig. 2, we see a totally different
behavior: while the variance of the system without feedback shows a variance increasing
linearly in time, the standard deviation (on the power) in the system with feedback is bounded
at about 2%. Figures 3 and 4 present randomly chosen 150 trajectories for the system with and
without feedback. Again, we see a similar situation: both simulations show the same mean
value, equal to the steady state, but in the system with feedback, the feedback “restrains” the

123



Eur. Phys. J. Plus (2020) 135:208 Page 7 of 14 208

Fig. 2 Sample variance

trajectories from deviating from the steady state, and thus dramatically reduces the spread
of the trajectories around the steady state (notice that the two figures have a very different
Y-axis scale).

From a strict mathematical point of view, the purpose of the study is very simple: to prove
that the situation observed in the simulations is the general case: for any values of β,�, P0

and ε, and regardless of noise amplitudes σ1 and σ2, the solution to the SDE if (2.8) has a
bounded variance.

But the results are more than a mathematical statement and carry practical significance.
The importance of the feedback to the analysis and optimization of critical cores has been
well recognized (see, for instance [26] and the references there within). Yet, it is clear that
to obtain any practical results, the system must be linearized which is commonly done by
taking the approximation

ε2P(P − P0) ≈ ε2P0(P − P0) (2.9)

The justification for the linear approximation in (2.9) is that if (P − P0)<<P0, then the
difference between the left-hand side and the right-hand side is proportional to (P − P0)

2,

and once the equations are normalized to describe the relative power P
P0

, the term (P−P0)2

P2
0

becomes a second-order term and can be neglected. However, this can only be possible if
the variance of P is bounded, otherwise we expect that as time increases, (P − P0) will be
scalable with P0, and the linear approximation would collapse. Therefore, from a practical
point of view, the outline of the study is to “close the gap” allowing us to consider the
linear approximation, which would lead to a more complete analysis of the feedback effect
in stochastic models.
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Fig. 3 Sampled trajectories with feedback

2.4 On the positivity of solutions to SDE’s

Although SDE’s have been recognized as a powerful tool for analyzing stochastic dynamics,
there is often a repeating issue, causing a constant debate: what happens if and when the
solution becomes negative, while the physical properties of the solution demands that it stays
non-negative?

Before discussing the issue, we mention that this question is certainly not unique to
SDE’s. Typically, to construct an SDE, we must approximate the noise term using a central
limit theorem. Doing so, we often take the chance that the random variable will become
negative; this is true for both the distribution of neutrons, and the shoe-size in central America,
and it is a “risk” we always take when using any central limit theorem. Still, using central
limit approximations is perhaps one of the most widely used methodologies in all possible
disciplines. The reason is simple: once the standard deviation is sufficiently smaller than the
mean, the theoretical “threat” of a negative value will never be realized: if we understand the
term “probability” correct, then nothing above 6 standard deviations will ever be manifested.

On the other hand, when the analysis itself demand that the solution is non-negative,
such a consideration is no longer acceptable, and we must either prove that the solution is
always positive, or “force” the solution to be positive by restrictions or manipulations on
the noise term. The problem of determining if an equation has only positive paths is a very
well-studied problem [22,32], and although (to the best of out knowledge) the equation at
hand is not of any form known to be positive, this is not a unique situation, and conditions
are often “forced” on the equation to assure a positive solution. In [33], conditions are forced
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Fig. 4 Sampled trajectories without feedback

on the noise coefficient to assure a positive solution. In [34], the so-called fully implicit
stochastic-α (FIS-α) method is applied, where we discretize the time interval, and halt the
dynamics if at least one of its states parameters becomes zero. A more general approach is
the so-called Skorokhod problem [35], where a reflection term (around 0) is added to the
equation, and the list goes on.

In the present study, we suggest a simple modification of the problem, some what similar
to the approach in [34] (although we do not discretize the equation): to assure both positivity
and the existence of a (unique) solution, we will artificially nullify the noise amplitudes
σ1, σ2 in a continuous manner in an infinitesimally small domain around the P and C axis.
Formally, this is done by two manipulation on σ1 and σ2 : first we choose positive value ε1

and nullify σ1 and σ2 on the domain Dε1 = {(P,C)|P < ε1 or C < ε1} . Then, we choose
a second positive value ε2, and continuously connect (using a monotonic function) the values
of σ1, σ2 to 0 in the domain Dε1,ε2 = {(P,C)|ε1 ≤ P ≤ ε2 or ε1 ≤ C ≤ ε2}. Since
now the coefficients of the SDE are continuous, a unique solution exists. Since in an open
domain Dε1 surrounding the P and C axis the stochastic terms are nullified, in that domain
the system can be analyzed as the simple ODE (2.5), and through basic consideration, it can
be shown that the (2.5) cannot obtain negative values of P and C .

