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Abstract Oncolytic virotherapy (OVT) is a promising treatment for cancer which can replace
or support the traditional treatments like chemotherapy and radiotherapy. Mathematical mod-
els have been considered as a powerful tool to develop oncolytic viral treatments and predict
the possible outcomes. We study a spatial model for OVT with cytotoxic T lymphocyte
immune response and distributed delays. This model is an extended version of the model
studied by Wang et al. (Math Biosci 276:19–27, 2016). We study the basic properties of the
model including the existence, nonnegativity, and boundedness of solutions. We carefully
analyze all equilibrium points and determine the conditions for their existence. We show
the global stability of each one of these points by constructing suitable Lyapunov function-
als. We use the characteristic equations to confirm the corresponding instability conditions.
We carry out some numerical simulations to support the theoretical results and draw some
important conclusions. The results show that the distributed delay can have a large impact on
the efficacy and amount of OVT. When the immune response is present, the concentration
of oncolytic viruses is decreased and the efficiency of treatment is reduced. Changing the
diffusion coefficients does not affect the long-time behavior of solutions.

1 Introduction

Despite the great advances in medicine, finding a crucial cure for cancer that has no side
effects is still under investigation. The traditional cancer treatments like chemotherapy and
radiotherapy may damage healthy cells besides cancer cells. This may cause many side effects
such as hair loss, nausea, fatigue, and mouth sores [1]. Oncolytic virotherapy (OVT) is an
experimental cancer treatment which uses oncolytic viruses to destroy tumor. The oncolytic
viruses can selectively infect and replicate in cancer cells without targeting healthy cells.
When the infected cancer cell is lysed, many oncolytic viruses are released and continue
to infect other tumor cells [2,3]. If the treatment works successfully, it can reduce the size
of tumor and eventually eradicate it [3]. Thus, OVT can be an ideal treatment for some
types of tumor which show resistance to standard treatments [4,5]. A variety of oncolytic
viruses have been tested in clinical trials including vesicular stomatitis virus (VSV), herpes
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simplex virus (HSV), adenovirus, reovirus [6–8], and M1 virus [9]. Nevertheless, talimogene
laherparepvec (T-VEC) is the only oncolytic virus which was approved by the US Food and
Drug Administration (FDA) to treat melanoma. T-VEC is a genetically modified HSV which
means that it does not cause herpes, but it selectively targets tumor cells [10]. Actually, the
approval of T-VEC has increased the motivation to develop oncolytic viruses to treat other
types of cancer like lung cancer, pancreatic cancer, glioblastoma, and prostate cancer [11,12].

Although promising results have been reported by clinical studies, the complete potential
of oncolytic viruses to remove the tumor has not been achieved yet [13,14]. The initiation
of different immune responses against tumor cells during the treatment is one of the major
obstacles in OVT. The immune system may attack and destroy the infected tumor cells
before the release of new oncolytic viruses. Also, macrophages of the innate immune system
can attack oncolytic viruses. These attacks can limit the replication of oncolytic viruses
and decrease the efficacy of OVT [3,6,15]. However, there is an evidence that the success of
oncolytic viral treatment depends on the induction of strong immune responses against tumor
cells [6]. Hence, the immune system is a double-edged sword in OVT, and understanding
its complicated role is an active area of research. Another challenge in OVT is the ability of
oncolytic viruses to spread through the tumor and infect more cells [14]. The current research
efforts aim to resolve the different challenges and design effective oncolytic virotherapies
with maximum safety and minimum cost [10,12]. Thus, these efforts work on enhancing
the tumor selectivity of oncolytic viruses and determining the significant amount of dosage
needed to cure tumor [4,10].

Mathematical modeling has been considered as a powerful tool to develop oncolytic viral
treatments and predict the possible outcomes. Also, it helps to understand the complex virus–
tumor–immune response interactions. Oncolytic modeling uses approaches that are similar
to those used in virus dynamics models (see for example, [16–23]). Oncolytic virotherapy
models have been formulated using different types of differential equations. Many of these
models are based on the use of ordinary differential equations (ODEs). For example, a basic
model for OVT was proposed by Tian [24]. The model consists of three ODEs which reflect the
interactions between uninfected tumor cells, infected tumor cells and free virus population.
Moreover, Komarova and Wodarz [25] performed a mathematical analysis of a general ODE
model to shed light on some conditions needed for the success of OVT. Okamoto et al. [26]
developed a mathematical model in which viruses are allowed to infect normal cells besides
tumor cells. They argued that reducing the specificity of oncolytic viruses can lead to faster
tumor elimination before the presence of an adaptive immune response. Ratajczyk et al.
[27] formulated an ODE model to study the effect of combining virotherapy with TNF-α
inhibitor. TNF-α is a protein produced by macrophages to destroy tumor cells. Ratajczyk and
his colleagues proved that the inhibition of TNF-α can give a chance for oncolytic viruses to
replicate, and thus it increases the effectiveness of OVT. Then, the same model was analyzed
in [3] as an optimal control problem with two controls, one for the amount of OVT and the
other for the amount of TNF-α. Jenner et al. [7] performed a local stability and bifurcation
analysis of a system of three ODEs which capture the interaction between oncolytic viruses,
uninfected and infected tumor cells populations. Malinzi et al. [28] developed a mathematical
model to determine the optimal dosage of chemovirotherapy that is needed to eliminate a
tumor. They showed that, under certain conditions, virotherapy can be used to enhance
chemotherapy in treating cancer patients.

As mentioned above, the spatial spread of oncolytic viruses plays a vital role in the success
of OVT. This has motivated to use partial differential equations (PDEs) to take into account
the spatial variations in the distribution of oncolytic viruses and cells during the treatment
[29]. For example, Tao and Guo [5] investigated a spherical-symmetric oncolytic virotherapy
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PDE model with immune response. They found that the immune response can have a negative
impact on the effectiveness of treatment. Malinzi et al. [1] got analytical traveling wave
solutions of a PDE model that studies the interaction dynamics between oncolytic viruses,
cytotoxic T lymphocytes (CTLs), and tumor cells. Alzahrani et al. [29] introduced a new
multiscale modeling approach based on systems of reaction–diffusion equations both at
macroscale and microscale. This approach addresses the complex interactions between tumor
and oncolytic viruses, where the two scales are connected through a double feedback loop.

It has been shown that time delay is a pivotal element that should be carefully controlled
to guarantee the success of oncolytic virotherapy in experimental and clinical trials [30,31].
This has raised the need to extend ODEs to delay differential equations (DDEs) where the
effect of time delay of some biological processes is included. Many mathematical models
with DDEs have been rigorously analyzed. For instance, Wang et al. [32] determined critical
values for the time delay τ at which Hopf bifurcation occurs in OVT model. Wang et al.
[30] showed by means of DDEs that the time delay associated with the viral lytic cycle and
the number of viruses released from the infected cancer cells are two important factors in
OVT. Ashyani et al. [31] showed that the CTL immune response against infected cancer cells
causes the fail of virotherapy in the second injection except for a short delay interval [0, τ+

0 ).
Kim et al. [33] proved the existence of Hopf bifurcation and formulated an optimal control
problem with two controls for DDE model with CTLs. They studied the effect of a time delay
on the amount of OVT. Wang et al. [8] proposed a model with intracellular delay and CTL
immune response. They suggested many strategies to enhance the effect of oncolytic viruses
based on the results of their model.

Due to the sensitive role of time delay in virus dynamics models, PDEs have been extended
to delay partial differential equations (DPDEs) to account for both spatial diffusion and time
delay effects [34–37]. As an example, Zhao and Tian [14] formulated a delay reaction–
diffusion model for OVT. They highlighted many medical implications of their results which
cannot be obtained from ODE models. Wang et al. [38] determined the optimal dosage needed
for complete tumor eradication in different cases depending on different gene mutations. The
models in [14,38] incorporate discrete time delays. A discrete time delay means that each
individual within a population is subject to the same delay during a certain biological pro-
cess [39]. On the other hand, a distributed time delay assumes that the delay is continuously
distributed by a continuous distribution function. Hence, the distributed time delay is consid-
ered more general and realistic [22,39,40]. In this paper, we deal with PDEs with distributed
delays.

In 2014, Lin et al. [9] identified a naturally occurring alphavirus M1 as a selective oncolytic
virus that targets cancer cells with Zinc-finger antiviral protein (ZAP) deficiency. More
recently, Zhang et al. [41] have found that tumor cells may impair the removal of oncolytic
M1 virus by tumor-associated macrophages. This impairment may enhance the tumor selec-
tivity of M1 virus and improve its efficacy. In [42], Wang et al. formulated an ODE model
to show the effect of M1 virus on the growth of normal cells and tumor cells. Their model
takes the form

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dH(t)
dt = κ − dH(t) − β1H(t)N (t) − β2H(t)Y (t),

dN (t)
dt = α1β1H(t)N (t) − (d + η1)N (t),

dY (t)
dt = α2β2H(t)Y (t) − β3Y (t)V (t) − (d + η2)Y (t),

dV (t)
dt = μ + α3β3Y (t)V (t) − (d + η3)V (t),

(1)
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where H(t), N (t), Y (t) and V (t) denote the concentrations of nutrient, normal cells, tumor
cells, and free M1 virus particles, respectively. The model is considered in the chemostat,
where the normal and tumor cells compete on a limited nutrient source. Therefore, there
is a prey–predator relationship between nutrient and the normal or tumor cells. Also, there
is a competition relationship between the normal cells and tumor cells. In model (1), the
parameter κ represents the recruitment rate of nutrient, and μ represents the M1 virotherapy
dosage. The parameter d is the washout rate constant of nutrient and bacteria. The parameters
η1, η2, and η3 are the natural death rate constants of normal cells, tumor cells, and M1 virus,
respectively. The nutrient is consumed by the normal cells and tumor cells at rates β1HN
and β2HY , respectively. The contribution rates of nutrient to biomass of normal cells and
tumor cells are given by α1β1HN and α2β2HY , respectively. The M1 virus kills tumor cells
at rate β3YV and grows at rate α3β3YV .

To the best of our knowledge, none of the previous works of OVT combine the effects
of distributed delay and CTL immune response in their models. In order to design better
oncolytic treatments, we need to understand the different factors that may affect the efficacy
of these treatments including delays, immune responses, and spatial diffusion. Since M1
has shown high tumor selectivity and efficacy [41], forming a model to study its role might
be quite beneficial to the oncolytic studies. The authors in [42] focused on one equilibrium
point of model (1) corresponding to tumor elimination, and they determined the minimum
effective dosage of M1 required to remove the tumor. They neglected the other equilibrium
points of system (1), the effect of delays, immune responses, and diffusion. Thus, our purpose
in this paper is (i) to extend model (1) to include distributed delay in the dynamics of normal
and tumor cells; (ii) to study the effect of CTLs on the efficiency of OVT in the presence
of delay; (iii) to include the diffusivity of all model’s components; (iv) to study the basic
properties of the extended model; (v) to study the global properties of the model; (vi) to study
the spatiotemporal behavior of solutions; (vii) to discuss the minimum effective dosage of
M1 required to eradicate the tumor in the presence of delay. The effect of innate immune
response is not included in the model due to the impairment effect exerted by tumor cells
as mentioned above. The paper is organized as follows. In Sect. 2, a detailed description of
the model is given. In Sect. 3, the nonnegativity and boundedness of solutions are discussed.
In addition, all possible equilibrium points and their existence conditions are investigated.
In Sect. 4, the global stability and local instability of these equilibrium points are proved. In
Sect. 5, some numerical simulations that verify the theoretical results are provided. In Sect. 6,
the results of our work are highlighted.

