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Abstract In the present paper, the evolutionary behavior of weak shock waves propagating
in an unsteady one-dimensional flow in non-ideal radiating gas is analyzed. The effect of
thermal radiation under optically thin limit is included in the energy equation of the gov-
erning system. The method of asymptotic analysis is used to derive the transport equation
describing the propagation of waves under the high-frequency conditions which is also used
to determine the time of first wave-breaking conditions. The equation governing the propa-
gation of acceleration waves is also obtained. Furthermore, the movement of disturbance in
the shape of saw-tooth profile is discussed. The effect of parameter of non-idealness under
the influence of radiative heat transfer, on the decay of sawtooth profile is analyzed.

1 Introduction

The analysis of asymptotic behaviour of the shock front location and the distribution of
flow parameters in the shock wave zone is of great scientific and physical applications in
the field of nuclear science, plasma physics, astrophysics, geophysics and interstellar gas
masses, etc. At very high temperature, the processes connected with emission dominant or
absorption dominant of radiation influences the motion of gas as it may cause change of
composition of gas. The occurrence of discontinuities is a natural process in several areas
such as photo-ionized gas, space science, space re-entry vehicles, supernova explosions,
collision of galaxies, stellar winds, etc. Heat transfer is a special area of thermal engineering
that concerns the conversion and exchange of thermal heat between physical system. As we
know, heat transfer is classified into three mechanisms such as thermal radiation, thermal
convection and thermal conduction. Here, we study the heat transfer by thermal radiation in
non-ideal gas flow. Heat transfer through radiation takes place in the form of electromagnetic
waves mainly the infrared medium.

At the high temperature and too low density, the behaviour of idealness of the gas will not
remain valid and the gas is governed by non-ideal gas model. The study of shock wave in non-
ideal gas has gained importance in several industrial applications such as nuclear reactions,
chemical processes, aerospace engineering and science, etc. The investigation of shock-
related phenomena in non-ideal radiating gas is more complex phenomena than ideal gas.
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Therefore, in the presence of radiative heat transfer, the flow takes place at high temperature
and behaviour of idealness is no more valid. Hence, due the effect of non-idealness, parameter
in the radiative gas flow produces significant result.

The investigation of asymptotic solution of the system of quasilinear hyperbolic PDE’s
plays important role to yield useful information for the understanding the complex physical
phenomenon involved. By utilizing the theory of progressive wave analysis, the propagation
of weakly non-linear waves has been discussed by several researchers in different gaseous
media. The method of asymptotic analysis has been widely applied to study the propagation
of weak shock waves modeled as the hyperbolic system of PDE’s. Hunter and Keller [1]
used the ray method to obtain weakly nonlinear high-frequency wave solution of hyperbolic
system. Fusco [2], Germain [3], Fusco and Engelbrecht [4], Sharma et al. [5], Singh et
al. [6]and Nath et al. [7,8] have utilized the asymptotic technique to study the non-linear
wave propagation in various gaseous media. Most of the physical phenomena occuring in
the nature are determined with the help of mathematical models in terms of the hyperbolic
system of PDE’s [9,10]. Choquet–Bruhat [11] have used the perturbation method to derive
the shockless solution of hyperbolic system of PDE’s based on single-phase function.

