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Abstract In this paper, nonlinear differential equation for a longitudinal fin (LF) heat trans-
fer with thermal conductivity and heat generation that depends on temperature is solved
numerically by employing Runge–Kutta technique of fourth-order (RK4) featuring shoot-
ing technique and analytically via a new modified analytical technique called Duan–Rach
method. The physical model of the heat transfer was utilized to examine the influences of
the thermogeometric parameters, heat transfer rate and variable thermal conductivity on the
temperature profile and efficiency of LF. The obtained outcomes show that the temperature
profile of fin, heat transfer and the efficiency of the fin are considerably impacted by the fin
factor of thermogeometric. The analytical outcomes by a new efficient algorithm are com-
pared with the numerical computations of the RK4 featuring shooting techniques and various
available literature outcomes to achieve the precision of the proposed technique. Obtained
results show obviously the fidelity of the suggested approach.

Abbreviations

DE’s Differential equations
LF Longitudinal fin
RK4 Runge–Kutta method of fourth order
DRA Duan–Rach method
ADM Adomian decomposition method
VIM Variation iteration method
HAM Homotopy analysis method
OLM Optimal linearization method
MDM Modified decomposition method
DTM Differential transformation method
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FVM Finite volume method
CFD Computation fluids dynamics

1 Introduction

Fins are utilized to reinforce the transfer of heat among the basic surface and its convec-
tive, radiating or both in the surrounding medium. There have been considerable researches
on the variable thermal factors conducted with fins working in transaction situations. The
energy equilibrium has been developed for a differential fin component by Arslanturk [1].
The earned outcomes of nonlinear DE’s were dissolved by Adomian decomposition (ADM)
method to assess the heat diffusion inside the fin. Coskun and Atay [2] utilized the varia-
tion iteration method (VIM) to investigate the convective proficiency of straight fins with
thermal conductivity depending on temperature and made a comparison with ADM. From
the findings of the finite element technique, he finished that VIM is a beneficial approach
for the formulation and solution system compared to ADM, and the results earned by both
techniques give rise to good results in the governing equation with sensible nonlinearity.
Nevertheless, a high-order expression may be required with a highly nonlinear formulation.
In order to resolve the same physical problem, Kulkarni and Joglekar [3] suggested a digital
technology depended on minimization residue. The resulting nearby exact solution is uti-
lized to measure the ailerons efficiency. If the thermal conductivity is unchanged, analytical
methods validated the results. By contrast, when it is variable, they are supported by those of
published literature. The suggested numerical method is reinforced by an excellent accord
in every status. HAM (homotopy analysis method) to notice the effectiveness of convective
rectal fins with variable thermal conductivity with temperature was investigated by Domairry
and Fazeli [4]. The outcomes of HAM are examined with those of the precise solution and
ADM which was studied by Arslanturk [1]. In dehumidifying environments, ADM was deter-
mined to assess the quality of a complete humid fin assembly [5]. To measure the leading
force for the transfer of mass, a cubic equation among the moisture ratio of the saturated air
and its temperature was adopted. The controlling equation of a fin structure is nonlinear with
this relation. The execution parameters were provided as a function of various determination
variables, namely efficiency of surface, and increment factor.

