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Abstract We compute the spectrum of quasinormal frequencies of five-dimensional black
holes obtained in noncommutative geometry. In particular, we study scalar perturbations of
a massive scalar field adopting the sixth order WKB approximation. We investigate in detail
the impact of the mass of the scalar field, the angular degree and the overtone number on the
spectrum. All modes are found to be stable.

1 Introduction

The singularity at the center of black holes (BHs) in Einstein’s General Relativity (GR) [1]
is hidden by an event horizon and, therefore, it has no effect on the outside region, where
Physics is well-behaved. The existence of singularities, however, indicate the breakdown of
General Relativity, and so attempts are made to obtain regular BH solutions, such as the
solution obtained for the first time by Bardeen [2], see also [3]. One way to achieve that
is to assume appropriate non-linear electromagnetic sources, which in the weak field limit
are reduced to the standard Maxwell’s linear theory. This approach allows us to generate
a new class of solutions to Einstein’s field equations [4–11], which on the one hand have
a horizon, and on the other hand their curvature invariants, such as the Ricci scalar R, are
regular everywhere, as opposed to the standard Reissner–Nordström solution [12]. Regular
BHs may help us understand the final states of gravitational collapse [13,14], which is not
possible when singularities are present.

Another way to obtain regular black hole solutions is to assume a noncommutative (NC)
spacetime [15–18]. Noncommutativity lies at the heart of quantum physics through the uncer-
tainty principle, and it can be linked to Superstring Theory [19,20], which is a consistent
theory of gravity, and which is characterized by several remarkable properties. To mention
a few, it is compatible with both relativity and quantum physics, it is finite, and it contains
General Relativity together with the gauge interactions of the Standard Model of Particle
Physics (for standard textbooks see [21,22]). Superstring theory has put forward the idea that
extra spacelike dimensions may exist, not only because the theory itself is formulated in 10
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dimensions, but also because of the brane-world scenario as well as the AdS/CFT correspon-
dence. In the brane-world scenario it is assumed that the Standard Model must be confined
on a three-dimensional hypersurface (the brane), while at the same time there are additional
dimensions transverse to the brane, and gravitons can freely propagate into the bulk [23–26].
In the AdS/CFT correspondence [27,28], and more generically in the gauge-gravity duality
[29], one can understand strongly coupled field theories in d dimensions by studying a weakly
coupled gravitational theory in d + 1 dimensions [30].

When BHs are perturbed the geometry of spacetime undergoes dumped oscillations due to
the emission of gravitational waves. The so called quasinormal modes (QNMs) are complex
frequencies that encode the information on how black holes relax after the perturbation has
ceased to act on them, and they enter into the ring down phase of a black hole merger
after the formation of the single distorted object. The work of [31] marked the birth of BH
perturbations, it was later extended by [32–36], while a comprehensive overview of BH
perturbations is summarized in Chandrasekhar’s monograph [37]. Although perturbations of
black holes is an old subject, after the LIGO historical direct detection of gravitational waves
[38–42], which has provided us with the strongest evidence so far that black holes do exist in
Nature, there is nowadays a renewed interest in studying the QNMs of black holes and their
alternatives, such as exotic compact objects [43]. For a review on the subject see [44], and
for a more recent ones [45,46].

Over the years the computation of the QNMs of higher-dimensional BHs has attracted a
lot of attention for several reasons, namely (i) the study of features of higher-dimensional
GR [47,48], (ii) the analysis of the physical implications of the brane-world scenario [49],
and (iii) the understanding of thermodynamic properties of BHs in Loop Quantum Gravity
[50,51]. Given the interest in Gravitational Wave Astronomy and on QNMs of black holes,
it would be interesting to see what kind of QN spectra are expected from regular BHs within
the framework of noncommutative geometry in various space time dimensions. In particular,
it was shown that the gravitational wave signal from the event GW150914, detected by the
LIGO and Virgo collaborations [38], could be used to obtain a bound on the scale of quantum
fuzziness of noncommutative space-time [52]. QNMs of the BTZ black hole as well as four-
dimensional black holes in noncommutative geometry have been studied in [53–57], while
QNMs and gravitational radiation of standard higher-dimensional BHs have been studied in
[58–69].