2 A delayed reaction–diffusion oncolytic M1 virotherapy model

In this section, we take model (1) to further destination by studying the effect of adaptive
immunity, particularly CTLs, on the efficacy of OVT. We achieve this goal by considering
the following reaction–diffusion model with distributed delays
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂H(x,t)
∂t = DH�H(x, t) + κ − dH(x, t) − β1H(x, t)N (x, t) − β2H(x, t)Y (x, t),

∂N (x,t)
∂t = DN�N (x, t) + α1β1

∞∫

0

g1(ς)e−a1ς H(x, t − ς)N (x, t − ς) dς

−(d + η1)N (x, t),

∂Y (x,t)
∂t = DY�Y (x, t) + α2β2

∞∫

0

g2(ς)e−a2ς H(x, t − ς)Y (x, t − ς) dς

−β3Y (x, t)V (x, t)

−β4Y (x, t)Z(x, t) − (d + η2)Y (x, t),
∂V (x,t)

∂t = DV�V (x, t) + μ + α3β3Y (x, t)V (x, t) − (d + η3)V (x, t),
∂Z(x,t)

∂t = DZ�Z(x, t) + α4β4Y (x, t)Z(x, t) − (d + η4)Z(x, t),
(2)

for t > 0 and x ∈ 
, where Z(x, t) denotes the concentration of CTLs at position x and
time t . All components of the model are assumed to diffuse in a continuous and bounded
domain 
 with a smooth boundary ∂
. The diffusion term of any component ν of the
model is given by Dν�ν(x, t), where Dν is the diffusion coefficient and � is the Laplacian
operator. CTLs kill tumor cells at rate β4Y Z and proliferate at rate α4β4Y Z . We assume
that the normal and tumor cells consume nutrient at time t − ς and benefit from it at time
t , where the delay ς is a random variable taken from a continuous probability distribution
function gi (ς) for i = 1, 2. The factor e−a1ς accounts for the probability of survival of
normal cells during the delay period with death rate a1. The factor e−a2ς accounts for the
probability of survival of tumor cells during the delay period with death rate a2. Thus, the term

α1β1

∞∫

0
g1(ς)e−a1ς H(x, t−ς)N (x, t−ς) dς gives the contribution of nutrient to biomass of

normal cells at time t . Similarly, the term α2β2

∞∫

0
g2(ς)e−a2ς H(x, t−ς)Y (x, t−ς) dς gives

the contribution of nutrient to biomass of tumor cells at time t . The probability distribution
functions g1(ς) and g2(ς) are assumed to satisfy

gi (ς) > 0,

∞∫

0

gi (ς) dς = 1, 0 <

∞∫

0

gi (ς)e−aiς dς ≤ 1, for i = 1, 2.

The initial conditions of model (2) are given by

H(x, θ) = ω1(x, θ), N (x, θ) = ω2(x, θ), Y (x, θ) = ω3(x, θ),

V (x, θ) = ω4(x, θ), Z(x, θ) = ω5(x, θ), for (x, θ) ∈ 
̄ × (−∞, 0], (3)

where ωi (x, θ)(i = 1, . . . , 5) are nonnegative and continuous functions in 
̄ × (−∞, 0].
Also, we consider the homogeneous Neumann boundary conditions (NBCs)

∂H

∂ �n = ∂N

∂ �n = ∂Y

∂ �n = ∂V

∂ �n = ∂Z

∂ �n = 0, for (x, t) ∈ ∂
 × (0,+∞), (4)

where
∂

∂ �n is the outward normal derivative on the boundary ∂
. The NBCs indicate that the

cells and viruses are confined within the boundary and do not cross it.

Remark 1 A model with discrete delays can be obtained from model (2) by considering
special forms of g1(ς) and g2(ς) as
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gi (ς) = δ(ς − ςi ), for i = 1, 2,

where δ(.) is the Dirac delta function and ςi are finite time delays. Then, the delay terms in
the second and third equations of model (2) are given by α1β1e−a1ς1 H(x, t−ς1)N (x, t−ς1)

and α2β2e−a2ς2 H(x, t − ς2)Y (x, t − ς2), respectively.

3 Basic properties

In this section, we show the well-posedness of model (2)–(4). Also, we identify all possible
equilibrium points and establish their existence conditions.

Let X = C
(

̄,R5

)
be the Banach space of continuous functions from 
̄ to R

5.
Define the Banach space of fading memory type [43] Cα = {ψ ∈ C ((−∞, 0],X) :
ψ(θ)eαθ is uniformly continuous for θ ∈ (−∞, 0] and supθ≤0 |ψ(θ)|eαθ < ∞}, where
‖ψ‖ = supθ≤0 |ψ(θ)|eαθ and α is a positive constant. Then, we identify an element ω ∈ Cα

as a function from 
̄ × (−∞, 0] into R
5 defined by ω(x, θ) = ω(θ)(x). For any continuous

function A : (−∞, �) → X, we define At ∈ Cα by At (θ) = A(t + θ), for � > 0 and θ ≤ 0.
It is not hard to see that t → At is a continuous function from [0, �) to Cα .

Theorem 1 Suppose that DH = DN = DY = DV = DZ . Then, there exists a unique
nonnegative andbounded solution definedon 
̄×[0,+∞) for any given initial data satisfying
(3).

Proof For any ω = (ω1, ω2, ω3, ω4, ω5)
T ∈ Cα and x ∈ 
̄, we define F =

(F1, F2, F3, F4, F5) : Cα → X by
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F1(ω)(x) = κ − dω1(x, 0) − β1ω1(x, 0)ω2(x, 0) − β2ω1(x, 0)ω3(x, 0),

F2(ω)(x) = α1β1

∞∫

0
g1(ς)e−a1ςω1(x,−ς)ω2(x,−ς) dς − (d + η1)ω2(x, 0),

F3(ω)(x) = α2β2

∞∫

0
g2(ς)e−a2ςω1(x,−ς)ω3(x,−ς) dς − β3ω3(x, 0)ω4(x, 0)

−β4ω3(x, 0)ω5(x, 0) − (d + η2)ω3(x, 0),

F4(ω)(x) = μ + α3β3ω3(x, 0)ω4(x, 0) − (d + η3)ω4(x, 0),

F5(ω)(x) = α4β4ω3(x, 0)ω5(x, 0) − (d + η4)ω5(x, 0).

Then, we can rewrite problem (2)–(4) as the following abstract ordinary differential equation
{

dA
dt = MA + F(At ), t > 0,

A(0) = ω ∈ Cα,

where A = (H, N , Y, V, Z)T and MA = (DH�H, DN�N , DY�Y, DV�V, DZ�Z)T . It
is clear that F is locally Lipschitz in Cα . According to [44–47], we conclude that problem
(2)–(4) has a unique local solution on its maximal existence time interval [0, Tmax). Also,
we have H(x, t) ≥ 0, N (x, t) ≥ 0, Y (x, t) ≥ 0, V (x, t) ≥ 0 and Z(x, t) ≥ 0 since
0 = (0, 0, 0, 0, 0) is a lower solution of problem (2)–(4).

The next step is to show the boundedness of solutions. From the first equation of (2), we
get

⎧
⎪⎨

⎪⎩

∂H(x,t)
∂t − DH�H(x, t) ≤ κ − dH(x, t),

∂H
∂ �n = 0,

H(x, 0) = ω1(x, 0) ≥ 0.
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Let H̃(t) be a solution to the following ODE system

⎧
⎨

⎩

dH̃(t)
dt = κ − d H̃(t),

H̃(0) = max
x∈
̄

ω1(x, 0).

This implies that H̃(t) ≤ max

{
κ

d
, max
x∈
̄

ω1(x, 0)

}

. From the comparison principle [48], we

have H(x, t) ≤ H̃(t). Hence, we get

H(x, t) ≤ max

{
κ

d
, max
x∈
̄

ω1(x, 0)

}

, for (x, t) ∈ 
̄ × [0, Tmax).

This implies that H(x, t) is bounded. Let

Gi =
∞∫

0

gi (ς)e−aiς dς, for i = 1, 2. (5)

Then, we define

�(x, t) =
∞∫

0

g1(ς)e−a1ς H(x, t − ς) dς +
∞∫

0

g2(ς)e−a2ς H(x, t − ς) dς

+ 1

α1
N (x, t) + 1

α2
Y (x, t) + 1

α2α3
V (x, t) + 1

α2α4
Z(x, t).

When DH = DN = DY = DV = DZ , we get

∂�(x, t)

∂t
− DH��(x, t)

≤ μ

α2α3
+ κ

∞∫

0

g1(ς)e−a1ς dς + κ

∞∫

0

g2(ς)e−a2ς dς − d

∞∫

0

g1(ς)e−a1ς H(x, t − ς) dς

− d

∞∫

0

g2(ς)e−a2ς H(x, t − ς) dς

− (d + η1)

α1
N (x, t) − (d + η2)

α2
Y (x, t) − (d + η3)

α2α3
V (x, t)

− (d + η4)

α2α4
Z(x, t)

≤ μ

α2α3
+ κ(G1 + G2) − d�(x, t)

≤ μ

α2α3
+ 2κ − d�(x, t).
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Thus, �(x, t) satisfies the following system
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂�(x,t)
∂t − DH��(x, t) ≤ μ

α2α3
+ 2κ − d�(x, t),

∂�
∂ �n = 0,

�(x, 0) =
∞∫

0
g1(ς)e−a1ςω1(x,−ς) dς +

∞∫

0
g2(ς)e−a2ςω1(x,−ς) dς + 1

α1
ω2(x, 0)

+ 1
α2

ω3(x, 0) + 1
α2α3

ω4(x, 0)

+ 1
α2α4

ω5(x, 0) ≥ 0.

Hence, we can deduce from the comparison principle [48] that

�(x, t) ≤ max

{
μ

α2α3d
+ 2κ

d
, max
x∈
̄

�(x, 0)

}

, for (x, t) ∈ 
̄ × [0, Tmax).

This implies that N (x, t), Y (x, t), V (x, t) and Z(x, t) are bounded on 
̄ × [0, Tmax). Thus,
all solutions are bounded on 
̄ × [0, Tmax). Then, the boundedness of the solutions on

̄ × [0,+∞) are deduced from the standard theory for semi-linear parabolic systems [49].