A detailed discussion related to the propagation of discontinuous waves under the influence
of radiation have been investigated by several researchers. In past, many attempts have been
made to analyze the asymptotic properties of weak shock waves in various gasdynamic
regimes where the governing equation is a system of quasilinear hyperbolic PDE’s. The
study of shock-related phenomenon in non-ideal gas in the presence of radiative heat transfer
or magnetic field was discussed by Nath et al. [12–14]. Singh et al. [15] have investigated the
growth and decay behaviour of weak shock waves in an inviscid fluid with an added effect
of magnetic field. Chaturvedi et al. [16] have analyzed the problem of weak shock waves in
dusty gas using the method of wavefront analysis. Singh et al. [17] have applied the method of
wavefront analysis to determine the propagation of weak shock waves in non-ideal gas with
thermal radiation. By utilizing the perturbation theory, Pai and Hsieh [18] have discussed
about an isentropic flow of a radiating gas approximated with optically thin limit. Singh et
al. [19] used the perturbation technique to investigate the problem of propagation of weak
shock waves in non-uniform medium with an added effect of radiation and magnetic field.
Singh et al. [20] have studied the effect of thermal radiation on the propagation of weak
shock waves in magnetogasdynamics. Singh et al. [21] have used an analytical approach to
find an exact solution for the problem of weak shock waves in an ideal fluid with generalized
geometry. Singh et al. [22] have investigated the problem of propagation of planar and non-
planar weak shock waves in a non-ideal medium and obtained the analytical expression for
the shock formation distance. Seth et al. [24–26,35] have analyzed the effect of radiative heat
transfer in unsteady MHD free convection flow and heat and mass transfer flow with Hall
effects. Also, Seth et al. [33,34] and Bhattacharyya et al. [36] have studied the hydromagnetic
natural convection casson fluid flow, entropy generation in hydromagnetic nanofluid flow and
Cattaneo–Christov heat flux on the flow of single- and multi-walled carbon nanotubes using
numerical and analytical approaches. The evolutionary behaviour of acceleration waves in
different gaseous media is presented by Singh et al. [27,28].

In all the above research works, the effect of radiation on the growth and decay process
of the weak shock wave for the planar and non-planar non-ideal gas flow using asymptotic
approach has not been studied by any of the authors. The motive of the present study is
to analyze the propagation of weak shock waves in the non-ideal radiating gas flow. The
effect of radiation on the evolutionary process of the weak shock waves in non-ideal gas
flow is also studied. Also, the influence of non-idealness on the decay process of weak
shock wave is discussed. An asymptotic approach is utilized to investigate the propagation
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of weakly non-linear waves in non-ideal gas with radiation. Also, the medium is considered
to be sufficiently hot and radiative transfer equation is approximated under optically thin
conditions. An evolution equation is derived here which describes the wave phenomenon in
high-frequency domain. Furthermore, the behaviour of disturbances in the form of sawtooth
wave obeying the non-ideal gas law under the influence of radiative transfer is analyzed. The
effect of non-idealness parameter and radiation on the wave profiles is discussed here. Also,
the length and velocity of sawtooth wave in both planar flow and cylindrically symmetric
flow have been discussed here. In this theoretical work, we discuss the effect of radiation on
the evolution of Half-N wave in non-ideal gas, because the study of the effect of radiation
plays an important role in energy transport over vast distances encountered between stellar
objects, and can modify the shock process.

This paper is organized into section as: in Sect. 2, we determine the governing equations
of motion and obtain the characteristics of the fundamental system of PDEs. In Sect. 3, we
discuss the asymptotic solution of governing system of PDEs and obtain the shock formation
time in case of compressive waves. The analysis described in Sect. 3 is used to analyze
the behaviour of acceleration waves is presented in Sect. 4. In Sect. 5, we obtain the R-H
conditions for weak shock waves. The evolutionary behavior of sawtooth wave is discussed
in Sect. 6. The results and conclusion of this work is given in Sects. 7 and 8 respectively.

2 Problem formulation and characteristics

The equations governing the motion of one-dimensional unsteady planar flow and non planar
flow of a non-ideal radiating gas may be presented as below [29,30]

∂ρ

∂t
+ v

∂ρ

∂x
+ ρ

∂v

∂x
+ mρv

x
= 0, (1)

∂v

∂t
+ v

∂v

∂x
+ ρ−1 ∂p

∂x
= 0, (2)

∂p

∂t
+ v

∂p

∂x
+ ρc2

[
∂v

∂x
+ mv

x

]
+ (γ − 1)R = 0, (3)

where ρ and p stand for the fluid density and pressure, respectively, x and t are the spatial
coordinate and time, respectively, v is the fluid velocity along the x-axis, c is the sound
velocity which is defined as c = (