The inverse technique was analyzed by Das [6] for guessing the convective/conductive
factor and the parameter of varying conductivity. The temperature distributions were deter-
mined from a forward/direct problem solution from a technique of decomposition relying
on the Adomian framework. Aziz and Bouaziz [7] utilized the least-squares technique at the
problem introduced by Aziz and Bouaziz [8], to achieve simple and precise terms for the
thermal efficiency of a convective fin with a variable thermal conductivity; further, internal
heat generation depends on temperature. The technique can be seen as a creative improve-
ment in the optimal linearization (OLM) method. In this respect, many researchers have
implemented numerical methods to resolve the nonlinear fin system. Certain of the related
researches involving Duan et al. [9] addressed a temperature profile of a convective sequential
fin with thermal conductivity depending on temperature utilizing MDM (modified decom-
position method) as a new technique. Also, he expressed the efficiency of the fin with two
parameters of a fin. These results make the parameter study of the heat transfer system
significantly easier. In contrast, the undetermined ADM coefficients model has also been
tested, but a temperature profile with any of the factors β and ψ has been found difficult to
achieve. Utilizing an analytical technique named DTM (differential transformation method),
an accurate and simple solution was provided by Poozesh et al. [10] for distribution of the
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convective–radiative oblong fins with varying thermal conductivities with temperature. A
brief introduction of the definition of DTM was made, and the solutions of extremely non-
linear equations were then used. To verify the accuracy of the suggested technique, the data
earned from DTM were compared to the findings of the numerical investigation.

The heat transfer rate in a fin with a longitudinal oblong shape with variable thermal
conductivity with temperature and inner heat generation was conducted by Gangi et al. [11],
utilizing FDM (finite difference method). Using 3D CFD (computation fluids dynamics)
analysis and MATLAB DE’s solver, heat transfer features of a fin with variable thermal
conductivity adopted on temperature were determined by Sevilgen et al. [12]. The calculations
were carried out in two diverse cases with constant and linear functions for the property of
thermal conductivity. The outcomes of the MATLAB and CFD were in excellent accord with
the literature evidence. The nonlinear problem of fins has receipted substantial interest in last
years for its practical implementations in heat exchangers, power breeders, semiconductors,
solar thermal collectors and electronic devices [13]. With the support of MATLAB using
fsolve, the constructed system of the nonlinear model resulting from discretization utilizing
FDM was solved. The numerical outcomes were validated with a linear problem accurate
solution. Fins are an effective solution for developing heat transfer among a hot surface to
the surrounding medium [14].

Work on variable thermal conductivity and coefficient of heat transfer has been ongoing
in the previous researches over the past few decades. The high nonlinear DE’s solutions were
also constructed using various techniques [15–18]. The problem of the effect on the flow of
MHD nanofluid through a nonlinear extending plate with a heat generation and chemically
reactive species was discussed by Eid [19]. Unsteady flow of nanofluid past an extending
wall in a porous material in the region of stagnation point was probed in [20] with chemical
reaction. However, significant studies also involve thermal convection kinds of research with
different approaches past various shapes [21–38]. Dogonchi and Ganji [39] studied the DRA
method to solve the flow equations of a power-law non-Newtonian liquid in an axisymmetric
duct in a porous material. They provided a benchmarking with the numerical computations
to check the precision. The time-dependent compressing flow of magnetic nanofluid among
the endless parallel surfaces with radiation influence is examined by Dogonchi et al. [40]
utilizing DRA. The DRA was utilized to analyze the heat transfer and a magnetohydrody-
namic mixture nanofluid flow in a revolving system among two plates by Chamkha et al.
[41]. Liu et al. [42] suggested a triangular longitudinal fin to improve the shell and tube
solidification quality of the LHTES system. In addition, Kurşun [43] based his research on
the thermal quality of the parabola receptor tube for the internal longitudinal fin with the
straight and sinusoidal side layer. Gireesha et al. [44] presented Darcy’s hybrid nanofluid
flow model, with the simultaneous effect of thermal radiation and natural convection, on
porous longitudinal fin at a constant velocity. Sobamowo [45] compared an exact solution
using Laplace transform with Galerkin finite element method of transient thermal behavior
of convective-radiative cooling fin under convective conditions. Onyejekwe [46] probed a
radial fin numerical solution using the boundary integral technique combined with domain
discretification, with temperature-based thermal conductivity. Sobamowo et al. [47] imple-
mented FVM with thermal dependent characteristics and internal heat generation to solve
the problem of heat transfer in a longitudinal rectangular fin.