	

For the sake of simplicity, we let

d1 = (d + η1), d2 = (d + η2), d3 = (d + η3), d4 = (d + η4),

ν = ν(x, t) for ν ∈ {H, N , Y, V, Z}.
Theorem 2 There exist positive parameters R0, R1, Rl , Rm, Rn, ξ1, ξ2 and ρ such that
model (2) has six possible equilibrium points whenever the following conditions are hold:

(a) The competition-free equilibrium E0 = (H0, 0, 0, V0, 0) always exists;
(b) The treatment failure immune-free equilibrium E1 = (H1, 0, Y1, V1, 0) exists if R0 >

Rl ;
(c) The tumor-free equilibrium E2 = (H2, N2, 0, V2, 0) exists if R1 > 1;
(d) The treatment failure equilibrium E3 = (H3, 0, Y3, V3, Z3) exists if ρ > 1 and R0 >

Rm + μξ2

α3dd2d4(ρ − 1)
;

(e) The partial success immune-free equilibrium E4 = (H4, N4, Y4, V4, 0) exists if

R0/R1 > 1, Rn < R1 + μβ2

α3dd2(R0/R1 − 1)
and R0 > R1 + κμα1β1G1β3

dd1d2d3
;

(f) The coexistence equilibrium E5 = (H5, N5, Y5, V5, Z5) exists if ρ > 1, R1 > Rm and

R0 > R1 + κμα1β1G1α4β4

α3dd1d2d4(ρ − 1)
.

Proof Any equilibrium point E = (H, N , Y, V, Z) of model (2) satisfies the following
system ⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

κ − dH − β1HN − β2HY = 0,

α1β1G1HN − d1N = 0,

α2β2G2HY − β3YV − β4Y Z − d2Y = 0,

μ + α3β3YV − d3V = 0,

α4β4Y Z − d4Z = 0.

(6)

By solving system (6) algebraically, we get the following equilibrium points:
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(a) The competition-free equilibrium E0 = (H0, 0, 0, V0, 0) with

H0 = κ

d
, V0 = μ

d3
.

The equilibrium point is biologically admissible if all of its components are nonnegative.
Hence, E0 always exists since H0 > 0 and V0 > 0.

(b) Define ξ1 = β2d3 + α3β3d , R0 = κα2β2G2

dd2
and Rl = 1 + μβ3

d2d3
.

The treatment failure immune-free equilibrium is given by E1 = (H1, 0, Y1, V1, 0),
where

H1 = β2β3 (μ + κα2G2α3) + d2ξ1 +
√

(κα2β2G2α3β3 − d2ξ1)
2 + μβ2β3 [β2β3 (μ + 2κα2G2α3) + 2d2ξ1]

2α2β2G2ξ1
,

Y1 = κα2β2G2α3β3 − d2ξ1 + β2(μβ3 + 2d2d3) −
√

(κα2β2G2α3β3 − d2ξ1)
2 + μβ2β3 [β2β3 (μ + 2κα2G2α3) + 2d2ξ1]

2β2α3β3d2
,

V1 = κα2β2G2α3β3 − d2ξ1 + μβ2β3 +
√

(κα2β2G2α3β3 − d2ξ1)
2 + μβ2β3 [β2β3 (μ + 2κα2G2α3) + 2d2ξ1]

2β3ξ1
.

It is easy to note that H1 > 0 and V1 > 0. Thus, the existence condition of E1 is
determined by Y1 > 0. We find

Y1 > 0 ⇐⇒ κα2β2G2α3β3 − d2ξ1 + β2(μβ3 + 2d2d3)

>

√

(κα2β2G2α3β3 − d2ξ1)
2 + μβ2β3 [β2β3 (μ + 2κα2G2α3) + 2d2ξ1]

⇐⇒ 2β2 (κα2β2G2α3β3 − d2ξ1) (μβ3 + 2d2d3) + β2
2 (μβ3 + 2d2d3)

2

> μβ2β3 [β2β3 (μ + 2κα2G2α3) + 2d2ξ1]

⇐⇒ κα2β2G2

dd2
> 1 + μβ3

d2d3

⇐⇒ R0 > Rl .

Hence, E1 exists if R0 > Rl .

(c) Take R1 = κα1β1G1

dd1
. The tumor-free equilibrium is given by E2 = (H2, N2, 0, V2, 0),

where

H2 = d1

α1β1G1
, N2 = d

β1
(R1 − 1), V2 = μ

d3
.

It is clear that H2 > 0, N2 > 0 if R1 > 1, and V2 > 0. Hence, the existence condition
of E2 is R1 > 1.

(d) Define ξ2 = β2d4 + α4β4d , ρ = α4β4d3

α3β3d4
and Rm = 1 + β2d4

α4β4d
.

The treatment failure equilibrium is given by E3 = (H3, 0, Y3, V3, Z3), where

H3 = κα4β4

ξ2
, Y3 = d4

α4β4
, V3 = μα4β4

α3β3d4(ρ − 1)
,

Z3 = κα2β2G2α3α4β4d4(ρ − 1) − ξ2 [μα4β4 + α3d2d4(ρ − 1)]

α3β4d4ξ2(ρ − 1)
.
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Clearly, H3 > 0, Y3 > 0, and V3 > 0 if ρ > 1. Now, we need to find the condition for
which Z3 > 0. Indeed,

Z3 > 0 ⇐⇒ κα2β2G2α3α4β4d4(ρ − 1) > ξ2 [μα4β4 + α3d2d4(ρ − 1)]

⇐⇒ κα2β2G2

dd2
> 1 + β2d4

α4β4d
+ μξ2

α3dd2d4(ρ − 1)

⇐⇒ R0 > Rm + μξ2

α3dd2d4(ρ − 1)
.

Hence, the existence conditions of E3 are ρ > 1 and R0 > Rm + μξ2

α3dd2d4(ρ − 1)
.

(e) Take Rn = 1 + β2d3

α3β3d
. The partial success immune-free equilibrium is given by E4 =

(H4, N4, Y4, V4, 0), where

H4 = d1

α1β1G1
, N4 = β3 [κα1β1G1α3d2(R0/R1 − 1) + μβ2d1] − d1d2ξ1(R0/R1 − 1)

β1α3β3d1d2(R0/R1 − 1)
,

Y4 =d2d3(R0/R1 − 1) − μβ3

α3β3d2(R0/R1 − 1)
, V4 = d2

β3
(R0/R1 − 1).

As we can see, H4 > 0, and V4 > 0 if R0/R1 > 1. Next, we need to determine the
conditions for which N4 > 0 and Y4 > 0. We have

N4 > 0 ⇐⇒ β3 [κα1β1G1α3d2(R0/R1 − 1) + μβ2d1] > d1d2ξ1(R0/R1 − 1)

⇐⇒ κα1β1G1

dd1
+ μβ2

α3dd2(R0/R1 − 1)
> 1 + β2d3

α3β3d

⇐⇒ R1 + μβ2

α3dd2(R0/R1 − 1)
> Rn .

Also, we get

Y4 > 0 ⇐⇒ d2d3(R0/R1 − 1) > μβ3

⇐⇒ κα2β2G2

dd2
>

κα1β1G1

dd1
+ κμα1β1G1β3

dd1d2d3

⇐⇒ R0 > R1 + κμα1β1G1β3

dd1d2d3
.

Hence, the existence conditions of E4 are R0/R1 > 1, Rn < R1 + μβ2

α3dd2(R0/R1 − 1)

and R0 > R1 + κμα1β1G1β3

dd1d2d3
.

(f) The coexistence equilibrium is given by E5 = (H5, N5, Y5, V5, Z5), where

H5 = d1

α1β1G1
, N5 = κα1β1G1α4β4 − d1ξ2

β1α4β4d1
, Y5 = d4

α4β4
, V5 = μα4β4

α3β3d4(ρ − 1)
,

Z5 =α1β1G1α3d2d4(R0/R1 − 1)(ρ − 1) − μα1β1G1α4β4

α1β1G1α3β4d4(ρ − 1)
.
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It is clear that H5 > 0, Y5 > 0, and V5 > 0 if ρ > 1. Then, we need to investigate the
existence conditions corresponding to N5 > 0 and Z5 > 0. We get

N5 > 0 ⇐⇒ κα1β1G1α4β4 > d1ξ2

⇐⇒ κα1β1G1

dd1
> 1 + β2d4

α4β4d

⇐⇒ R1 > Rm .

On the other hand, we have

Z5 > 0 ⇐⇒ α1β1G1α3d2d4(R0/R1 − 1)(ρ − 1) > μα1β1G1α4β4

⇐⇒ κα2β2G2

dd2
>

κα1β1G1

dd1
+ κμα1β1G1α4β4

α3dd1d2d4(ρ − 1)

⇐⇒ R0 > R1 + κμα1β1G1α4β4

α3dd1d2d4(ρ − 1)
.

Hence, the existence conditions of E5 are ρ > 1, R1 > Rm and R0 > R1 +
κμα1β1G1α4β4

α3dd1d2d4(ρ − 1)
. 	


4 Global properties

In this section, we show the global stability of all equilibrium points computed in Theorem
2. In addition, we check the local instability conditions of these points.

Define a function � : (0,+∞) → [0,+∞) by �(ν) = ν − 1 − ln ν. Clearly, �(ν) = 0
if and only if ν = 1.

Theorem 3 (a) The competition-free equilibrium E0 is globally asymptotically stable if
R1 ≤ 1 and R0 ≤ Rl .

(b) The equilibrium E0 is unstable if R1 > 1 or R0 > Rl .

Proof (a) We define the following Lyapunov functional

U0(t) =
∫




{

H0�

(
H

H0

)

+ 1

α1G1
N + 1

α2G2
Y + 1

α2G2α3
V0�

(
V

V0

)

+ 1

α2G2α4
Z

+ β1

G1

∞∫

0

g1(ς)e−a1ς

ς∫

0

H(x, t − θ)N (x, t − θ) dθ dς

+ β2

G2

∞∫

0

g2(ς)e−a2ς

ς∫

0

H(x, t − θ)Y (x, t − θ) dθ dς

}

dx .
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By taking the time derivative of U0(t) along the solutions of (2), we get

dU0

dt
=
∫




{(

1 − H0

H

)

[DH�H + κ − dH − β1HN − β2HY ]

+ 1

α1G1

⎡

⎣DN�N + α1β1

∞∫

0

g1(ς)e−a1ς H(x, t − ς)N (x, t − ς) dς − d1N

⎤

⎦

+ 1

α2G2

⎡

⎣DY�Y + α2β2

∞∫

0

g2(ς)e−a2ς H(x, t − ς)Y (x, t − ς) dς

−β3YV − β4Y Z − d2Y

⎤

⎦

+ 1

α2G2α3

(

1 − V0

V

)

[DV�V + μ + α3β3YV − d3V ]

+ 1

α2G2α4
[DZ�Z + α4β4Y Z − d4Z ]

+ β1

G1

∞∫

0

g1(ς)e−a1ς [HN − H(x, t − ς)N (x, t − ς)] dς

+ β2

G2

∞∫

0

g2(ς)e−a2ς [HY − H(x, t − ς)Y (x, t − ς)] dς

}

dx

=
∫




{(

1 − H0

H

)

DH�H − d (H − H0)
2

H
+
(

β1H0 − d1

α1G1

)

N

+
(

β2H0 − d2

α2G2
− β3V0

α2G2

)

Y

+ μ

α2G2α3

(

2 − V0

V
− V

V0

)

− d4

α2G2α4
Z + 1

α1G1
DN�N + 1

α2G2
DY�Y

+ 1

α2G2α3

(

1 − V0

V

)

DV�V + 1

α2G2α4
DZ�Z

}

dx .

