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Abstract The residual symmetry for the (2 + 1)-dimensional negative-order modified
Calogero–Bogoyavlenskii–Schiff (nmCBS) equation is derived from the truncated Painlevé
expansion, and is extended to the multiple residual symmetries, which can be transformed to
Lie point symmetries by introducing a suitable prolonged system. The nth Bäcklund trans-
formation (BT) related to multiple residual symmetries is given in terms of determinant.
More importantly, we obtain the explicit soliton-cnoidal wave interaction solution from a
consistent differential equation.

1 Introduction

The (2+1)-dimensional negative-order modified Calogero–Bogoyavlenskii–Schiff (nmCBS)
equation [1] reads:

uy + uxxt − 4u2ut − 4ux

∫
uutdx = 0, (1.1)

or equivalently

uy + uxxt − 4u2ut − 4uxv = 0,

uut − vx = 0.
(1.2)

In [1], the (2 + 1)-dimensional nmCBS equation (1.1) was derived by means of the inverse
recursion operator [2,3] of the modified CBS equation, and has multiple soliton solutions.
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It is known that symmetry analysis [4,5] and Painlevé analysis [6,7] are effective methods
to find exact solutions of nonlinear evolution equations (NLEEs) which model various non-
linear phenomena in physics and other related fields [8–12]. Recently, the study of nonlocal
symmetry whose infinitesimal generator depends on integral of the dependent variable in a
NLEE has attracted a lot of attention, since it can be used to generate exact interaction solu-
tions between a soliton and other types of nonlinear waves. A few years ago, Lou [13] pointed
out the connection of nonlocal symmetry with the Painlevé analysis, that is, the residue with
respect to the singularity manifold in the truncated Painlevé expansion corresponds to a non-
local symmetry. Such type of nonlocal symmetry is referred to as the residual symmetry. One
can use it to find finite symmetry transformation and novel symmetry reduction through the
localization of the residual symmetry [14–19]. The nth BT can be found after extending the
residual symmetry to multiple residual symmetries [13,20–25]. Hinting at the novel results of
nonlocal symmetry reduction, Lou [26] further established the consistent Riccati expansion
(CRE)/consistent tanh expansion (CTE) method for obtaining abundant interaction solutions,
especially the interaction solution between a soliton and the cnoidal periodic wave [26–34].
In addition, by applying this method, we can identify integrability of NLEEs in the sense of
having the CRE/CTE.

In this article, we study the residual symmetry and soliton-cnoidal wave interaction solu-
tion for the (2 + 1)-dimensional nmCBS equation (1.1). The outline of the present paper is
organized as follows. In Sect. 2, the residual symmetry of the (2 + 1)-dimensional nmCBS
equation is derived through the truncated Painlevé expansion method. Based on the residual
symmetry, we obtain the nth BT in the form of determinant. In Sect. 3, we construct the soliton
and soliton-cnoidal wave interaction solutions for the (2 + 1)-dimensional nmCBS equation
by solving a consistent differential equation, which is obtained by performing a straighten-
ing transformation to the Schwarzian nmCBS equation. Finally, we give some conclusions
in Sect. 4.

2 Residual symmetry and nth BT

For the (2 + 1)-dimensional nmCBS system (1.2), its truncated Painlevé expansion is of the
form:

u = u0

φ
+ u1, v = v0

φ2 + v1

φ
+ v2, (2.1)

where φ = φ(x, y, t) is the singular manifold, and u0, u1, v0, v1 and v2 are functions of
x , y and t , which are determined by vanishing all the coefficients of each power of 1

φ
after

substituting (2.1) into system (1.2). Some computations give us that:

u0 = φx , v0 = 1

2
φxφt ,

u1 = −1

2

φxx

φx
, v1 = −1

2
φxt ,

v2 = 1

4

φy + φxxt

φx
− 1

4

φxxφxt

φ2
x

,

(2.2)
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and the following nonauto-BT

u = −1

2

φxx

φx
,

v = 1

4

φy + φxxt

φx
− 1

4

φxxφxt

φ2
x

,

(2.3)

between the (2 + 1)-dimensional nmCBS system (1.2) and its Schwarzian form

St + Kx = 0, K ≡ φy

φx
, S ≡ φxxx

φx
− 3

2

φ2
xx

φ2
x

. (2.4)