γ p
ρ(1−bρ)

)1/2, with γ as adiabatic index and b is the non-
idealness parameter. Here, R represents the rate of energy loss by the gas per unit volume
through radiation which is expressed as

R = 4kΩ(T 4 − T 4
0 ), (4)

where k is the Planck absorption co-efficient, Ω is the Stefan–Boltzmann constant and T0 is
constant-state temperature. The effect of thermal radiation is approximated under the optically
thin limit. The parameter m takes value 0 and 1 for planar and cylindrically symmetric flows,
respectively. Now, the system of equations (1) to (3) are represented in the following matrix
form as

∂V

∂t
+ P

∂V

∂x
+ Q = 0, (5)
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where P is matrix of order 3 × 3, V and Q are column vectors, written as

V =
⎡
⎣ρ

v

p

⎤
⎦ , P =

⎡
⎣v ρ 0

0 v 1
ρ

0 ρc2 v

⎤
⎦ , Q =

⎡
⎣

mρv
x
0

(γ − 1)R + mρc2v
x

⎤
⎦ . (6)

Now, system (5) can be represented as

V i
t + Pi j V j

x + Qi = 0, i, j = 1, 2, 3. (7)

The eigenvalues of the matrix P can be written as

λ1 = v + c, λ2 = v − c, λ3 = v. (8)

The left eigenvector and right eigenvector corresponding to the eigenvalue v + c of the
matrix P are

lT =
⎡
⎣ 0

ρc
1

⎤
⎦ , r =

⎡
⎣ 1

c
ρ

c2

⎤
⎦ , (9)

where a superscript means transposition. Since the eigenvalues given by (8) are real and dis-
tinct and corresponding eigenvectors are linearly independent, the above system of equations
(7) will be strictly hyperbolic.

3 Progressive wave solutions

In this section, we discuss the asymptotic solution of Eq. (7) which represents the properties of
progressive waves. The asymptotic expansion of the matrix V may be written in the following
form:

V i (x, t) = V i
0 + θV i

1 (x, t, ω) + O(θ2), (10)

where V i
0 is constant solution of Eq. (7) which is known and satisfies the condition Bi (V0) =

0. The other terms of Eq. (10) describe the nature of progressive wave. The preference of the
parameter θ depends on the physical problem considered. Now, we determine θ = τch/τa �
1, where τch is the characteristic time scale of the medium and τa is the attenuation time
scale. The variable ω is represented as ω = f (x, t)/θ , which is known as fast variable,
where f (x, t) is phase function which determines the wave front. It may be observed here
that the condition θ � 1 corresponds to the high-frequency wave propagation where the
attenuation frequency of the signal is very small as compared to the characteristic frequency
of the medium [31].

Now, by introducing the Taylor’s series expansion of Pi j and Qi in the neighborhood of
known uniform solution V i

0 and utilizing Eq. (10), we obtain

Pi j = Pi j
0 + θ

(
∂Pi j

∂V k

)
0
V k

1 + O(θ2), (11)

Qi = θ

(
∂Qi

∂V k

)
0
V k

1 + O(θ2). (12)

Now, using the Eqs. (10) to (12) in (7) and equating to zero the coefficient of θ1 and θ2,
we obtain the equations which are written as

(
Pi j

0 − λδij

) ∂V j
1

∂ω
= 0, (13)
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(
Pi j

0 − λδij

) ∂V j
2

∂ω
+

(
∂V i

1

∂t
+ Pi j

0
∂V j

1

∂x

)
f −1
x + V k

1

(
∂Pi j

∂V k

)
0

∂V j
1

∂ω

+ f −1
x V k

1

(
∂Qi

∂V k

)
0

= 0. (14)

Here, δij is the Krönecker delta, λ = − ft/ fx , and the subscript 0 shows that the quantity
involved is calculated at constant state V0. From Eq. (13), the characteristic polynomial is
written as λ2(λ2 − c2