The originality of this research is the proposed new analytical algorithm of computation
named Duan–Rach method (DRA). Thereafter, the proposed algorithm is tested by solving
the nonlinear problem of LF heat transfer with thermal conductivity and heat generation
depending on temperature. To accomplish the precision of the suggested technique, the
findings were compared with the results earned by the numerical solution via RK4 featuring
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Fig. 1 Flow model of LF

the shooting technique and other methods reported in the literature such as FVM, FDM and
DTM.

2 Mathematical description

The thermal model development is focused on the study of the fin energy equilibrium. The
analysis is done with some simplifying assumptions in mind [14]. The subsequent consider-
ations have been made in model design.

1. The heat flux in the fin remains constant with time and its temperature.
2. The medium temperature around the fin is consolidated.
3. Nothing is there of resisting to touch where the base of fin meets the primary surface.
4. The fin’s base temperature is unified.
5. The fin thicker is little compared with its length and width so that temperature differences

via the thicker of the fin and the transfer of heat from the fin edges are tiny compared to
the heat that leaves its sidelong surface.

According to previous considerations, an upright fin of thermal conductivity k(T ) depends
on temperature, variable internal heat source with temperature per unit volume Q(T ), thick-
ness δ, length L and downside, and upside surfaces are subjected to environmentally con-
vective at ambient temperature T∞ alternatively and fixed coefficient of heat transfer (h) as
displayed in Fig. 1.

The x dimension refers to altitude coordinate which has its origin at the base of the fin
and a positive direction from a base of the fin to a fin apex and thence expressed as next.

The heat conduction rate into the volume at x� heat conduction rate from the volume at
x

+ dx + heat convection rate from the volume

+ internal generation rate in the volume (1)
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The following equation mathematically expresses the thermal energy equilibrium:

Qx � Qx+dx + Qconv. + Qint., (2)

namely,

Qx − Qx+dx � Qconv. + Qint., (3)

Qx −
(
Qx +

δQ

δx
dx

)
� h P(T − T∞)dx + Qint.(T )dx, (4)

when dx → 0, Eq. (4) is reduced to Eq. (5)

dQ

dx
� −h P(T − T∞) − Qint.(T ), (5)

where P is the fin perimeter and T∞ is temperature of ambient. By using heat conduction
equation from Fourier’s law:

Q � −k(T )A
dT

dx
, (6)

here A is the fin sector area. From Eq. (6) into Eq. (5) we obtain:

d

dx

(
k(T )A

dT

dx

)
� hP(T − T∞) + Qint.(T ) (7)

For more simplification, Eq. (7) yields a governing DE of the fin taken the form:

d

dx

(
k(T )

dT

dx

)
− h

A
P(T − T∞) +

Qint(T )

A
� 0, (8)

so the corresponding boundary conditions are:

x � 0, T � T0,

x � L ,
dT

dx
� 0, (9)

where T0 is the fin base temperature. The thermal conductivity and heat transfer rate are
dependent on the temperature at numerous industrial implementations. Furthermore, the
thermal characteristics based on the temperature and internal heat source are taken the form:

k(T ) � k∞[1 + λ(T − T∞)], (10)

Qint(T ) � Q∞[1 + ψ(T − T∞)], (11)

where the parameter λ is the thermal conductivity and ψ is internal heat generation. By using
Eqs. (10) and (11) into Eq. (8), to obtain

d

dx

{
k∞[1 + λ(T − T∞)]

dT

dx

}
− hP

A
(T − T∞) +

Q∞
A

[1 + ψ(T − T∞)] � 0, (12)

by utilizing the next dimensionless transformations in Eq. (12) [14]:

X � x

L
, θ � T − T∞

Tb − T∞
, M2 � hPL2

Ak∞
,

Q � Q∞
hP(Tb − T∞)

, γ � ψ(Tb − T∞), β � λ(Tb − T∞), (13)

where X is the nondimensional length, Tb is the fin base temperature, M is the nondimen-
sional factor of the thermogeometric fin, Q is nondimensional heat transfer, β is a nonlinear
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parameter of thermal conductivity, and γ is nondimensional heat generation parameter. We
obtain the nondimensional DE (Eq. 14) with the boundary conditions as follows:

(1 + βθ)
d2θ

dX2 + β

(
dθ

dX

)2

− M2θ + M2Q(1 + γ θ) � 0, (14)

with the related boundary conditions:

X � 0, θ � 1,

X � 1,
dθ

dX
� 0. (15)

3 Characterization of the Duan–Rach (DRA) technique

Given the subsequent general nonlinear DE:

L(u) � N (u) + f (t) (16)

L � dn
dxn is the third-order operator of derivative, N is the nonlinear operator, and f is the

input of system.
Related to the set of mixed boundary conditions of Dirichlet and Neumann:

u(η1) � α0,

u′(η1) � α1,

u′(η2) � α2,

η2 �� η1. (17)

By assuming L−1 is the operator of inverse that constitutes a n-fold integrate for the nth
order of the operator of derivative L.

We take the inverse linear operator as:

(18)

where ζ is a described value in the selected interval. Thus, we obtain:

L−1Lu � u(η) − u(η0) − u′(η0)(η − η0) − 1

2
u′′(ζ )

[
(η − η1)

2 − (η0 − η1)
2], (19)

Using the L−1 inverse operator on two sides of (16) results in:

L−1[Nu + f ] � u(η) − u(η0) − u′(η0)(η − η0) − 1

2
u′′(ζ )

[
(η − η1)

2 − (η0 − η1)
2].

(20)

By differentiating Eq. (19), therefore putting η � η2 and resolving u′′(ζ ), one obtains:

u′′(ζ ) � u′(η2) − u′(η1)

η2 − η1
− 1

η2 − η1

∫ η2

η1

∫ η

ζ

[Nu + f ] dηdη. (21)

Substituting from Eq. (21) into Eq. (20) produces:

u(η) � u(η0) + u′(η1)(η − η0) +
1

2

[
(η − η1)

2 − (η0 − η1)
2]u′(η2) − u′(η1)

η2 − η1
+ L−1[Nu + f ]
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− 1

2

(η − η1)
2 − (η0 − η1)

2

η2 − η1

∫ η2

η1

∫ η

ζ

f dηdη

− 1

2

(η − η1)
2 − (η0 − η1)

2

η2 − η1

∫ η2

η1

∫ η

ζ

Nu dηdη (22)

The solution y of Eq. (1) can be built by the components sum determined by the next
nonlinearity infinite series:

u(η) �
∞∑
n�0

un(η) (23)

In addition, the following nonlinear definition is given as:

Nu �
∞∑
n�0

An(y0, y1, . . . , yn), (24)

here Ans are named as the polynomials of Adomian. The recursive equation that determines
the polynomials of Adomian is obtained as follows:

An(y0, y1, . . . , yn) � 1

n!

[
dn

dλn

[
N

( ∞∑
n�0

λi yi

)]]

λ�0

, n � 0, 1, 2, . . . (25)

The examined formula solution can be obtained as a form of infinite series by DRA
recursive technique:

u0 � u(η0) + u′(η1)(η − η0) +
1

2

u′(η2) − u′(η1)

η2 − η1

[
(η − η1)

2 − (η0 − η1)
2] + L−1[ f ]

− 1

2

(η − η1)
2 − (η0 − η1)

2

η2 − η1

∫ η2

η1

∫ η

ζ

f dηdη (26)

Now, we have the final solution:

un+1 � L−1[An] − 1

2

(η − η1)
2 − (η0 − η1)

2

η2 − η1

∫ η2

η1

∫ η

ζ

An dηdη (27)

4 Implementation of the Duan–Rach (DRA) method

In order to implement DRA technique, the linear and inverse operators are given by:

L1 � d2

dη2

L−1
1 �

∫ η

0

∫ η

0
dηdη (28)

DEs of this problem (14) and (15), after applying Eq. (28), become:

L1T (η) � −[
(1 + BT (η))T ′′(η) + BT ′(η) × T ′(η) − M2T (η) − M2Q(1 + γ T (η))

]
,

(29)

where B is the nonlinear term. Operating with L−1
1 on Eq. (20) and after applying boundary

conditions, we obtain:

T (η) � T (0) + T ′(0)η + L−1
1 [Nu + f ], (30)
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where:

Nu � −[
(1 + BT (η))T ′′(η) + BT ′(η) × T ′(η) − M2T (η) − γ T (η)

]
(31a)

f � −[
M2Q

]
(31b)

By putting η � 1 in Eq. (30), we have:

T ′(0) � α −
[[

L−1
1 [Nu + f ]

]
η�1

+ 1

]
, (32)

where α is the parameter of fin shape and

L−1
1 �

∫ 1

0

∫ η

0
dηdη (33)

Substituting Eq. (32) into Eq. (30) yields

T (η) � 1 − η + αη + L−1
1 [Nu + f ] − η

[
L−1

1 [Nu + f ]
]
η�1

(34)

where T0 is given by:

T0 � 1 − η + αη (35)

DRA method describes the solution terms as follows:

T1 � −1

6
(2 + α)M2(1 + γ Q)η +

1

2
M2(1 + γ Q)

(
η2 +

1

3
(−1 + α)η3

)
(36)

T2 � 1

360
M2(1 + γ Q)

(
30

−1 + α
(1 + α)

(
1 + α2)Bη + (8 + 7α)M2(1 + γ Q)η

− 30

(−1 + α)2 B(1 + (−1 + α)η)4

+ M2(1 + γ Q)η3(−10(2 + α) + 15η + 3(−1 + α)η2))
. . .

. . . (37)

Finally, it is possible to express the approximate solution of the studied problem as:

T (η) � T0 + T1 + T2 + · · · + Tn . (38)

Here the efficiency of fin en specified as the ratio between the rates of actual fin heat
transfer and that which would be gained with a fin of constant temperature (the surface
temperature of base) and is written as an integral:

en �
∫ 1

0
T dη.

5 Results and discussion

Heat transfer is a thermal engineering discipline which deals with thermal power generation,
conversion and consumption among physical systems. You will experience any of the heat
transfer procedure at every moment of your everyday life. Heat transfer is a wide scientific
field, and therefore, numerous studies in various fields of heat transfer research are carried
out every year. Between the common issues that are widely investigated, heat transfer from
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Fig. 2 Nondimensional temperature profile in the fin with M when B � 0.1, Q � 0.3 and γ � 0.2

expanded fin holds out with its broad idea and quickly evolving implementations. The fins
have been used extensively, particularly in thermal technology applications where cooling
is important, to improve the rate of heat transfer from a hot surface. In addition to classic
implementations like internal burning engines, heat exchangers and superchargers, fins also
demonstrate efficiency in heat-exclusion schemes in cooling of electronic constituents and
space vehicles.

For the various thermogeometric of a wall, thermal conductivity parameter and convective
heat transfer parameter as depicted in Figs. 2, 3, 4 and 5, the nondimensional temperature
profile decreases monotonously along the length of fin. The more heat the fin is connected,
and the more thermal energy is transferred to the surrounding medium efficiently for high
values in the factor of thermogeometric M . The fin heat often flows along with a lower rate
of temperature around the base region in the event of a minimal thermal loss from the fin
point (isolation tip).