This form is invariant under the Möbius transformation

φ → a + bφ

c + dφ
, (ad �= bc), (2.5)

which implies that the Schwarzian equation (2.4) admits the following Möbius transformation
symmetry

σφ = −φ2. (2.6)

Applying the residual symmetry theorem [13] to the (2 + 1)-dimensional nmCBS system
(1.2), it is inferred that the residual symmetry of system (1.2) is given by

(
σ u, σ v

) =
(

φx ,−1

2
φxt

)
. (2.7)

We introduce three functions g, h and p defined as

g = φx , h = φt , p = gt . (2.8)

The nonlocal residual symmetry (2.7) can now be localized to a local Lie point symmetry

σ u = g, σ v = −1

2
p, σ φ = −φ2,

σ g = −2φg, σ h = −2φh, σ p = −2(φp + gh),

(2.9)

for the prolonged system (1.2), (2.3) and (2.8). Solving the corresponding initial value prob-
lem

dũ(ε)

dε
= g̃(ε), ũ(0) = u,

dṽ(ε)

dε
= −1

2
p̃(ε), ṽ(0) = v,

dφ̃(ε)

dε
= −φ̃(ε)2, φ̃(0) = φ,

dg̃(ε)

dε
= −2φ̃(ε)g̃(ε), g̃(0) = g,

dh̃(ε)

dε
= −2φ̃(ε)h̃(ε), h̃(0) = h,

d p̃(ε)

dε
= −2(φ̃(ε) p̃(ε) + g̃(ε)h̃(ε)), p̃(0) = p,

(2.10)

we get the finite symmetry transformation, which is stated in the following theorem.
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Theorem 2.1 If {u, v, φ, g, h, p} is a solution of the prolonged system (1.2), (2.3) and
(2.8), then so is {ũ(ε), ṽ(ε), φ̃(ε), g̃(ε), h̃(ε), p̃(ε)}, and it is given by

ũ(ε) = u + εg

1 + εφ
, ṽ(ε) = v − εp

2(1 + εφ)
+ ε2gh

2(1 + εφ)2 ,

φ̃(ε) = φ

1 + εφ
, g̃(ε) = g

(1 + εφ)2 ,

h̃(ε) = h

(1 + εφ)2 , p̃(ε) = p

(1 + εφ)2 − 2εgh

(1 + εφ)3 ,

(2.11)

where ε is an arbitrary group parameter.

Due to the linearity of the symmetry equation and existence of an infinite number of
solutions of the Schwarzian equation (2.4), we can obtain an infinite number of residual
symmetries

σ u
n =

n∑
i=1

ciφi,x , σ v
n = −1

2

n∑
i=1

ciφi,xt , n = 1, 2, . . . , (2.12)

where φi (i = 1, . . . , n) represent different solutions of the Schwarzian equation (2.4). The
symmetries (2.12) can be localized in a similar way, the corresponding result is illustrated as
follows.

Theorem 2.2 If {u, v, φi , gi , hi , pi , i = 1, . . . , n} is a solution of the prolonged system

uy + uxxt − 4u2ut − 4uxv = 0, (2.13a)

uut − vx = 0, (2.13b)

u = −1

2

φi,xx

φi,x
, (2.13c)

v = 1

4

φi,y + φi,xxt

φi,x
− 1

4

φi,xxφi,xt

φ2
i,x

, (2.13d)

gi = φi,x , hi = φi,t , pi = gi,t , (2.13e)

then the symmetries (2.12) are transformed to local Lie point symmetries

σ u =
n∑
j=1

c j g j ,

σ v = −1

2

n∑
j=1

c j p j ,

σ φi = −ciφ
2
i −

n∑
j �=i

c jφiφ j ,

σ gi = −2ciφi gi −
n∑
j �=i

c j (φi g j + φ j gi ),
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σ hi = −2ciφi hi −
n∑
j �=i

c j (φi h j + φ j hi ),

σ pi = −2ci (φi pi + gi hi ) −
n∑
j �=i

c j (φi p j + φ j pi + gi h j + g j hi ). (2.14)

Proof The linearized system of the prolonged system (2.13) is written as

σ u
y + σ u

xxt − 4u(uσ u
t + 2utσ

u) − 4(vσ u
x + uxσ

v) = 0, (2.15a)

uσ u
t − σv

x + utσ
u = 0, (2.15b)

σ u = −1

2

σ
φi
x x

φi,x
+ 1

2

φi,xxσ
φi
x

φ2
i,x

, (2.15c)