0) = 0, where the eigenvalues ±c0 of P0 are non-zero. The left and
right eigenvectors of P0 corresponding to eigenvalue λ = c0, are written with the subscript

0 from Eq. (4). Now, from Eq. (13), we observe that
∂V1

∂ω
is collinear to r0, hence V1 can be

expressed as
V1(x, t, ω) = β(x, t, ω)r0 + S(x, t), (15)

which describes the solution of Eq. (13). Here, β(x, t, ω) is the amplitude factor which is to
be calculated and the components of the vector S, i.e. Si are constants of integration and are
not of the nature of progressive wave. Therefore, it may be equated to zero. Hence, the phase
function, i.e. f (x, t) is written in the following form:

ft + c0 fx = 0, (16)

and if f (x, 0) = x − x0, then

f (x, t) = (x − x0) − c0t. (17)

Now, premultiplying Eq. (14) is by li and after using Eq. (16) in resulting expression, we
have the following equation for β, which is used to analyze the evolution of the disturbance

∂β

∂τ
+ A0β

∂β

∂ω
+ B0β = 0, (18)

where
∂

∂t
+ c0

∂

∂x
, is the ray derivative which is taken along the ray direction.

Here,

A0 = rk0

(
∂(v + c)

∂V k

)
0

= (γ + 1)c0

2ρ0(1 − bρ0)
> 0, (19)

B0 = (li0r
i
0)

−1
0

(
(l j0r

k
0 )

∂Qi

∂V k

)
0

= mc0

2x
+ Λ

c2
0(ρ0(1 − bρ0))

, (20)

where Λ = 8k(γ − 1)α, represents the effect of thermal radiation with α = σ0(γ − 1)T 4
0 , as

the Boltzmann number representing the rate of convective energy flux to the black body heat

flux. Here, the quantity (
Λ

c2
0ρ0(1 − bρ0)

)−1, has the dimension of time and it can be taken as

having the attenuation time τa characterizing the medium. Eq. (18) is hyperbolic in nature
and its characteristic curve can be written as

ω = ω0 + τ A0

(
−Λ

c2
0ρ0(1 − bρ0)

exp

[
−Λθ

c2
0ρ0(1 − bρ0)

])
φ(x0, ω0), (m = 0) (21)
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ω = ω0 +
A0φ(x0, ω0)

x0

c0
exp

[
Λx0

c3
0ρ0(1 − bρ0)

](
−1 + Er f

[
Λ

c3
0ρ0(1 − bρ0)

])

(
x0

Π(x0 + c0τ)

)1/2
(

Λ(x0 + c0τ)

c3
0ρ0(1 − bρ0)

) (m = 1).

(22)

Furthermore, the existence of an envelope of the characteristics given by Eqs. (21) and (22)
provides the information about the shock formation. Therefore, the characteristics satisfying

the condition
∂φ

∂ω0
< 0, i.e. τ > 0 will generate the shock wave. The time when first shock

is formed in case of compressive waves can be written as

τsh = min

(
−Λ

c2
0ρ0(1 − bρ0)

exp

[
−Λτ

c2
0ρ0(1 − bρ0)

] ∣∣∣∣ ∂φ

∂ω0

∣∣∣∣
)−1

,

(for plane flow) (23)

τsh = min

(
x0

c0

[
1

x0

[
A0

x1/2
0 π1/2

Λ
c2

0ρ0(1 − b)

exp

[
Λx0

B1

] ∣∣∣∣ ∂φ

∂ω0

∣∣∣∣
(

−1 + Er f

[
Λ

B1

])]−1/2

− 1

])
,

(for cylindrically symmetric flow) (24)

where B1 = c3
0ρ0(1 − bρ0).