(7)
By using the divergence theorem and NBCs (4), we have

0 =
∫

∂


∇ν · �n dx =
∫




div(∇ν) dx =
∫




�ν dx,

0 =
∫

∂


1

ν
∇ν · �n dx =

∫




div(
1

ν
∇ν) dx =

∫




[
�ν

ν
− ‖�ν‖2

ν2

]

dx,

for ν ∈ {H, N , Y, V, Z}.
Thus, we obtain

∫




�ν dx = 0,

∫




�ν

ν
dx =

∫




‖�ν‖2

ν2 dx, for ν ∈ {H, N , Y, V, Z}.
(8)
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Therefore, Eq. (7) is reduced to

dU0

dt
=
∫




{

− d (H − H0)
2

H
+ d1

α1G1
(R1 − 1) N + d2

α2G2
(R0 − Rl) Y

− μ

α2G2α3

(V − V0)
2

VV0
− d4

α2G2α4
Z

}

dx

− DH H0

∫




‖�H‖2

H2 dx − DV V0

α2G2α3

∫




‖�V ‖2

V 2 dx .

We conclude that
dU0

dt
≤ 0 if R1 ≤ 1 and R0 ≤ Rl . Moreover,

dU0

dt
= 0 when H = H0,

N = 0, Y = 0, V = V0 and Z = 0. Thus, the largest invariant set �0 ⊆ � =
{(H, N , Y, V, Z) | dU0

dt = 0} is the singleton {E0}. By LaSalle’s invariance principle
[50,51, Theorem 5.3], E0 is globally asymptotically stable when R1 ≤ 1 and R0 ≤ Rl .

(b) To prove the local instability of E0, we need to find the characteristic equation. Let
0 = ζ1 < ζ2 < · · · < ζk < · · · be the eigenvalues of the Laplace operator −�

with the homogeneous NBCs. Let E(ζi ) be the eigenfunction space corresponding to the
eigenvalues ζi (i = 1, 2, . . .). Let {ρi j : j = 1, 2, . . . , dim E(ζi )} be an orthonormal
basis of E(ζi ), where dim E(ζi ) is the dimension of the space E(ζi ). Define

S = {(H, N , Y, V, Z) ∈ [C1(
̄)
]5 : ∂H

∂ �n = ∂N

∂ �n = ∂Y

∂ �n = ∂V

∂ �n = ∂Z

∂ �n = 0 on ∂
},
Si j = {aρi j | a ∈ R

5}.
Then, we have

Si =
dim E(ξi )⊕

j=1

Si j and S =
∞⊕

i=1

Si .

Let Ee = (He, Ne, Ye, Ve, Ze) be an arbitrary equilibrium point of system (2)–(4). Then,
the linearization of system (2) at Ee is given by

∂W

∂t
= D�W + J1W (x, t) + J2W (x, t − ς),

where W = (H, N , Y, V, Z)T , D = diag(DH , DN , DY , DV , DZ ),

J1 =

⎡

⎢
⎢
⎢
⎢
⎣

−d − β1Ne − β2Ye −β1He −β2He 0 0
0 −d1 0 0 0
0 0 −β3Ve − β4Ze − d2 −β3Ye −β4Ye
0 0 α3β3Ve α3β3Ye − d3 0
0 0 α4β4Ze 0 α4β4Ye − d4

⎤

⎥
⎥
⎥
⎥
⎦

,

and

J2 =

⎡

⎢
⎢
⎢
⎢
⎣

0 0 0 0 0
α1β1G1Ne α1β1G1He 0 0 0
α2β2G2Ye 0 α2β2G2He 0 0

0 0 0 0 0
0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦

.

Define LW = D�W + J1W (x, t) + J2W (x, t − ς). For each i ≥ 1, Si is invariant
under the operator L. In addition, λ is an eigenvalue of L if and only if it is a root of the
characteristic equation
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det (λI + Dζi − J1 − J2e−λς ) = 0, (9)

for some i ≥ 1, for which there is an eigenvector in Si . Here, I is the identity matrix.
To prove the instability of any equilibrium point, it is enough to find i such that the
characteristic equation (9) has a positive root. Let

Gi =
∞∫

0

gi (ς)e−(ai+λ)ς dς, for i = 1, 2.

Now, the characteristic equation at E0 is given by

f0,1(λ) f0,2(λ) (λ + d + DH ζi ) (λ + d3 + DV ζi ) (λ + d4 + DZ ζi ) = 0, (10)

where
f0,1(λ) =λ − α1β1G1H0 + d1 + DN ζi ,

f0,2(λ) =λ − α2β2G2H0 + d2 + β3V0 + DY ζi .

From Eq. (10), two roots of the characteristic equation are given by f0,1(λ) = 0 and
f0,2(λ) = 0. We can see that

lim
λ→+∞ f0,1(λ) = +∞, lim

λ→+∞ f0,2(λ) = +∞.

In addition, we have

f0,1(0)|i=1 = − α1β1G1H0 + d1 = −d1 (R1 − 1) < 0 if R1 > 1,

f0,2(0)|i=1 = − α2β2G2H0 + d2 + β3V0 = −d2 (R0 − Rl) < 0 if R0 > Rl .

Hence, the characteristic equation (10) has positive roots if R1 > 1 or R0 > Rl . Thus,
the equilibrium E0 is unstable if R1 > 1 or R0 > Rl .

In the next theorems, we will need the following quantities

ln
H(x, t − ς)N (x, t − ς)

HN
= ln

H(x, t − ς)N (x, t − ς)

Hi N
+ ln

Hi

H
, for i = 2, 4, 5,

ln
H(x, t − ς)Y (x, t − ς)

HY
= ln

H(x, t − ς)Y (x, t − ς)

HjY
+ ln

Hj

H
, for j = 1, 3, 4, 5.

(11)

Theorem 4 Assume that ρ > 1, R0/R1 > 1 and R0 > Rl . Then, we have the following
two situations:

(a) The treatment failure immune-free equilibrium E1 is globally asymptotically stable if

Rn ≥ R1 + μβ2

α3dd2(R0/R1 − 1)
and R0 ≤ Rm + μξ2

α3dd2d4(ρ − 1)
.

(b) The equilibrium E1 is unstable if Rn < R1 + μβ2

α3dd2(R0/R1 − 1)
or R0 > Rm +

μξ2

α3dd2d4(ρ − 1)
.
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Proof (a) We take the following Lyapunov functional

U1(t) =
∫




{

H1�

(
H

H1

)

+ 1

α1G1
N + 1

α2G2
Y1�

(
Y

Y1

)

+ 1

α2G2α3
V1�

(
V

V1

)

+ 1

α2G2α4
Z

+ β1

G1

∞∫

0

g1(ς)e−a1ς

ς∫

0

H(x, t − θ)N (x, t − θ) dθ dς

+ β2

G2
H1Y1

∞∫

0

g2(ς)e−a2ς

ς∫

0

�

(
H(x, t − θ)Y (x, t − θ)

H1Y1

)

dθ dς

}

dx .

By taking the time derivative of U1(t) along the solutions of (2), we obtain

dU1

dt
=
∫




{(

1 − H1

H

)

[DH�H + κ − dH − β1HN − β2HY ]

+ 1

α1G1

⎡

⎣DN�N + α1β1

∞∫

0

g1(ς)e−a1ς H(x, t − ς)N (x, t − ς) dς − d1N

⎤

⎦

+ 1

α2G2

(

1 − Y1

Y

)
⎡

⎣DY�Y + α2β2

∞∫

0

g2(ς)e−a2ς H(x, t − ς)Y (x, t − ς) dς

−β3YV − β4Y Z − d2Y

⎤

⎦

+ 1

α2G2α3

(

1 − V1

V

)

[DV�V + μ + α3β3YV − d3V ]

+ 1

α2G2α4
[DZ�Z + α4β4Y Z − d4Z ]

+ β1

G1

∞∫

0

g1(ς)e−a1ς [HN − H(x, t − ς)N (x, t − ς)] dς

+ β2

G2
H1Y1

∞∫

0

g2(ς)e−a2ς

[
HY

H1Y1
− H(x, t − ς)Y (x, t − ς)

H1Y1

+ ln
H(x, t − ς)Y (x, t − ς)

HY

]

dς

}

dx .

From (6), we can see that E1 satisfies the following equilibrium conditions

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

κ = dH1 + β2H1Y1,

β3
α2G2

Y1V1 = d3
α2G2α3

V1 − μ
α2G2α3

,

β2H1Y1 = β3
α2G2

Y1V1 + d2
α2G2

Y1.

(12)
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By using (12), the time derivative of U1(t) is simplified to

dU1

dt
=
∫




{(

1 − H1

H

)

(dH1 − dH) +
(

β1H1 − d1

α1G1

)

N

+ μ

α2G2α3

(

2 − V1

V
− V

V1

)

+
(

β4

α2G2
Y1 − d4

α2G2α4

)

Z

+ β2H1Y1

⎛

⎝2 − H1

H
− 1

G2

∞∫

0

g2(ς)e−a2ς H(x, t − ς)Y (x, t − ς)

H1Y
dς

⎞

⎠

+ β2

G2
H1Y1

∞∫

0

g2(ς)e−a2ς ln
H(x, t − ς)Y (x, t − ς)

HY
dς

+
(

1 − H1

H

)

DH�H + 1

α1G1
DN�N + 1

α2G2

(

1 − Y1

Y

)

DY�Y

+ 1

α2G2α3

(

1 − V1

V

)

DV�V

+ 1

α2G2α4
DZ�Z

}

dx .

(13)

After using (8) and (11), the time derivative in (13) is transformed to

dU1

dt
=
∫




{

− d (H − H1)
2

H
+ β1 (H1 − H4) N

− μ

α2G2α3

(V − V1)
2

VV1
+ β4

α2G2
(Y1 − Y3) Z

− β2

G2
H1Y1

∞∫

0

g2(ς)e−a2ς

[

�

(
H1

H

)

+�

(
H(x, t − ς)Y (x, t − ς)

H1Y

)]

dς

}

dx

− DH H1

∫




‖�H‖2

H2 dx − DYY1

α2G2

∫




‖�Y‖2

Y 2 dx

− DV V1

α2G2α3

∫




‖�V ‖2

V 2 dx .