σv = 1

4

σ
φi
y + σ

φi
x xt

φi,x
− 1

4

φi,xxσ
φi
xt + φi,xtσ

φi
x x + (φi,y + φi,xxt )σ

φi
x

φ2
i,x

+ 1

2

φi,xxφi,xtσ
φi
x

φ3
i,x

,

(2.15d)

σ gi = σφi
x , σ hi = σ

φi
t , σ pi = σ

gi
t , i = 1, . . . , n. (2.15e)

Without loss of generality, we fix k, ck �= 0 while c j = 0, j �= k in Eq. (2.12). From (2.9)
we get

σ u = ckgk, (2.16a)

σv = −1

2
ck pk, (2.16b)

σφk = −ckφ
2
k , (2.16c)

σ gk = −2ckφkgk, (2.16d)

σ hk = −2ckφkhk, (2.16e)

σ pk = −2ck(φk pk + gkhk). (2.16f)

For j �= k, eliminating u and v through Eqs. (2.13c) and (2.13d) by taking i = k and i = j ,
respectively, we deduce that

φ j,xx = φk,xxφ j,x

φk,x
,

φ j,y = φk,yφ j,x

φk,x
.

(2.17)

Substituting (2.16a) and (2.16b) into (2.15c) and (2.15d) with i = j , respectively, and
eliminating φ j,xx and φ j,y by means of (2.17), we find

σφ j = −ckφ jφk . (2.18)

Using (2.15e) with i = j , we have

σ g j = −ck(φ j gk + φkg j ),

σ h j = −ck(φ j hk + φkh j ),

σ p j = −ck(φ j pk + φk p j + g j hk + gkh j ).

(2.19)

Taking linear superpositions of the above results for k = 1, 2, . . . , n, the proof of Theorem 2.2
is then completed. ��
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The initial value problem corresponding to Lie point symmetries (2.14) reads

dũ(ε)

dε
=

n∑
j=1

c j g̃ j (ε),

dṽ(ε)

dε
= −1

2

n∑
j=1

c j p̃ j (ε),

dφ̃i (ε)

dε
= −ci φ̃i (ε)

2 −
n∑
j �=i

c j φ̃i (ε)φ̃ j (ε),

dg̃i (ε)

dε
= −2ci φ̃i (ε)g̃i (ε) −

n∑
j �=i

c j
(
φ̃i (ε)g̃ j (ε) + φ̃ j (ε)g̃i (ε)

)
,

dh̃i (ε)

dε
= −2ci φ̃i (ε)h̃i (ε) −

n∑
j �=i

c j
(
φ̃i (ε)h̃ j (ε) + φ̃ j (ε)h̃i (ε)

)
,

d p̃i (ε)

dε
= −2ci

(
φ̃i (ε) p̃i (ε) + g̃i (ε)h̃i (ε)

)

−
n∑
j �=i

c j
(
φ̃i (ε) p̃ j (ε) + φ̃ j (ε) p̃i (ε) + g̃i (ε)h̃ j (ε) + g̃ j (ε)h̃i (ε)

)
,

ũ(0) = u, ṽ(0) = v, φ̃i (0) = φi ,

g̃i (0) = gi , h̃i (0) = hi , p̃i (0) = pi , i = 1, . . . , n.

(2.20)

Solving the above initial value problem, we obtain the following result which describes nth
BT for the prolonged system (2.13).

Theorem 2.3 If {u, v, φi , gi , hi , pi , i = 1, . . . , n} is a solution of the prolonged system
(2.13), then so is {ũ(ε), ṽ(ε), φ̃i (ε), g̃i (ε), h̃i (ε), p̃i (ε), i = 1, . . . , n}, and it is given by