However, we must consider the question: how do these modifications of the noise term
affect the applicability of our results and the credibility of the physical model? To the best
of our understanding, they will not effect them at all, for two main reasons.

First, from a practical point of view, our interest is in systems that in practice, the probability
for a random shutdown (or meltdown) is not feasible (assuming the working power is not
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arbitrarily small). since both ε1 and ε2 are arbitrarily small, for the modification to have any
effect on the system trajectories, either P or C must be arbitrarily close to 0 (which means
that they must actually reach 0). If the standard deviation is bounded and sufficiently small,
although this is clearly a theoretical risk (a risk that, as we have mentioned, not unique to the
present model), from a practical point of view this risk will never be realized in experiment.
To explain this point, we return to the numeric simulations shown in Sect. 2.3. In the numeric
simulation, we have used fixed values for both σ1, σ2. If we would repeat the simulation, but
now nullifying the noise term once P or C are sufficiently small-for a pre-determined criteria
of “sufficiently small” which is not met—then the simulation results would be exactly the
same. Now, since the sampled standard deviation on the power is about 2%, to reach any
value less then 1MW would require about 50 standard deviations!! Thus, the fact that have
nullified the noise term will never effect the simulation.

Second, the fact the noise term is nullified can be motivated physically. The neutron
population, and hence the power, is a discrete random variable, and the assumption that the
noise term is “shut down” once the power is reduced under a certain threshold is valid for all
practical purposes.

3 The stochastic stability of the SDE with state feedback

The present section forms, from a theoretical point of view, the main contribution of this
study. We consider a system of the form (2.8), where σi, j are bounded function, following
the conditions described in Sect. 2.4. First, through basic algebraic manipulations, we may
re-write Eq. (2.8) in a matricidal form as

dX = AXdt − ε2
(

(P − P0)
2

0

)

+ ε2
(
P0

0

)

+ 
dW (3.1)

where

X =
(
P
C

)

, W =
(
W (1)

W (2)

)

A =
(

−
(

β
�

+ ε2P0

)
λ

β
�

− λ

)

,

(
σ1,1 σ1,2

σ2,1 σ2,2

)

If we denote

q =

√(
β
�

+ ε2P0 − λ
)2 + 4λ

β
�

−
(

β
�

+ ε2P0 − λ
)

2λ

γ = 1

2

⎛

⎝
(

β

�
+ ε2P0 − λ

)

−
√(

β

�
+ ε2P0 − λ

)2

− 4λ
β

�

⎞

⎠ (3.2)

through direct computation we have that
(
q 1

)
A = −γ

(
q 1

)
(in other word, v = (

q 1
)

is a
left eigen vector of A, associated with the eigen value −γ ).

Since β,�, λ and P0 are all positive, it is easy to see that both q and γ are positive as
well. Defining the auxiliary variable y = v × X = qP(t) + C(t), y(t) satisfies the SDE

dy = −γ ydt + qε2P0dt − qε2(P − P0)
2dt + (qσ1,1 + σ2,2)dW

(1)

+(qσ1,2 + σ2,2)dW
(2) (3.3)
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[with q, γ as defined in (3.2)] Since dW (1) and dW (1) are independent, any combination of
the two is once again a BM, and we may write :

dy = −γ ydt + qε2P0dt − qε2(P − P0)
2dt + σtotdW

(tot) (3.4)

where σtot = √
(qσ1,1 + σ2,2)2 + (qσ1,2 + σ2,2)2.

in a trivial manner, we have:

E [y] = qE [P] + E [C] , E
[
y2] = q2E

[
P2] + 2qE [P × C] + E

[
C2]