We can see that
dU1

dt
≤ 0 if (H1 − H4) ≤ 0 and (Y1 − Y3) ≤ 0. From the equilibrium points,

we have

H1 − H4 ≤ 0 ⇐⇒ β2β3 (μ + κα2G2α3) + d2ξ1 +
√

(κα2β2G2α3β3 − d2ξ1)
2 + μβ2β3 [β2β3 (μ + 2κα2G2α3) + 2d2ξ1]

2α2β2G2ξ1

≤ d1

α1β1G1

⇐⇒
√

(κα2β2G2α3β3 − d2ξ1)
2 + μβ2β3 [β2β3 (μ + 2κα2G2α3) + 2d2ξ1]

≤ 2α2β2G2d1ξ1

α1β1G1
− [κα2β2G2α3β3 − d2ξ1 + 2d2ξ1 + μβ2β3]

⇐⇒ κα1β1G1α3β3d2(R0/R1 − 1) + μβ2β3d1

≤ (β2d1d2d3 + α3β3dd1d2) (R0/R1 − 1)
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⇐⇒ κα1β1G1

dd1
+ μβ2

α3dd2(R0/R1 − 1)
≤ 1 + β2d3

α3β3d

⇐⇒ R1 + μβ2

α3dd2(R0/R1 − 1)
≤ Rn .

Also, we have

Y1 − Y3 ≤ 0 ⇐⇒ κα2β2G2α3β3 − d2ξ1 + μβ2β3 + 2β2d2d3 − 2β2α3β3d2d4

α4β4

≤
√

(κα2β2G2α3β3 − d2ξ1)
2 + μβ2β3 [β2β3 (μ + 2κα2G2α3) + 2d2ξ1]

⇐⇒ κα2β2G2α3α4β4d4(ρ − 1)

≤ α3d2d4 (β2d4 + α4β4d) (ρ − 1) + μα4β4ξ2

⇐⇒ κα2β2G2

dd2
≤ 1 + β2d4

α4β4d
+ μξ2

α3dd2d4(ρ − 1)

⇐⇒ R0 ≤ Rm + μξ2

α3dd2d4(ρ − 1)
.

Hence,
dU1

dt
≤ 0 if R1 + μβ2

α3dd2(R0/R1 − 1)
≤ Rn and R0 ≤ Rm + μξ2

α3dd2d4(ρ − 1)
.

Also, one can show that
dU1

dt
= 0 when H = H1, N = 0, Y = Y1, V = V1 and Z = 0.

Thus, the largest invariant set �1 ⊆ � = {(H, N , Y, V, Z) | dU1
dt = 0} is the singleton {E1}.

When ρ > 1, R0/R1 > 1 and R0 > Rl , LaSalle’s invariance principle [50,51] ensures that

the equilibrium E1 is globally asymptotically stable for R1 + μβ2

α3dd2(R0/R1 − 1)
≤ Rn

and R0 ≤ Rm + μξ2

α3dd2d4(ρ − 1)
.

(b) From (9), the characteristic equation at E1 is given by

f1(λ) (λ − α4β4Y1 + d4 + DZ ζi )

(

α3β
2
3Y1V1 (λ + β2Y1 + d + DH ζi )

+ (λ − α3β3Y1 + d3 + DV ζi )

× [α2β
2
2G2H1Y1 + (λ + β2Y1 + d + DH ζi )

(
λ − α2β2G2H1 + β3V1 + d2 + DY ζi

)]
)

= 0,

(14)

where
f1(λ) = λ − α1β1G1H1 + d1 + DN ζi .

Two roots of the characteristic equation (14) are given by f1(λ) = 0 and (λ − α4β4Y1 +
d4 + DZ ζi ) = 0. We have

lim
λ→+∞ f1(λ) = +∞,

f1(0)|i=1 = −α1β1G1H1 + d1 = −α1β1G1 (H1 − H4) .

From the proof of part (a), we can see that f1(0)|i=1 < 0 if Rn < R1 +
μβ2

α3dd2(R0/R1 − 1)
. The other root at i = 1 is given by

λ|i=1 = α4β4Y1 − d4 = α4β4 (Y1 − Y3) > 0 if R0 > Rm + μξ2

α3dd2d4(ρ − 1)
.
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Thus, the characteristic equation has positive roots if Rn < R1 + μβ2

α3dd2(R0/R1 − 1)
or

R0 > Rm + μξ2

α3dd2d4(ρ − 1)
. In this situation, the equilibrium E1 is unstable. 	


Theorem 5 Assume that R1 > 1. Then, we have the following two situations:

(a) The tumor-free equilibrium E2 is globally asymptotically stable if R0 ≤ R1 +
κμα1β1G1β3

dd1d2d3
.

(b) The equilibrium E2 is unstable if R0 > R1 + κμα1β1G1β3

dd1d2d3
.

Proof (a) We consider the following Lyapunov functional

U2(t) =
∫




{

H2�

(
H

H2

)

+ 1

α1G1
N2�

(
N

N2

)

+ 1

α2G2
Y

+ 1

α2G2α3
V2�

(
V

V2

)

+ 1

α2G2α4
Z

+ β1

G1
H2N2

∞∫

0

g1(ς)e−a1ς

ς∫

0

�

(
H(x, t − θ)N (x, t − θ)

H2N2

)

dθ dς

+ β2

G2

∞∫

0

g2(ς)e−a2ς

ς∫

0

H(x, t − θ)Y (x, t − θ) dθ dς

}

dx .

By computing the time derivative of U2(t) along the solutions of (2), we have

dU2

dt
=
∫




{(

1 − H2

H

)

[DH�H + κ − dH − β1HN − β2HY ]

+ 1

α1G1

(

1 − N2

N

)
⎡

⎣DN�N + α1β1

∞∫

0

g1(ς)e−a1ς H(x, t − ς)N (x, t − ς) dς − d1N

⎤

⎦

+ 1

α2G2

⎡

⎣DY�Y + α2β2

∞∫

0

g2(ς)e−a2ς H(x, t − ς)Y (x, t − ς) dς − β3YV − β4Y Z − d2Y

⎤

⎦

+ 1

α2G2α3

(

1 − V2

V

)

[DV�V + μ + α3β3YV − d3V ]

+ 1

α2G2α4
[DZ�Z + α4β4Y Z − d4Z ]

+ β1

G1
H2N2

∞∫

0

g1(ς)e−a1ς

[
HN

H2N2
− H(x, t − ς)N (x, t − ς)

H2N2

+ ln
H(x, t − ς)N (x, t − ς)

HN

]

dς

+ β2

G2

∞∫

0

g2(ς)e−a2ς [HY − H(x, t − ς)Y (x, t − ς)] dς

}

dx .
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From (6), we can see that E2 satisfies the following conditions

⎧
⎪⎨

⎪⎩

κ = dH2 + β1H2N2,

β1H2N2 = d1
α1G1

N2,
μ

α2G2α3
= d3

α2G2α3
V2.

(15)

By using (15), the time derivative of U2(t) can be simplified to

dU2

dt
=
∫




{(

1 − H2

H

)

(dH2 − dH) +
(

β2H2 − d2

α2G2
− β3

α2G2
V2

)

Y

+ μ

α2G2α3

(

2 − V2

V
− V

V2

)

− d4

α2G2α4
Z + β1H2N2

(

2 − H2

H

− 1

G1

∞∫

0

g1(ς)e−a1ς
H(x, t − ς)N (x, t − ς)

H2N
dς

⎞

⎠

+ β1

G1
H2N2

∞∫

0

g1(ς)e−a1ς ln
H(x, t − ς)N (x, t − ς)

HN
dς

+
(

1 − H2

H

)

DH�H + 1

α1G1

(

1 − N2

N

)

DN�N

+ 1

α2G2
DY�Y + 1

α2G2α3

(

1 − V2

V

)

DV�V

+ 1

α2G2α4
DZ�Z

}

dx .

(16)

After using (8) and (11), the time derivative in (16) is transformed to

dU2

dt
=
∫




{

− d (H − H2)
2

H
+ dd1d2

κα1β1G1α2G2

(

R0 − R1 − κμα1β1G1β3

dd1d2d3

)

Y

− μ

α2G2α3

(V − V2)
2

VV2
− d4

α2G2α4
Z

− β1

G1
H2N2

∞∫

0

g1(ς)e−a1ς

[

�

(
H2

H

)

+ �

(
H(x, t − ς)N (x, t − ς)

H2N

)]

dς

}

dx

− DH H2

∫




‖�H‖2

H2 dx − DN N2

α1G1

∫




‖�N‖2

N 2 dx − DV V2

α2G2α3

∫




‖�V ‖2

V 2 dx .

We note that
dU2

dt
≤ 0 if R0 ≤ R1 + κμα1β1G1β3

dd1d2d3
. In addition, It can be easily shown

that
dU2

dt
= 0 if H = H2, N = N2, Y = 0, V = V2 and Z = 0. Thus, the largest

invariant set �2 ⊆ � = {(H, N , Y, V, Z) | dU2
dt = 0} is the singleton {E2}. Accordingly,
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LaSalle’s invariance principle [50,51] guarantees the global asymptotic stability of E2

when R1 > 1 and R0 ≤ R1 + κμα1β1G1β3

dd1d2d3
.

(b) From (9), the characteristic equation at E2 is given by

f2(λ) (λ + d3 + DV ζi ) (λ + d4 + DZ ζi )

× [α1β
2
1G2H2N2 + (λ + β1N2 + d + DH ζi )

(
λ − α1β1G1H2 + d1 + DN ζi

)] = 0,

(17)
where

f2(λ) = λ − α2β2G2H2 + d2 + β3V2 + DY ζi .

One root of the characteristic equation (17) is given by f2(λ) = 0, where we have

lim
λ→+∞ f2(λ) = +∞,

f2(0)|i=1 = −α2β2G2H2 + d2 + β3V2 = − dd1d2

κα1β1G1

(

R0 − R1 − κμα1β1G1β3

dd1d2d3

)

.

We note that f2(0)|i=1 < 0 if R0 > R1 + κμα1β1G1β3

dd1d2d3
, and the characteristic equation

(17) has a positive root in this case. Hence, the equilibrium E2 is unstable if R0 > R1 +
κμα1β1G1β3

dd1d2d3
. 	


Theorem 6 Suppose that ρ > 1 and R0 > Rm + μξ2

α3dd2d4(ρ − 1)
. Then, we have the

following two situations:

(a) The treatment failure equilibrium E3 is globally asymptotically stable if R1 ≤ Rm.
(b) The equilibrium E3 is unstable if R1 > Rm.