ũ(ε) = u + (ln |M |)x , ṽ(ε) = v − 1

2
(ln |M |)xt ,

φ̃i (ε) = |Mi |
|M | , g̃i (ε) = φ̃i,x (ε),

h̃i (ε) = φ̃i,t (ε), p̃i (ε) = φ̃i,xt (ε),

(2.21)

where

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c1εφ1 + 1 c1εω12 · · · c1εω1 j · · · c1εω1n

c2εω12 c2εφ2 + 1 · · · c2εω2 j · · · c2εω2n

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

c j εω1 j c j εω2 j · · · c j εφ j + 1 · · · c j εω jn

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

cnεω1n cnεω2n · · · cnεω jn · · · cnεφn + 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

n×n

, ωi j = √
φiφ j ,
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Mi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c1εφ1 + 1 c1εω12 · · · c1εω1,i−1 c1εω1i c1εω1,i+1 · · · c1εω1n

c2εω12 c2εφ2 + 1 · · · c2εω2,i−1 c2εω2i c2εω2,i+1 · · · c2εω2n

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

ci−1εω1,i−1 ci−1εω2,i−1 · · · ci−1εφi−1 + 1 ci−1εωi−1,i ci−1εωi−1,i+1 · · · ci−1εωi−1,n

ω1i ω2i · · · ωi−1,i φi ωi,i+1 · · · ωin

ci+1εω1,i+1 ci+1εω2,i+1 · · · ci+1εωi−1,i+1 ci+1εωi,i+1 ci+1εφi+1 + 1 · · · ci+1εωi+1,n

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

cnεω1n cnεω2n · · · cnεωi−1,n cnεωin cnεωi+1,n · · · cnεφn + 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

n×n

.

3 Soliton and soliton-cnoidal wave interaction solutions

We know that the CTE is connected to the truncated Painlevé expansion via the following
straightening transformation

φ = d1

d2 tanh( f ) + d3
, (d1, d2 �= 0). (3.1)

This transformation allows us to reduce the truncated Painlevé expansion (2.1) and
Schwarzian equation (2.4) to the CTE solution

u = fx tanh( f ) − 1

2

fxx
fx

,

v = −1

2
fx ft sech2( f ) − 1

2
fxt tanh( f ) + 1

4

fy + fxxt
fx

− 1

4

fxx fxt
f 2
x

,

(3.2)

and a new consistent equation
(

fxxx
fx

− 3

2

f 2
xx

f 2
x

)
t
+

(
fy
fx

)
x

− 4 fx fxt = 0, (3.3)

respectively. Once the solution of the consistent equation (3.3) is given, explicit expressions
for u and v can be deduced. In the following, we provide two kinds of exact solutions of the
(2 + 1)-dimensional nmCBS system (1.2), including the soliton solution and soliton-cnoidal
wave interaction solution.

3.1 Soliton solution

Equation (3.3) has a quite trivial straight-line solution

f = κ1x + l1y + ω1t + ω0, (3.4)

which results in the following single soliton solution

u = κ1 tanh(κ1x + l1y + ω1t + ω0),

v = −1

2
κ1ω1 sech2(κ1x + l1y + ω1t + ω0) + l1

4κ1
.

(3.5)

3.2 Soliton-cnoidal wave interaction solution

To construct the soliton-cnoidal wave interaction solution, we take the solution of Eq. (3.3)
to be

f = κ1x + l1y + ω1t + F(κ2x + l2y + ω2t) ≡ κ1x + l1y + ω1t + F(ξ). (3.6)
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The substitution of (3.6) into the consistent equation (3.3) produces the following elliptic
equation

F2
1,ξ = a0 + a1F1 + a2F

2
1 + a3F

3
1 + 4F4

1 , F1 ≡ Fξ , (3.7)

with

a0 = 2κ2
1 (C1 − C2κ1)

κ2
− κ1(κ1l2 − κ2l1)

κ4
2 ω2

,

a1 = 2κ1(2C1 − 3C2κ1) − κ1l2 − κ2l1
κ3

2 ω2
,

a2 = 2κ3
2 (C1 − 3C2κ1) + 4κ2

1

κ2
2

, a3 = 2(4κ1 − C2κ
3
2 )

κ2
.

(3.8)

Then, (3.6) leads to the interaction solution between a soliton and the F function wave
solution of system (1.2) of the form

u = (κ1 + κ2F1) tanh(κ1x + l1y + ω1t + F) − κ2
2 F1,ξ

2(κ1 + κ2F1)
,

v = −1

2
(κ1 + κ2F1)(ω1 + ω2F1) sech2(κ1x + l1y + ω1t + F)

−1

2
κ2ω2F1,ξ tanh(κ1x + l1y + ω1t + F)

−κ3
2 ω2F2

1,ξ − κ2l1F1 − κ1l1

4(κ1 + κ2F1)2 + κ2
2 ω2F1,ξξ + l2F1

4(κ1 + κ2F1)
. (3.9)