Figure 2 demonstrates that the changes in nondimensional temperature with nondimen-
sional length along with the thermogeometric factor influence the straightened fin with an
isolated tip. It is remarked that when the thermogeometric factor rises, the convective heat
transfer (heat transfer rate) through the fin boosts, while the fin temperature becomes steeper
(drops quicker). This leads to the high heat flow rate at the base that is reflected. The heat
transfer ratio of convection to conduction at the fin base (hb/Kb) increases. Therefore, the
temperature through the fin declines, particularly at its tip, namely the end of tip temperature
reduces as M rises. The profile has the highest gradient of temperature at M � 1.0, but the
value derived from the lower thermal conductivity value is much higher than the other M
values in the profiles. This shows that a low thermogeometric parameter value favors thermal
performance or effectiveness since the goal is to reduce the temperature through the length
of fin if the best-enabled perception for the T � Tb is found.
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Fig. 3 Nondimensional temperature profile in the fin with B when M � 0.12, Q � 0.3 and γ � 0.2

Fig. 4 Nondimensional temperature profile in the fin with Q when M � 0.2, B � 1 and γ � 0.2

Figure 3 indicates the variance of the nondimensional temperature in the convective lon-
gitudinal fin with an isolated tip with a nondimensional length. The results of the thermogeo-
metric M and thermal conductivity Q impacts on the nondimensional temperature profile are
described in Fig. 4. It is apparent that from Fig. 4, as the thermogeometric factor improves,
the heat transfer rate also rises through the fin and more heat is transported by conduction.
This would increase the distribution of temperature in the fin, thus boosting the heat transfer.

Figures 4 and 5 show the influences of internal heat generation on the temperature profile.
The fin temperature gradient declines with increasing the internal heat generation factor.
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Fig. 5 Nondimensional temperature profile in the fin with γ when B � 0.82, Q � 1.45 and M � 0.36

Fig. 6 Fin efficiency with M for various B values when Q � 0 and γ � 0.1

This results in the increase in internal heat generation rate; the fin thermal performance
reduces (Fig. 6) as a function of the nonlinear term. Nevertheless, the graphs report that
the nondimensional temperature differences of the fin length rise with the change in the
thermogeometric parameter.

Figure 7 displays the variation in the fin efficiency with the thermal conductivity coeffi-
cient. The performance of the fin increases with the rising thermal conductivity factor. On the
other hand, this efficiency is shown to increase as the thermogeometric parameter decreases.
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Fig. 7 Fin efficiency with B for various M values in the fin when Q � 0.15 and γ � 0.2

Table 1 Comparison between the
analytical DRA, numerical and
available literature data

η TRK4
TDTM [11] T FDM [14] TDRA (the

present study)

0.00 0.9784318 0.9784798 0.9783 0.9784352

0.10 0.9786395 0.9786799 0.9785 0.9786359

0.20 0.9792382 0.9792822 0.9792 0.9792321

0.30 0.9802475 0.9802919 0.9802 0.9802463

0.40 0.9816774 0.9817180 0.9817 0.9816732

0.50 0.9835368 0.9835732 0.9835 0.9835334

0.60 0.9858406 0.9858738 0.9858 0.9858417

0.70 0.9886144 0.9886403 0.9886 0.9886132

0.80 0.9918745 0.9918970 0.9919 0.9918722

0.90 0.9956481 0.9956725 0.9956 0.9956445

1.00 1.0000000 1.0000000 1.0000 1.0000001

The analytical solution by DRA (Duan–Rach method) was validated when compared with
the RK4 technique and with the well-known results in the literature view as outlined in Table 1
and Fig. 8. It can be seen that the DRA method is extremely precise and matches perfectly
with the Runge–Kutta fourth order and other techniques in the above literature such as FVM,
FDM and DTM.

6 Conclusion

In this work, a new modified analytical technique called Duan–Rach method (DRA) was uti-
lized to resolve the nonlinear DE of heat transfer in LF with variable thermal conductivity and
internal heat generation depending on temperature. The actual outcomes were compared with
those previously obtained findings using the numerical Runge–Kutta fourth-order method
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Fig. 8 Comparison between
DRA technique and the results in
[47] for T when
B � 0.5, Q � 0.4 and γ � 0.6

due to verification of the precision of the suggested technique. The analysis of the findings
indicated an outstanding agreement between the analytical technique and the numerical out-
comes. This technique allows us to define a solution for the calculation of undefined factors
without using numerical methods.
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