Proof (a) We consider the following Lyapunov functional

U3(t) =
∫




{

H3�

(
H

H3

)

+ 1

α1G1
N + 1

α2G2
Y3�

(
Y

Y3

)

+ 1

α2G2α3
V3�

(
V

V3

)

+ 1

α2G2α4
Z3�

(
Z

Z3

)

+ β1

G1

∞∫

0

g1(ς)e−a1ς

ς∫

0

H(x, t − θ)N (x, t − θ) dθ dς

+ β2

G2
H3Y3

∞∫

0

g2(ς)e−a2ς

ς∫

0

�

(
H(x, t − θ)Y (x, t − θ)

H3Y3

)

dθ dς

}

dx .
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By taking the time derivative of U3(t) along the solutions of (2), we obtain

dU3

dt
=
∫




{(

1 − H3

H

)
⎡

⎣DH�H + κ − dH − β1HN − β2HY

⎤

⎦

+ 1

α1G1

⎡

⎣DN�N + α1β1

∞∫

0

g1(ς)e−a1ς H(x, t − ς)N (x, t − ς) dς − d1N

⎤

⎦

+ 1

α2G2

(

1− Y3

Y

)
⎡

⎣DY�Y+α2β2

∞∫

0

g2(ς)e−a2ς H(x, t − ς)Y (x, t − ς) dς

−β3YV − β4Y Z − d2Y ]

+ 1

α2G2α3

(

1 − V3

V

)

[DV�V + μ + α3β3YV − d3V ]

+ 1

α2G2α4

(

1 − Z3

Z

)

[DZ�Z + α4β4Y Z − d4Z ]

+ β1

G1

∞∫

0

g1(ς)e−a1ς [HN − H(x, t − ς)N (x, t − ς)] dς

+ β2

G2
H3Y3

∞∫

0

g2(ς)e−a2ς

[
HY

H3Y3
− H(x, t − ς)Y (x, t − ς)

H3Y3

+ ln
H(x, t − ς)Y (x, t − ς)

HY

]

dς

}

dx .

(18)
From (6), we can see that E3 satisfies the following equilibrium conditions

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

κ = dH3 + β2H3Y3,
β3

α2G2
Y3V3 = d3

α2G2α3
V3 − μ

α2G2α3
,

β4
α2G2

Y3Z3 = d4
α2G2α4

Z3,

β2H3Y3 = β3
α2G2

Y3V3 + β4
α2G2

Y3Z3 + d2
α2G2

Y3.

(19)

By using (19), (8) and (11), the time derivative in (18) is transformed to

dU3

dt
=
∫




{

− d (H − H3)
2

H
+ α4β4dd1

α1G1ξ2
(R1 − Rm) N − μ

α2G2α3

(V − V3)
2

VV3

− β2

G2
H3Y3

∞∫

0

g2(ς)e−a2ς

[

�

(
H3

H

)

+�

(
H(x, t − ς)Y (x, t − ς)

H3Y

)]

dς

}

dx

−DH H3

∫




‖�H‖2

H2 dx − DYY3

α2G2

∫




‖�Y‖2

Y 2 dx

− DV V3

α2G2α3

∫




‖�V ‖2

V 2 dx − DZ Z3

α2G2α4

∫




‖�Z‖2

Z2 dx .
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This implies that
dU3

dt
≤ 0 if R1 ≤ Rm . Moreover,

dU3

dt
= 0 when H = H3,

N = 0, Y = Y3, V = V3 and Z = Z3. Thus, the largest invariant set �3 ⊆ � =
{(H, N , Y, V, Z) | dU3

dt = 0} is the singleton {E3}. By LaSalle’s invariance principle
[50,51], the equilibrium E3 is globally asymptotically stable if R1 ≤ Rm given that the

point exists for ρ > 1 and R0 > Rm + μξ2

α3dd2d4(ρ − 1)
.

(b) From (9), the characteristic equation at E3 is given by

f3(λ)

(

(λ + β2Y3 + d + DH ζi )
[
α4β

2
4Y3Z3 (λ − α3β3Y3 + d3 + DV ζi )

+α3β
2
3Y3V3 (λ − α4β4Y3 + d4 + DZ ζi )

]

+ (λ − α4β4Y3 + d4 + DZ ζi ) (λ − α3β3Y3 + d3 + DV ζi )

× [α2β
2
2G2H3Y3 + (λ + β2Y3 + d + DH ζi )

(
λ − α2β2G2H3 + β3V3 + β4Z3 + d2 + DY ζi

)]
)

= 0,

(20)

where
f3(λ) = λ − α1β1G1H3 + d1 + DN ζi .

One root of the characteristic Eq. (20) is determined by f3(λ) = 0, where

lim
λ→+∞ f3(λ) = +∞,

f3(0)|i=1 = −α1β1G1H3 + d1 = −α4β4dd1

ξ2
(R1 − Rm) .

When R1 > Rm , we can see that f3(0)|i=1 < 0 and the characteristic equation (20) has
a positive root in this situation. Hence, the equilibrium E3 is unstable if R1 > Rm . 	

Theorem 7 Assume that ρ > 1, R0/R1 > 1, Rn < R1 + μβ2

α3dd2(R0/R1 − 1)
and R0 >

R1 + κμα1β1G1β3

dd1d2d3
. Then, we have the following two situations:

(a) The partial success immune-free equilibrium E4 is globally asymptotically stable ifR0 ≤
R1 + κμα1β1G1α4β4

α3dd1d2d4(ρ − 1)
.

(b) The equilibrium E4 is unstable if R0 > R1 + κμα1β1G1α4β4

α3dd1d2d4(ρ − 1)
.

Proof (a) We take the following Lyapunov functional

U4(t) =
∫




{

H4�

(
H

H4

)

+ 1

α1G1
N4�

(
N

N4

)

+ 1

α2G2
Y4�

(
Y

Y4

)

+ 1

α2G2α3
V4�

(
V

V4

)

+ 1

α2G2α4
Z

+ β1

G1
H4N4

∞∫

0

g1(ς)e−a1ς

ς∫

0

�

(
H(x, t − θ)N (x, t − θ)

H4N4

)

dθ dς

+ β2

G2
H4Y4

∞∫

0

g2(ς)e−a2ς

ς∫

0

�

(
H(x, t − θ)Y (x, t − θ)

H4Y4

)

dθ dς

}

dx .
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By computing the time derivative of U4(t) along the solutions of (2), we obtain

dU4

dt
=
∫




{(

1 − H4

H

)

[DH�H + κ − dH − β1HN − β2HY ]

+ 1

α1G1

(

1 − N4

N

)
⎡

⎣DN�N + α1β1

∞∫

0

g1(ς)e−a1ς H(x, t − ς)

×N (x, t − ς) dς − d1N

⎤

⎦

+ 1

α2G2

(

1 − Y4

Y

)
⎡

⎣DY�Y + α2β2

∞∫

0

g2(ς)e−a2ς H(x, t − ς)Y (x, t − ς) dς

−β3YV − β4Y Z − d2Y

⎤

⎦

+ 1

α2G2α3

(

1 − V4

V

)

[DV�V

+μ + α3β3YV − d3V ]

+ 1

α2G2α4
[DZ�Z + α4β4Y Z − d4Z ]

+ β1

G1
H4N4

∞∫

0

g1(ς)e−a1ς

[
HN

H4N4
− H(x, t − ς)N (x, t − ς)

H4N4

+ ln
H(x, t − ς)N (x, t − ς)

HN

]

dς

+ β2

G2
H4Y4

∞∫

0

g2(ς)e−a2ς

[
HY

H4Y4
− H(x, t − ς)Y (x, t − ς)

H4Y4

+ ln
H(x, t − ς)Y (x, t − ς)

HY

]

dς

}

dx .

(21)
From (6), we can see that E4 satisfies the following equilibrium conditions

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

κ = dH4 + β1H4N4 + β2H4Y4,

β1H4N4 = d1
α1G1

N4,

β3
α2G2

Y4V4 = d3
α2G2α3

V4 − μ
α2G2α3

,

β2H4Y4 = β3
α2G2

Y4V4 + d2
α2G2

Y4.

(22)
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By using (22), (8) and (11), the time derivative in (21) is transformed to

dU4

dt
=
∫




{

− d (H − H4)
2

H
+ β4

α2G2
(Y4 − Y5) Z − μ

α2G2α3

(V − V4)
2

VV4

− β1

G1
H4N4

∞∫

0

g1(ς)e−a1ς

[

�

(
H4

H

)

+ �

(
H(x, t − ς)N (x, t − ς)

H4N

)]

dς

− β2

G2
H4Y4

∞∫

0

g2(ς)e−a2ς

[

�

(
H4

H

)

+ �

(
H(x, t − ς)Y (x, t − ς)

H4Y

)]

dς

}

dx

− DH H4

∫




‖�H‖2

H2 dx − DN N4

α1G1

∫




‖�N‖2

N 2 dx

− DYY4

α2G2

∫




‖�Y‖2

Y 2 dx − DV V4

α2G2α3

∫




‖�V ‖2

V 2 dx .

The sign of
dU4

dt
is determined by the sign of (Y4 − Y5) since all other terms are negative.

From the equilibrium points E4 and E5, we find

Y4 − Y5 =d2d3(R0/R1 − 1) − μβ3

α3β3d2(R0/R1 − 1)
− d4

α4β4

=α3d4 (α2β2G2d1 − α1β1G1d2) (ρ − 1) − μα1β1G1α4β4

α1β1G1α3α4β4d2(R0/R1 − 1)

= dd1d4(ρ − 1)

κα1β1G1α4β4(R0/R1 − 1)

[
κα2β2G2

dd2
− κα1β1G1

dd1
− κμα1β1G1α4β4

α3dd1d2d4(ρ − 1)

]

= dd1d4(ρ − 1)

κα1β1G1α4β4(R0/R1)

[

R0 − R1 − κμα1β1G1α4β4

α3dd1d2d4(ρ − 1)

]

.

As a result, we find that
dU4

dt
≤ 0 if R0 ≤ R1 + κμα1β1G1α4β4

α3dd1d2d4(ρ − 1)
. Also, we can show

that
dU4

dt
= 0 when H = H4, N = N4, Y = Y4, V = V4 and Z = 0. Thus, the largest

invariant set �4 ⊆ � = {(H, N , Y, V, Z) | dU4
dt = 0} is the singleton {E4}. According

to LaSalle’s invariance principle [50,51], the equilibrium E4 is globally asymptotically

stable if R0 ≤ R1 + κμα1β1G1α4β4

α3dd1d2d4(ρ − 1)
provided that the point is defined for ρ > 1,

R0/R1 > 1, Rn < R1 + μβ2

α3dd2(R0/R1 − 1)
and R0 > R1 + κμα1β1G1β3

dd1d2d3
.
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(b) From (9), the characteristic equation at E4 is given by

f4(λ)

(
[
α1β

2
1G1H4N4 + (λ + β1N4 + β2Y4 + d + DH ζi )

(
λ − α1β1G1H4 + d1 + DN ζi

)]

× [α3β
2
3Y4V4 + (λ − α2β2G1H4 + β3V4 + d2 + DY ζi

)

(λ − α3β3Y4 + d3 + DV ζi )]

+ α2β
2
2G2H4Y4

(
λ − α1β1G1H4 + d1 + DN ζi

)

(λ − α3β3Y4 + d3 + DV ζi )

)

= 0,

(23)

where
f4(λ) = λ − α4β4Y4 + d4 + DZ ζi .