It is well known that the elliptic equation (3.7) has Jacobi elliptic functions solution. We take
only a simple solution of elliptic equation (3.7) as

F1 = b0 + b1sn(b2ξ,m), (3.10)

where sn(b2ξ,m) is the Jacobi elliptic sine function. Substituting (3.10) and (3.8) into (3.7)
and vanishing the coefficients of different powers of sn(b2ξ,m), cn(b2ξ,m) and dn(b2ξ,m)

give rise to

C1 = −4b2
0 + b2(4b0 − 4b2 + b2m2)

2κ2
, C2 = 2(2b0 − b2)

κ2
2

,

κ1 = −1

2
κ2(2b0 + b2), l1 = −1

2
l2(2b0 + b2) − κ2

2 ω2b
3
2(m

2 − 1), b1 = 1

2
b2m.

(3.11)

We thus have the following exact soliton-cnoidal wave interaction solution of the (2 + 1)-
dimensional nmCBS system

u = −1

2
κ2b2(mS − 1) tanh(X) − 1

2

κ2b2mCD

mS − 1
,

v = −1

8
κ2b2(mS − 1)[2ω1 + ω2(2b0 + b2mS)] sech2(X) + 1

4
κ2ω2b

2
2mCD tanh(X)

+ l2
4κ2

− 1

4

κ2
2 ω2b2

2mD2
[
S(mS − 1) + mC2

]
κ2(mS − 1)2 − 1

4

κ2ω2b2
2(m

3SC2 + 2m2 − 2)

mS − 1
,

(3.12)
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Fig. 1 The soliton-cnoidal wave interaction solution (3.12) with the parameters κ1 = −1.74, κ2 = 1.2,
l1 = −1.4670776, l2 = 2, ω1 = 1, ω2 = 1.5, b0 = 1, b1 = 0.135, b2 = 0.9, m = 0.3 and γ = 0. a, e The
profiles at t = 0 and y = 0, b, f the profiles at t = 0 and x = 0, c, g the three-dimensional plots, d, h the
density plots
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where S = sn(b2ξ,m), C = cn(b2ξ,m), D = dn(b2ξ,m) and X = 1
2κ2b2x +

1
2b2[2κ2

2 ω2b2
2(m

2 − 1) + l2]y − (ω1 + ω2b0)t − 1
2 ln(D − mC) − γ .

We illustrate the interaction solution (3.12) graphically in Fig. 1. As seen in the figure, a
soliton propagates on the cnoidal periodic wave background. This kind of interaction exists
in some physical systems, such as the Fermionic quantum plasma system, the unmagnetized
plasma system and the magnetized electron-positron-ion plasma system [35–38].

4 Conclusions

In the present paper, we first derive the residual symmetry using the truncated Painlevé
expansion. Then by introducing three functions, this residual symmetry is converted into
the Lie point symmetry and the finite symmetry transformation is derived. Furthermore, the
multiple residual symmetries, which are a linear superposition of residual symmetries with
different solutions of the Schwarzian nmCBS equation, are provided. Analogously, they are
also transformed to Lie point symmetries through introducing more functions and nth BT
in the determinant form is presented. Finally, via a straightening transformation, we directly
derive the CTE solution and a new consistent equation, which yield the exact soliton and
soliton-cnoidal wave interaction solutions.

It is well known that many physically important systems are connected to negative-
order equations via reciprocal transformations, such as the Camassa–Holm equation and the
negative-order KdV equation [39], the Degasperis–Procesi equation and the negative-order
Kaup–Kupershmidt equation [40], the Novikov equation and the negative-order Sawada–
Kotera equation [41]. Whether one can find a physically meaningful system reciprocally
linked to the (2 + 1)-dimensional nmCBS equation (1.1) is a very interesting issue to be
clarified by further study.