Since both P andC are positive, if E [y] and E
[
y2

]
are bounded, then E [P] , E

[
P2

]
, E [C] ,

E
[
C2

]
are all bounded as well. Thus, our strategy is to prove that E [y] and E

[
y2

]
are

bounded.
In the coming analysis, we make use the following observation: if f (t) satisfies the

inequality

f ′(t) ≤ a f (t) + b

then f (t) ≤ g(t), where g is the solution to the equation

g′(t) = ag(t) + b

with the initial condition g(0) = f (0).
If a and b are constant, g(t) is explicitly given by g(t) = (

1 − eat
) −b

a , and if in addition
a ≤ 0, b ≥ 0, then we have that

f (t) ≤ −b

a
(3.5)

Upon integration and averaging of (3.4), we have:

E [y] = −γ

∫ t

0
E [y] − qε2

∫ t

0
E

[
(P − P0)

2] dt + qε2P0t

≤ −γ

∫ t

0
E [y] + qε2P0t (3.6)

(The noise term is nullified, since the average value of integration with respect to a BM
increment is always 0). By the above-mentioned inequality, we have that E [y] is bounded,
and that:

E [y] ≤ qε2P0

γ
(3.7)

Using the Ito formula (2.2) on y2, taking into account the expression from (3.4) for dy gives:

dy2 = 2ydy + (dy)2 = 2y(−γ ydt + qε2P0dt − qε2(P − P0)
2dt + σtotdW

(tot)) + σ 2
totdt

(here we have used the fact that dt2 = dWdt = 0). Upon integration and averaging we have:

E
[
y2] = −2γ

∫ t

0
E

[
y2] dτ + 2qε2P0

∫ t

0
E [y] dτ

− 2qε2
∫ t

0
E

[
y(P − P0)

2] dτ +
∫ t

0
σ 2

totdτ (3.8)

Since we assume σ 2
tot bounded, say by Mσ , we have that

∫ t

0
σ 2

totdτ ≤ Mσ t
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(notice that in the last inequality, we have dropped the dependence of the bound on ε1, ε2).

Also, since y is positive and E [y] is bounded by qε2P0
γ

, we have that:

dE
[
y2

]

dt
≤ −2γ E

[
y2] + 2qε2P0

qε2P0

γ
+ Mσ

Using inequality (3.5) once again, we have:

E
[
y2] ≤ 2qε2P0

qε2P0
γ

+ Mσ

2γ
(3.9)

Finally, since both E
[
y2

]
and E [y] are bounded, then Var [y] = E

[
y2

]−E [y]2 is bounded
as well, which completes the proof.

The proof is constructive, and not only proves that the variance is bounded, but also
provides an upper bound:

Var [y] ≤ E
[
y2] ≤ 2qε2P0

qε2P0
γ

+ Mσ

2γ

where q, γ are defined in (3.2). This bound is clearly not a tight bound, since we have totally
neglected the reduction in the term E2 [y].

We conclude this section with two remarks: First, it is of utmost importance to notice
that the bound obtained is not depending on the terms ε1, ε2 (otherwise, since the two are
arbitrary, the results would be meaningless). Second, the functional form of σi, j was not
discussed, and the only condition is that it is bounded. In fact, the true condition used is that
σtot = √

(qσ1,1 + σ2,2)2 + (qσ1,2 + σ2,2)2 is bounded.

4 Concluding remarks

In the study, we have proven the stochastic stability of a nonlinear SDE with negative feed-
back, arising from the reactor point kinetics equations with a BM increment noise term. This
equation can be interpreted as a diffusion scale approximation of the master equation (notice,
while the master equation is commonly given in terms of PGF, the SDE is given directly in
terms of the power). In the study, we did assume any specific functional form of the noise term,
and only assumed it to be bounded. To prevent the paths of the governing stochastic process
to obtain negative values (which is clearly nonphysical), we have nullified the noise term in
an arbitrarily small domain surrounding the P and C axis. It is worth stating that there is a
vast literature regarding conditions on the functional form of σu, j that will inherently assure
the positivity of the paths, and it is very possible that in future models, which will correspond
to specific structures of the noise amplitude, the suggested construction will be redundant.
The proof presented is constructive, and a bound (in terms of the system parameters) was
presented, but we do not consider this as a tight bound.

The true importance of the study is not only in the physical interpretation of the results,
but in the fact that it gives a justification (assuming that the measured variance is sufficiently
small) to use a linear approximation of the feedback system. This will lead to a better under-
standing of the noise phenomenon in critical cores (including feedback effects)—a topic that
is not understood and did not enjoy a full analytic treatment.
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