One root of the characteristic equation (23) is given by f4(λ) = 0. In other words, we
have the eigenvalue

λ|i=1 = α4β4Y4 − d4 = α4β4 (Y4 − Y5) .

From the proof of part (a), we can see that (Y4 − Y5) > 0 ifR0 > R1+ κμα1β1G1α4β4

α3dd1d2d4(ρ − 1)
.

In this situation, the characteristic equation has a positive root, and the equilibrium E4 is
unstable. 	


Theorem 8 The coexistence equilibrium E5 is globally asymptotically stable if ρ > 1,

R1 > Rm and R0 > R1 + κμα1β1G1α4β4

α3dd1d2d4(ρ − 1)
.

Proof We take the following Lyapunov functional

U5(t) =
∫




{

H5�

(
H

H5

)

+ 1

α1G1
N5�

(
N

N5

)

+ 1

α2G2
Y5�

(
Y

Y5

)

+ 1

α2G2α3
V5�

(
V

V5

)

+ 1

α2G2α4
Z5

(
Z

Z5

)

+ β1

G1
H5N5

∞∫

0

g1(ς)e−a1ς

ς∫

0

�

(
H(x, t − θ)N (x, t − θ)

H5N5

)

dθ dς

+ β2

G2
H5Y5

∞∫

0

g2(ς)e−a2ς

ς∫

0

�

(
H(x, t − θ)Y (x, t − θ)

H5Y5

)

dθ dς

}

dx .

After using the equilibrium conditions at E5, (8) and (11), the time derivative of U5(t) is
given by
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dU5

dt
=
∫




{

− d (H − H5)
2

H
− μ

α2G2α3

(V − V5)
2

VV5

− β1

G1
H5N5

∞∫

0

g1(ς)e−a1ς

[

�

(
H5

H

)

+ �

(
H(x, t − ς)N (x, t − ς)

H5N

)]

dς

− β2

G2
H5Y5

∞∫

0

g2(ς)e−a2ς

[

�

(
H5

H

)

+ �

(
H(x, t − ς)Y (x, t − ς)

H5Y

)]

dς

}

dx

− DH H5

∫




‖�H‖2

H2 dx − DN N5

α1G1

∫




‖�N‖2

N 2 dx

− DYY5

α2G2

∫




‖�Y‖2

Y 2 dx − DV V5

α2G2α3

∫




‖�V ‖2

V 2 dx

− DZ Z5

α2G2α4

∫




‖�Z‖2

Z2 dx .

This implies that
dU5

dt
≤ 0. Also, one can show that

dU5

dt
= 0 when H = H5, N = N5, Y =

Y5, V = V5 and Z = Z5. Thus, the largest invariant set �5 ⊆ � = {(H, N , Y, V, Z) | dU5
dt =

0} is the singleton {E5}. According to LaSalle’s invariance principle [50,51], the equilibrium

E5 is globally asymptotically stable if ρ > 1, R1 > Rm and R0 > R1 + κμα1β1G1α4β4

α3dd1d2d4(ρ − 1)
.

	


Remark 2 It follows from Theorem 5 that the tumor cells will be removed from the body
when R1 > 1 and

R0 ≤ R1 + κμα1β1G1β3

dd1d2d3

⇐⇒R0 − R1 ≤ κμα1β1G1β3

dd1d2d3

⇐⇒ dd1d2d3 (R0 − R1)

κα1β1G1β3
≤ μ

⇐⇒μ0 ≤ μ,

where

μ0 = dd1d2d3 (R0 − R1)

κα1β1G1β3
. (24)

Hence, μ0 is the minimum effective dosage of M1 virus required to eliminate the tumor.
When μ < μ0, we see from Theorem 7 that the tumor cells will persist as t −→ ∞.

5 Numerical simulations

In this section, we pursue some numerical simulations in order to verify the results of Theo-
rems 3–8. For this purpose, we choose gi (ς) in model (2) as

gi (ς) = bie
−biς , for i = 1, 2.
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Clearly, gi (ς) > 0 and
∫∞

0 gi (ς) dς = ∫∞
0 bie−biς dς = 1. This form of gi (ς) was taken

in [22]. Consequently, the values of G1 and G2 defined in Eq. (5) are given by

Gi = bi

∞∫

0

e−(ai+bi )ς dς = bi
ai + bi

, for i = 1, 2.

The values of R0 and R1 are given by

R0 = κα2β2b2

dd2 (a2 + b2)
, R1 = κα1β1b1

dd1 (a1 + b1)
. (25)

In order to transform system (2) to PDE system, we introduce the following new variables

A(x, t) =
∞∫

0

e−(a1+b1)ς H(x, t − ς)N (x, t − ς) dς,

B(x, t) =
∞∫

0

e−(a2+b2)ς H(x, t − ς)Y (x, t − ς) dς.

(26)

Thus, system (2) is transformed to the following system
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂H(x,t)
∂t = DH�H(x, t) + κ − dH(x, t) − β1H(x, t)N (x, t) − β2H(x, t)Y (x, t),

∂A(x,t)
∂t = H(x, t)N (x, t) − (a1 + b1)A(x, t),

∂N (x,t)
∂t = DN�N (x, t) + α1β1b1A(x, t) − d1N (x, t),

∂B(x,t)
∂t = H(x, t)Y (x, t) − (a2 + b2)B(x, t),

∂Y (x,t)
∂t = DY�Y (x, t) + α2β2b2B(x, t) − β3Y (x, t)V (x, t) − β4Y (x, t)Z(x, t)

−d2Y (x, t),
∂V (x,t)

∂t = DV�V (x, t) + μ + α3β3Y (x, t)V (x, t) − d3V (x, t),
∂Z(x,t)

∂t = DZ�Z(x, t) + α4β4Y (x, t)Z(x, t) − d4Z(x, t).
(27)

For system (27), we consider the following initial conditions

H(x, 0) = 0.3
(
1 + 0.2 cos2(πx)

)
, N (x, 0) = 0.2

(
1 + 0.2 cos2(πx)

)
,

Y (x, 0) = 0.2
(
1 + 0.2 cos2(πx)

)
,

V (x, 0) = 0.3
(
1 + 0.2 cos2(πx)

)
, Z(x, 0) = 0.02

(
1 + 0.2 cos2(πx)

)
.

The initial conditions for the new variables A(x, t) and B(x, t) can be computed from (26).
We take the spatial domain as 
 = [0, 2] with a step size �x = 0.02. We perform the
simulations on a time interval [0, 400] with a step size �t = 0.1. The values of α2, β1, β2,
β3, β4, η1, η2, η3 and η4 are taken as free parameters while the other remaining parameters
are listed in Table 1. Some parameter values are taken from [42], while others are taken as
an assumption. The results of the numerical simulations are classified into six categories:

(a) We consider α2 = 0.8, β1 = 0.03, β2 = 0.03, β3 = 0.1, β4 = 0.03, η1 = 0.04,
η2 = 0.01, η3 = 0.008 and η4 = 0.01. These values give R1 = 0.3636 < 1 and
R0 = 0.7273 < Rl = 2.1905. In this situation, the competition-free equilibrium
E0 = (1, 0, 0, 0.3571, 0) is globally asymptotically stable as shown in Fig. 1. This result
coincides with Theorem 3. At this point, both populations of normal and tumor cells are
extinct. This extinction might be a result of a severe competition between the normal and
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Table 1 List of parameters of
model (2)

Parameter Value Parameter Value Parameter Value

κ 0.02 α4 0.8 DZ 0.03

μ 0.01 DH 0.02 a1 0.1

d 0.02 DN 0.02 a2 0.1

α1 0.8 DY 0.01 b1 1

α3 0.5 DV 0.04 b2 1

tumor cells on a limited nutrient source. Hence, the effect of oncolytic virotherapy on
tumor growth cannot be examined in this situation.

(b) We consider α2 = 0.8, β1 = 0.03, β2 = 0.1, β3 = 0.1, β4 = 0.2, η1 = 0.04, η2 = 0.008,
η3 = 0.008 and η4 = 0.01. This set of parameters gives ρ = 2.9867 > 1, R0/R1 =
7.1429 > 1, R0 = 2.5974 > Rl = 2.2755, Rn = 3.8 > R1 + μβ2

α3dd2(R0/R1 − 1)
=

0.945 and R0 < Rm + μξ2

α3dd2d4(ρ − 1)
= 5.6527. As reported in Theorem 4, the treat-

ment failure immune-free equilibrium E1 = (0.908, 0, 0.0214, 0.3707, 0) is globally
asymptotically stable as shown in Fig. 2. The severe competition between the normal
and tumor cells led to the extinction of normal cells, where the OVT failed in demolish-
ing the tumor and saving the normal cells. At this stage, the life of cancer’s patient can
be at a real risk or he/she may die.

(c) We consider α2 = 0.8, β1 = 0.1, β2 = 0.03, β3 = 0.1, β4 = 0.03, η1 = 0.008,
η2 = 0.01, η3 = 0.006 and η4 = 0.01. For this combination of parameter values, we

obtain R1 = 2.5974 > 1 and R0 = 0.7273 < R1 + κμα1β1G1β3

dd1d2d3
= 5.9274. In

agreement with Theorem 5, the solutions of system (2) globally converge to the tumor-
free equilibrium E2 = (0.385, 0.3195, 0, 0.3846, 0) as shown in Fig. 3. This case reflects
the success of OVT in reducing tumor load to zero before the initiation of CTL immune
response. Thus, the parameters and global stability conditions of this point can help
design oncolytic viruses with better efficacy.

(d) We consider α2 = 0.9, β1 = 0.04, β2 = 0.5, β3 = 0.1, β4 = 0.6, η1 = 0.05,
η2 = 0.008, η3 = 0.005 and η4 = 0.02. These values give ρ = 6 > 1, R0 = 14.6104 >

Rm + μξ2

α3dd2d4(ρ − 1)
= 8.369 and R1 = 0.4156 < Rm = 3.0833. As a result,

the treatment failure equilibrium E3 = (0.3247, 0, 0.0834, 0.4799, 0.0943) is globally
asymptotically stable as shown in Fig. 4. This result supports Theorem 6. This case
reflects the oncolytic virotherapy failure which results in normal cells extinction. At this
point, the tumor is controlled by CTL immune response, which may limit the replication
of oncolytic M1 virus and lead to therapy failure.