Acknowledgements This work is supported by the Scientific Research Foundation of Educational Committee
of Yunnan Province (no. 2019J0735), and the Construction Plan of Key Laboratory of Institutions of Higher
Education of Yunnan Province. D.Q. Qiu acknowledges sincerely Prof. Q.P. Liu for many useful discussions.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

References

1. A.M. Wazwaz, Negative-order forms for the Calogero-Bogoyavlensky-schift equation and the modified
Calogero-Bogoyavlensky-Schiff equation. Proc. Rom. Acad. Ser. A 18, 337–344 (2017)

2. J.M. Verosky, Negative powers of Olver recursion operators. J. Math. Phys. 32, 1733–1736 (1991)
3. S.Y. Lou, W.Z. Chen, Inverse recursion operator of the AKNS hierarchy. Phys. Lett. A 179, 271–274

(1993)
4. P.J. Olver, Applications of Lie Groups to Differential Equations (Springer, New York, 1993)
5. G.W. Bluman, A.F. Cheviakov, S.C. Anco, Applications of Symmetry Methods to Partial Differential

Equations (Springer, New York, 2010)
6. J. Weiss, M. Taboe, G. Carnevale, The Painlevé property for partial differential equations. J. Math. Phys.

24, 522–526 (1983)
7. R. Conte, Invariant Painlevé analysis of partial differential equations. Phys. Lett. A 140, 383–390 (1989)
8. S.F. Tian, The mixed coupled nonlinear Schrödinger equation on the half-line via the Fokas method. Proc.

R. Soc. A 472, 20160588 (2016)

123



Eur. Phys. J. Plus (2020) 135:15 Page 11 of 12 15

9. S.F. Tian, Initial-boundary value problems for the general coupled nonlinear Schrödinger equation on the
interval via the Fokas method. J. Differ. Equ. 262, 506–558 (2017)

10. S.F. Tian, Initial-boundary value problems of the coupled modified Korteweg–de Vries equation on the
half-line via the Fokas method. J. Phys. A Math. Theor. 50, 395204 (2017)

11. X.B. Wang, S.F. Tian, L.L. Feng, T.T. Zhang, On quasi-periodic waves and rogue waves to the (4+1)-
dimensional nonlinear Fokas equation. J. Math. Phys. 59, 073505 (2018)

12. W.Q. Peng, S.F. Tian, T.T. Zhang, Breather waves and rational solutions in the (3+1)-dimensional Boiti–
Leon–Manna–Pempinelli equation. Comput. Math. Appl. 77, 715–723 (2019)

13. S.Y. Lou, Residual symmetries and Bäcklund transformations. arXiv:1308.1140v1
14. X.N. Gao, S.Y. Lou, X.Y. Tang, Bosonization, singularity analysis, nonlocal symmetry reductions and

exact solutions of supersymmetric KdV equation. J. High Energy Phys. 05, 029 (2013)
15. B. Ren, Interaction solutions for mKP equation with nonlocal symmetry reductions and CTE method.

Phys. Scr. 90, 065206 (2015)
16. W.G. Cheng, B. Li, Y. Chen, Nonlocal symmetry and exact solutions of the (2+1)-dimensional breaking

soliton equation. Commun. Nonlinear Sci. Numer. Simul. 29, 198–207 (2015)
17. B. Ren, Symmetry reduction related with nonlocal symmetry for Gardner equation. Commun. Nonlinear

Sci. Numer. Simulat. 42, 456–463 (2017)
18. X.Z. Liu, J. Yu, Z.M. Lou, New interaction solutions from residual symmetry reduction and consistent

Riccati expansion of the (2+1)-dimensional Boussinesq equation. Nonlinear Dyn. 92, 1469–1479 (2018)
19. X.P. Cheng, Y.Q. Yang, B. Ren, J.Y. Wang, Interaction behavior between solitons and (2+1)-dimensional

CDGKS waves. Wave Motion 86, 150–161 (2019)
20. J.C. Chen, S.D. Zhu, Residual symmetries and soliton-cnoidal wave interaction solutions for the negative-

order Korteweg–de Vries equation. Appl. Math. Lett. 73, 136–142 (2017)
21. J.F. Song, Y.H. Hu, Z.Y. Ma, Bäcklund transformation and CRE solvability for the negative-order modified

KdV equation. Nonlinear Dyn. 90, 575–580 (2017)
22. J.C. Chen, H.L. Wu, Q.Y. Zhu, Bäcklund transformation and soliton–cnoidal wave interaction solution

for the coupled Klein–Gordon equations. Nonlinear Dyn. 91, 1949–1961 (2018)
23. X.Z. Liu, J. Yu, Z.M. Lou, New Bäcklund transformations of the (2+1)-dimensional Bogoyavlenskii

equation via localization of residual symmetries. Comput. Math. Appl. 76, 1669–1679 (2018)
24. Z.L. Zhao, B. Han, Residual symmetry, Bäcklund transformation and CRE solvability of a (2+1)-

dimensional nonlinear system. Nonlinear Dyn. 94, 461–474 (2018)
25. W.G. Cheng, T.Z. Xu, N -th Bäcklund transformation and soliton-cnoidal wave interaction solution to the

combined KdV-negative-order KdV equation. Appl. Math. Lett. 94, 21–29 (2019)
26. S.Y. Lou, Consistent Riccati expansion for integrable systems. Stud. Appl. Math. 134, 372–402 (2015)
27. X.R. Hu, Y.Q. Li, Nonlocal symmetry and soliton-cnoidal wave solutions of the Bogoyavlenskii coupled