4 Acceleration waves

In this section, the analysis presented in Sect. 3 is used to analyze the behaviour of accel-
eration waves. We represent the acceleration front by the curve f (x, t) = 0. Velocity is
continuous across acceleration front but its derivatives admit jump discontinuities. Now, in
the neighbourhood of the acceleration front, the velocity v can be written as

v = θv1(x, t, ω) + O(θ2). (25)

Here, v1 = 0 and v1 = O(ω), for ω < 0 and ω > 0, respectively. From Eq. (15), v1 is an
element of column vector V1. Therefore, we obtain

β(x, t, ω) =
{

0, if ω < 0,

ωα(x, t) + O(ω2), if ω > 0,
(26)

where α = (
ρ0

c0
σ) with σ = [ ∂v

∂x
], represents the jump in velocity gradient across the

acceleration front.
In view of Eq. (26), Eq. (18) results in the following Bernoulli-type ordinary differential

equation at the front f (x, t) = 0, i.e. ω = 0

dσ

dt
+ B0σ + Π0σ

2 = 0. (27)

Here, Π0 = (γ + 1)

2(1 − bρ0)
and B0 = mc0

2x
+ Λ

c2
0ρ0(1 − bρ0)

.
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The solution of differential equation Eq. (27) for m = 0 and m = 1, respectively, is
obtained as

σ =
σ0 exp

[
−Λt

c2
0ρ0(1 − bρ0)

]

1 + σ0Π0
c2

0ρ0(1 − bρ0)

Λ

(
1 − exp

[
−Λt

c2
0ρ0(1 − bρ0)

]) , (m = 0), (28)

σ =
σ0

(
1 + c0t

x0

)−1/2

exp

[
−Λt

c2
0ρ0(1 − bρ0)

]

1 + σ0Π0x
1/2
0

(
πc0ρ0(1 − bρ0)

Λ

)1/2

exp

[
Λx0

B1

]
Erfc

[
Λx0

B1

]1/2

∗ K

,

(m = 1), (29)

where, B1 = c3
0ρ0(1 − bρ0) and K =

⎛
⎜⎜⎜⎝1 −

Erfc

[
Λ(x0 + c0t)

B1

]1/2

Erfc

[
Λx0

B1

]1/2

⎞
⎟⎟⎟⎠.

5 Weak shock

The aforementioned analysis represents that after a finite time a compressive pulse always
culminates into shock wave, however it may be weak initially. The flow variables ahead of the
shock wave are represented by the subscript 0 and behind of the shock wave are represented

by the subscript 1. Now, by introducing the shock strength parameter δ = (ρ1 − ρ0)

ρ0
, flow

and field variables satisfy the following Rankine–Hugoniot conditions

ρ1 = ρ0(1 + δ), v1 = δG

(1 + δ)
, p1 = p0 + δ

(1 + δ)
ρ0G

2, (30)

where the shock velocity G and shock strength parameter δ are related by

G2 = 2c2
0(1 + δ)

2(1 − bρ0δ) − δ(γ − 1)(1 + bρ0)
. (31)

For a weak shock wave δ � 1, the first approximation of (30) and (31) yield

ρ1 = ρ0(1 + δ), v1 = c0δ, p1 = p0(1 + γ δ), (32)

G = c0

(
1 + Π0δ

2

)
. (33)

6 Behaviour of weak shock wave in the form of sawtooth wave

The sawtooth wave (half N-wave) is generated after traveling the long distance from the
body moving with supersonic speed [10] . As a result the shock wave propagated initially
becomes sufficiently weak and one may utilize the weak shock wave relations Eq. (32) [32].
Therefore, we consider that the shock wave is sufficiently weak at the beginning and analyze
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the advancement of disturbance which is represented in the shape of half N-wave depicted in
Fig. 1. In the beginning, the left segment of the half N-wave placed at point x0 and travels with
speed c0 in the medium at rest, however, the right segment of half N-wave placed initially at
point xs which moves faster. Let us consider that L0 is the initial length of the half N-wave.
By hiding the subscript 1, we denote v and c by the state at the rear side of the shock, whose
position at time t is given as:

xs(t) = x0 + c0t + L(t),

where L(t) represents the length of the half N-wave at any time t . Then

G = dxs
dt

= c0 + dL

dt
. (34)