(e) We consider α2 = 0.9, β1 = 0.16, β2 = 0.35, β3 = 0.1, β4 = 0.1, η1 = 0.009,
η2 = 0.008, η3 = 0.008 and η4 = 0.01. Then, we get the values of the thresh-
old parameters as ρ = 1.4933 > 1, R0/R1 = 2.5488 > 1, Rn = 10.8 <

R1 + μβ2

α3dd2(R0/R1 − 1)
= 12.0832, R0 = 10.2273 > R1 + κμα1β1G1β3

dd1d2d3
= 9.1306

and R0 < R1 + κμα1β1G1α4β4

α3dd1d2d4(ρ − 1)
= 19.505. In this case, the partial success immune-

free equilibrium E4 = (0.2493, 0.1593, 0.0992, 0.4341, 0) is globally asymptotically
stable. This result supports Theorem 7 and is shown in Fig. 5. At this point and with no
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Fig. 1 The numerical simulations of system (2) when R1 ≤ 1 and R0 ≤ Rl . The competition-free equilib-
rium E0 is globally asymptotically stable. The sub-figures show the spatiotemporal distributions of a nutrient,
b normal cells, c tumor cells, d free M1 virus, and e immune response
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Fig. 2 The numerical simulations of system (2) when ρ > 1,R0/R1 > 1,Rn ≥ R1+ μβ2

α3dd2(R0/R1 − 1)

and R0 ≤ Rm + μξ2

α3dd2d4(ρ − 1)
. The treatment failure immune-free equilibrium E1 is globally asymp-

totically stable. The sub-figures show the spatiotemporal distributions of a nutrient, b normal cells, c tumor
cells, d free M1 virus, and e immune response
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Fig. 3 The numerical simulations of system (2) whenR0 ≤ R1+ κμα1β1G1β3

dd1d2d3
. The tumor-free equilibrium

E2 is globally asymptotically stable. The sub-figures show the spatiotemporal distributions of a nutrient, b
normal cells, c tumor cells, d free M1 virus, and e immune response
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Fig. 4 The numerical simulations of system (2) when R1 ≤ Rm . The treatment failure equilibrium E3 is
globally asymptotically stable. The sub-figures show the spatiotemporal distributions of a nutrient, b normal
cells, c tumor cells, d free M1 virus, and e immune response
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Fig. 5 The numerical simulations of system (2) when ρ > 1 andR0 ≤ R1 + κμα1β1G1α4β4

α3dd1d2d4(ρ − 1)
. The partial

success immune-free equilibrium E4 is globally asymptotically stable. The sub-figures show the spatiotemporal
distributions of a nutrient, b normal cells, c tumor cells, d free M1 virus, and e immune response
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immune response, the viral therapy partially succeeds in saving the normal cells, but it
does not have the full ability to demolish the tumor.

(f) We consider α2 = 0.9, β1 = 0.19, β2 = 0.5, β3 = 0.05, β4 = 0.8, η1 = 0.008,
η2 = 0.008, η3 = 0.005 and η4 = 0.03. With this choice of parameters, we
get ρ = 12.8 > 1, R1 = 4.9351 > Rm = 2.9531 and R0 = 14.6104 >

R1 + κμα1β1G1α4β4

α3dd1d2d4(ρ − 1)
= 8.7588. In agreement with Theorem 8, the coexistence

equilibrium E5 = (0.2027, 0.2085, 0.0781, 0.4339, 0.0415) is globally asymptotically
stable in this case as shown in Fig. 6. The tumor is controlled by immune cells and the
OVT loses its ability to control the tumor. Thus, the presence of CTL immune response
renders the OVT ineffective.

To see the contribution of the distributed delay to the efficacy of OVT, we increase the
value of a2 in model (2). Increasing a2 means decreasing the survival probability of tumor
cells during the delay period. Accordingly, we consider the same parameter values given in
(e) except for a2, where we take it as a2 = 0.8. The solutions in this case tend to the point
with H = 0.2495, N = 0.3758, Y = 0, V = 0.3574 and Z = 0. The associated threshold

parameters are R1 = 4.0125 > 1 and R0 = 6.25 < R1 + κμα1β1G1β3

dd1d2d3
= 9.1306. This

means that increasing a2 switches the system from the partial success equilibrium E4 to the
tumor-free equilibrium E2. The resulting figure is quite similar to Fig. 3.

In order to examine the effect of the distributed delay on the minimum effective dosage
μ0 required to remove the tumor, we first vary a1 in Eq. (24) while the conditions R1 > 1

and R0 ≤ R1 + κμα1β1G1β3

dd1d2d3
are hold. We fix all other parameters in Eq. (24) to the same

values considered in case (e) with a2 = 0.8, where the solutions approach the tumor-free
equilibrium E2. The values of R0 and R1 are computed from Eq. (25). We see from Fig. 7a
that increasing a1, which means decreasing the survival probability of normal cells during
the delay period, increases the minimum amount of dose required to eliminate the tumor. The
next step is to vary a2 in Eq. (24) and fix the values of all other parameters. We observe from
Fig. 7b that increasing a2, which means decreasing the survival probability of tumor cells
during the delay period, decreases the minimum effective dosage μ0. Thus, the delay terms
can have a strong impact on the minimum amount of OVT needed to eradicate the tumor.

The effect of CTL immune response on the concentration of M1 virus can be seen by
varying α4 and fixing all other parameters to the same values considered in case (f). The
result is shown in Fig. 8. Increasing CTL stimulation rate constant α4 in model (2) decreases
the concentration of oncolytic M1 virus. This supports the result of case (f) that CTLs reduce
the efficiency of OVT.

To see the effect of changing diffusion coefficients on global stability, it is sufficient to
consider the impact on normal cells. For this purpose, we change the diffusion coefficient of
normal cells in case (f) to DN = 0.002 and DN = 0.0002. We note from Fig. 9 that changing
the diffusion coefficient does not affect the global stability of the equilibrium, but it only
affects the earlier local behavior of solution.

6 Conclusion

Oncolytic virotherapy is a promising cancer treatment depends on attacking cancer cells by
viruses. Research efforts have focused on solving the different issues of OVT in order to
increase its efficacy. Mathematical models have been used to shorten the path toward the
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Fig. 6 The numerical simulations of system (2) when ρ > 1,R1 > Rm andR0 > R1+ κμα1β1G1α4β4

α3dd1d2d4(ρ − 1)
.

The coexistence equilibrium E5 is globally asymptotically stable. The sub-figures show the spatiotemporal
distributions of a nutrient, b normal cells, c tumor cells, d free M1 virus, and e immune response
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Fig. 7 The effect of varying a1 and a2 on the minimum effective dosage μ0 for the tumor-free equilibrium
E2

0 2 4 6 8 10
0.4
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0.42
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0.43

0.435

Fig. 8 The effect of varying CTL stimulation rate constant α4 on the concentration of M1 virus for the
coexistence equilibrium E5

adoption of this treatment. In this paper, we studied a system of five PDEs with distributed
delays. The model has six equilibrium points which reflect different possible outcomes of
oncolytic virotherapy. These points are

(a) The competition-free equilibrium E0 which always exists and it is globally asymptotically
stable if R1 ≤ 1 and R0 ≤ Rl . At this point, the normal and tumor cells populations are
extinct and the efficacy of oncolytic virotherapy cannot be measured.
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Fig. 9 The effect of changing the diffusion coefficient on the concentration of normal cells. All parameters
are identical to those used in Fig. 6 except for the diffusion coefficient DN

(b) The treatment failure immune-free equilibrium E1 which exists if R0 > Rl . It is
globally asymptotically stable when the conditions ρ > 1, R0/R1 > 1, Rn ≥
R1+ μβ2

α3dd2(R0/R1 − 1)
andR0 ≤ Rm+ μξ2

α3dd2d4(ρ − 1)
are satisfied. The extinction

of normal cells at this point indicates to the fail of oncolytic virotherapy and to the death
of patient.

(c) The tumor-free equilibrium E2 exists when R1 > 1 and it is globally asymptotically

stable if R0 ≤ R1 + κμα1β1G1β3

dd1d2d3
. The extinction of tumor cells at this point reflects

the success of oncolytic viral therapy. Hence, reaching this point is the goal of viral
therapies.

(d) The treatment failure equilibrium E3 which exists if ρ > 1 and R0 > Rm +
μξ2

α3dd2d4(ρ − 1)
. It is globally asymptotically stable if R1 ≤ Rm . This point reflects the

fail of oncolytic virotherapy in the presence of CTL immune response.
(e) The partial success immune-free equilibrium E4 exists if R0/R1 > 1, Rn < R1 +

μβ2

α3dd2(R0/R1 − 1)
and R0 > R1 + κμα1β1G1β3

dd1d2d3
. It is globally asymptotically stable

when the conditions ρ > 1 and R0 ≤ R1 + κμα1β1G1α4β4

α3dd1d2d4(ρ − 1)
are met. At this point,

the oncolytic virotherapy does not have the full efficacy to remove the tumor cells.
(f) The coexistence equilibrium E5 is defined and globally asymptotically stable if ρ > 1,

R1 > Rm and R0 > R1 + κμα1β1G1α4β4

α3dd1d2d4(ρ − 1)
. At this point, the immune response

controls the tumor and prevents the oncolytic M1 virus from completing its role.

We found that the global stability of the equilibrium points of model (2) is ensured for any
diffusion coefficients as long as the conditions given in (a)-(f) are hold. Additionally, some
parameters in the distributed delay terms have a critical impact on the efficacy of oncolytic
virotherapy. These parameters can change the fate of OVT or change the minimum amount
of the therapy required to remove the tumor (Fig. 7). Hence, the values of these parameters
should be carefully chosen and controlled. Moreover, the immune response against tumor
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cells decreases the concentration of oncolytic M1 virus (Fig. 8) and reduces the efficiency of
cancer viral therapy. Thus, our results support the studies which suggest using some drugs
with the oncolytic virotherapy to inhibit the immune response against tumor cells [5,8,13].
This usage of inhibition drugs is equivalent to decreasing the stimulation rate α4β4Y Z in
model (2) or increasing the death rate (d+η4)Z . Comparing with the existing models of OVT,
the model in this paper is the first model addresses with a complete mathematical analysis
the interaction between oncolytic M1 virotherapy and CTLs in the presence of distributed
delay. M1 virus has shown great selectivity and efficacy in treating tumor [41]. Thus, our
results can be subjected to further investigation in order to be used in the development of M1
virotherapy. The results can be used to determine the minimum effective dosage required to
eliminate the tumor in the presence of CTLs and infinite delays (see Remark 2). Our results
can help to estimate the parameters and compute the thresholds needed for full eradication
of tumor. Further, the model can be extended to study the effect of combining oncolytic
M1 virotherapy with chemotherapy. Applying the multiscale modeling approach discussed
in [29] may help to better understand the dynamics of oncolytic virotherapy and its role in
tumor elimination. Besides, considering model (2) with cross-diffusion may give a deeper
insight into some nonlinear features associated with diffusion [52,53]. Performing a linear
stability analysis and investigating the occurrence of bifurcation is another possibility to
understand the role of oncolytic virotherapy in model (2). These points are left as possible
future works.
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