KdV system. Appl. Math. Lett. 51, 20–26 (2016)
28. L.L. Huang, Y. Chen, Z.Y. Ma, Nonlocal symmetry and interaction solutions of a generalized Kadomtsev–

Petviashvili equation. Commun. Theor. Phys. 66, 189–195 (2016)
29. J.C. Chen, Z.Y. Ma, Consistent Riccati expansion solvability and soliton–cnoidal wave interaction solution

of a (2+1)-dimensional Korteweg–de Vries equation. Appl. Math. Lett. 64, 87–93 (2017)
30. H. Wang, Y.H. Wang, CRE solvability and soliton–cnoidal wave interaction solutions of the dissipative

(2+1)-dimensional AKNS equation. Appl. Math. Lett. 69, 161–167 (2017)
31. Y.H. Wang, H. Wang, Nonlocal symmetry, CRE solvability and soliton-cnoidal solutions of the (2+1)-

dimensional modified KdV-Calogero–Bogoyavlenkskii–Schiff equation. Nonlinear Dyn. 89, 235–241
(2017)

32. H. Wang, Y.H. Wang, H.H. Dong, Interaction solutions of a (2+1)-dimensional dispersive long wave
system. Comput. Math. Appl. 75, 2625–2628 (2018)

33. X.Z. Liu, J. Yu, Z.M. Lou, Residual symmetry, CRE integrability and interaction solutions of the (3+1)-
dimensional breaking soliton equation. Phys. Scr. 93, 085201 (2018)

34. M.J. Dong, S.F. Tian, X.W. Yan, T.T. Zhang, Nonlocal symmetries, conservation laws and interaction
solutions for the classical Boussinesq–Burgers equation. Nonlinear Dyn. 95, 273–291 (2019)

35. H.C. Kim, R.L. Stenzel, A.Y. Wong, Development of “cavitons” and trapping of rf field. Phys. Rev. Lett.
33, 886–889 (1974)

36. P. Deeskow, H. Schamel, N.N. Rao, M.Y. Yu, R.K. Varma, P.K. Shukla, Dressed Langmuir solitons. Phys.
Fluids 30, 2703–2707 (1987)

37. A.J. Keane, A. Mushtaq, M.S. Wheatland, Alfvén solitons in a Fermionic quantum plasma. Phys. Rev. E
83, 066407 (2011)

38. J.Y. Wang, X.P. Cheng, X.Y. Tang, J.R. Yang, B. Ren, Oblique propagation of ion acoustic soliton–
cnoidal waves in a magnetized electron-positron-ion plasma with superthermal electrons. Phys. Plasmas
21, 032111 (2014)

123

http://arxiv.org/abs/1308.1140v1


15 Page 12 of 12 Eur. Phys. J. Plus (2020) 135:15

39. B. Fuchssteiner, Some tricks from the symmetry-toolbox for nonlinear equations: generalizations of the
Camassa–Holm equation. Physics D 95, 229–243 (1996)

40. A.N.W. Hone, J.P. Wang, Prolongation algebras and Hamiltonian operators for peakon equations. Inverse
Probl. 19, 129–145 (2003)

41. A.N.W. Hone, J.P. Wang, Integrable peakon equations with cubic nonlinearity. J. Phys. A Math. Theor.
41, 372002 (2008)

123


	Multiple residual symmetries and soliton-cnoidal wave interaction solution of the (2+1)-dimensional negative-order modified Calogero–Bogoyavlenskii–Schiff equation
	Abstract
	1 Introduction
	2 Residual symmetry and nth BT
	3 Soliton and soliton-cnoidal wave interaction solutions
	3.1 Soliton solution
	3.2 Soliton-cnoidal wave interaction solution

	4 Conclusions
	Acknowledgements
	References