Now, with the help of (32) and (33), we have

G = c0 + vΠ0

2
. (35)

In the half N-wave, the fluid velocity v with constant
∂v

∂x
can be written as

v = σ L(t). (36)

Here, σ = (
∂v

∂x
)x−x0=c0t , is the slope of half N-wave at any time t which is given by

Eqs. (28) and (29). Now by introducing Eq. (36) in Eq. (35) and comparing the resulting
expression with Eq. (34), we get the following equation

dL

dt
= σ LΠ0

2
. (37)

Let us consider that σ0, L0 and G0 represent the value of σ , L and G at time t = 0
respectively. Further, when we solve the Eqs. (35) and (36) at time t = 0, we obtain the
following relation

σ0 = 2(G0 − c0)

L0Π0
. (38)

Now, with the help of Eqs. (28) and (37), we obtain the length of sawtooth wave in the
following form

L = L0

[
1 + Π0σ0c2

0ρ0(1 − b)

Λ

(
1 − exp

[
−Λt

c2
0ρ0(1 − b)

])]1/2

, (m = 0),

(39)

L = L0

⎡
⎣1 + Π0σ0t x

−1/2
0

⎛
⎝1 + σ0Π0

(
πc0ρ0(1 − b)

Λ

)1/2

exp

[
Λx0

B1

]
Er f c

[
Λx0

B1

]1/2

∗ K

)]1/2

, (m = 1), (40)

where K =

⎛
⎜⎜⎜⎝1 −

Er f c

[
Λ(x0 + c0t)

B1

]1/2

Er f c

[
Λx0

B1

]1/2

⎞
⎟⎟⎟⎠ and b = bρ0.
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Fig. 1 Formation and decay of sawtooth wave (half N-wave)
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Furthermore, by utilizing the Eqs. (28), (39) and (40) in Eq. (36), the velocity of half
N-wave is given by

v

v0
=

exp

[
−Λt

c2
0ρ0(1 − b)

]

[
1 + Π0σ0c2

0ρ0(1 − b)

Λ

(
1 − exp

[
−Λt

c2
0ρ0(1 − b)

])]1/2 , (m = 0), (41)

v

v0
=

exp

[
−Λt

c2
0ρ0(1 − b)

](
1 + c0t

x0

)−1/2

⎡
⎣1 + Π0σ0t x

−1/2
0

⎛
⎝1 + σ0Π0

(
πc0ρ0(1 − b)

Λ

)1/2

exp

[
Λx0

B1

]
Er f c

[
Λx0

B1

]1/2

∗ K

⎞
⎠

⎤
⎦

1/2 ,

(m = 1). (42)

7 Results and discussion

The length and velocity curves of the sawtooth wave (half N- wave) for planar and cylindri-
cally symmetric flows are given by Eq. (39) to Eq. (42). Corresponding computed values are
presented in Figs. 2, 3, 4, 5, 6 and 7 for different values of parameters of non-idealness and
radiative heat transfer. Here, we have used MATHEMATICA 11.1 to compute the values.
The effect of radiation and non-idealness enters into the solution through the parameters Λ

and b, respectively. It is noticed here that the length of half N-wave increases faster with
respect to time in planar flow as compared to cylindrically symmetric flow.

Figures 2 and 3 represent the variation of length of half N-wave for planar and cylindrically
symmetric flows respectively under the effect of non-idealness parameter and radiation. We
observe that the presence of non-idealness parameter causes to enhance the length of half
N-wave. The effect of increasing values of non-idealness parameter is to further increase the
length of half N-wave i.e. it will enhance the process of decay of shock wave. The curves 3
and 4 represent that the effect of non-idealness parameter causes to increase the length of half
N-wave faster as compared to in case of radiative transfer. Further, the effect of non-idealness
is to destabilize the shock wave whereas the effect of radiation is to stabilize the shock wave
in due course of time.

Figures 4 and 5 represent the velocity of sawtooth wave for planar and cylindrically
symmetric flow respectively under the effect of non-idealness parameter and radiation. The
velocity of half N-wave decreases faster with time in cylindrically symmetric flow as com-
pared to planar flow . It is noticed here that the effect of increasing values of non-idealness
parameter is to decrease the velocity of half N-wave, i.e. it will enhance the process of decay
of shock wave. We observe that the addition of radiation effect accelerates the decay of half
N-wave. The combined effect of radiation and non-idealness causes the decaying process of
the shock wave to further hastened.

Figures 6 and 7 represent the effect of radiation on the length and velocity of sawtooth wave
in the presence of non-idealness parameter b = 0.4 for planar and cylindrically symmetric
flows respectively. We note that the effect of increasing values of radiation parameter is
to decrease the length of half N-wave whereas the same effect gives a decreasing trend in
the velocity of sawtooth wave. Hence, the radiation has the stabilizing effect on the shock.
Furthermore, the study of the effect of interaction of non-idealness of the gas and radiative
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Fig. 2 Length L/L0 of sawtooth wave (half N-wave) with respect to time t for planar flow

Fig. 3 Length L/L0 of sawtooth wave (half N-wave) with respect to time t for cylindrically symmetric flow

heat transfer is of special interest to the physicist working in the area of space science,
astrophysics and high temperature gas dynamic phenomenon. Furthermore, in the absence
of radiative heat transfer results obtained here agree closely with the earlier results [6]. Also,
it is found that the result obtained in this study for b̄ = 0 is in close agreement with the result
presented in the literature [37] in the absence of magnetic field.

8 Conclusion

The method of progressive wave analysis is used to study the main features of weakly non-
linear waves propagating in a compressible, inviscid non-ideal radiating gas flow. Here, a
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Fig. 4 Variation of velocity v/v0 of sawtooth wave (half N-wave) with respect to time t for planar flow

Fig. 5 Variation of velocity v/v0 of sawtooth wave (half N-wave) with respect to time t for cylindrically
symmetric flow

sufficiently weak shock is taken at the front and we analyze the motion of the weak shock
wave in the form of sawtooth wave (half-N wave). Further, an evolution equation is derived
which describes the propagation of disturbance in high frequency domain and determine the
condition for the formation of shock wave at a finite time. For the effect of radiation, the
radiative transfer equation is approximated under the optically thin limit. We analyze the
length and velocity of sawtooth (half N-wave) for planar and cylindrically symmetric flows
in non-ideal radiating gas. We observed that the effect of increasing values of non-idealness
parameter is to further increase the length of half N-wave, i.e. it will enhance the process of
decay of shock wave. We analyzed that the effect of increasing values of radiation parameter
is to decrease the length of half N-wave whereas the same effect gives a decreasing trend in
the velocity of sawtooth wave. Furthermore, the length of half N-wave increases faster with
respect to time in planar flow as compared to cylindrically symmetric flow. The effect of
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Fig. 6 Length L/L0 of sawtooth wave (half N-wave) with respect to time t in the presence of non-idealness
parameter b = 0.4

Fig. 7 Velocity v/v0 of sawtooth wave (half N-wave) with respect to time t in the presence of non-idealness
parameter b = 0.4

increasing values of non-idealness parameter is to decrease the velocity of half N-wave, i.e.
it will enhance the process of decay of shock wave. The velocity of half N-wave decreases
faster with time in cylindrically symmetric flow as compared to planar flow. The addition
of radiation effect accelerates the decay of half N-wave. We observe here that the combined
effect of non-idealness and radiation causes to further enhance the decay process of sawtooth
wave. Hence, the non-idealness parameter is to destabilize the shock wave whereas the effect
of radiation is to first destabilize the shock and then stabilize the shock in due course of time.
Furthermore, the results obtained here were validated with the earlier works existing in the
literature.
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