It is the goal of the present article to compute the QNMs of scalar perturbations of five-
dimensional noncommutative black holes. Our work is organized as follows: after Sect. 1, we
present the wave equation for scalar perturbations in Sect. 2.2. In the Sect. 3 we compute the
QNMs of the black holes in the WKB approximation and we discuss our results. Finally, we
conclude our work in Sect. 4. We use natural units such that c = G = 1 and metric signature
(−,+,+,+,+).

2 Scalar perturbations of NC black holes

2.1 Noncommutative black hole in five dimensions

The key feature of noncommutative geometry is the discretization of spacetime. The real-
ization of such an idea becomes into noncommuting operators on a D brane [70,71]. To be
more precise noncommutativity of spacetime is encoded into the commutator

[xμ, xν] = iΘμν (1)
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where Θμν is an anti-symmetric matrix. Without loss of generality it may be taken to have
the Jordan form

Θμν = Θdiag(εi j , εi j , . . .) (2)

where Θ is the noncommutative parameter, and εi j is the two-dimensional anti-symmetric
matrix

εi j = ((0, 1), (1, 0)). (3)

It has been shown that to obtain noncommutative black hole solutions, we can still use the
usual Einstein’s equations

Gμν = 8πTμν (4)

using an appropriate stress-energy tensor for matter [71,72]. In particular, noncommutativity
eliminates point-like structures in favour of smeared objects [71]. To obtain spherically
symmetric black hole solutions, we employ the coordinate system (t, r, θ, φ, ψ) and we
make the following ansatz for the metric tensor

ds2 = − f (r)dt2 + f (r)−1dr2 + r2dΩ2
3 , (5)

where dΩ2
3 is the line element of the unit three-dimensional sphere given by [73,74]

dΩ2
3 = dθ2 + sin2 θdφ2 + sin2 θ sin2 φdψ2, (6)

one has to assume a stress-energy momentum for matter of the form [71,72]

ds2 = diag(−ρ, pr, pt, pt, pt), (7)

where the radial pressure pr and the tangential pressure pt are given in terms of the energy
density ρ as follows [72]

pr = −ρ (8)

pt = −ρ − 1

3
rρ′ =

(
1 − r2

6Θ

)
ρ (9)

while the energy density is given by

ρ = M

(4πΘ)2 exp

(
− r2

4Θ

)
(10)

so that the mass of the black hole M is the total mass of the matter distribution

M =
∫

d4r ρ(r), (11)

where we have made use of the following formula [58,59]

ΩD−2 = 2π(D−1)/2

Γ
( D−1

2

) (12)

for the surface of the unit (D − 1)-dimensional sphere. Using the tt Einstein’s equation one
can determine the unknown metric function f (r), which is found to be [72]

f (r) = 1 − 8M

3πr2 γ

(
2,

r2

4Θ

)
, (13)
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where γ (a, z) is the lower incomplete Gamma function defined by

γ (a, z) ≡
∫ z

0
dte−t ta−1. (14)

It can be easily verified that the rest of the equations as well as the trace equation R =
−(16πT )/3, with R being the Ricci scalar and T = Tμ

μ is the trace of the stress-energy
tensor, are satisfied too. Clearly, when Θ → 0, we recover the standard five-dimensional
Schwarzschild solution [75]. Notice that the Ricci scalar is found to be

R = −M(r2 − 10Θ)

6πΘ3 exp

(
− r2

4Θ

)
, (15)

which is clearly non-singular.
The lapse function f (r) determines the horizon of the black hole requiring that f (rH ) = 0.

It is not possible to obtain an expression in a closed form, but we can still express the mass
in terms of the event horizon as follows:

M = 3πr2
H

8

[
γ

(
2,

r2
H

4Θ

)]−1

. (16)

Thus, depending on the mass of the black hole M for a given Θ there are 3 distinct cases: (i)
There is no horizon for small masses, M < M0, (ii) there is an inner horizon r− and an event
horizon rH for large black hole masses, M > M0, and (iii) there is single (event) horizon for
the critical mass, M = M0. This case corresponds to an extremal black hole, where r− = rH .

The metric function for all three cases is shown in the left panel of Fig. 1 for M = 1 and
Θ = 0.04, 0.0634, 0.08 (Figs. 2, 3).

2.2 Perturbations for a test massive scalar field

Before we consider the propagation of a scalar field in a curved spacetime, we need to briefly
report on the effect of noncommutativity on a scalar field theory in flat spacetime. In this
work we shall be interested in a free massive real scalar field described by the Lagrangian
density

L = 1

2
(∂φ)2 − 1

2
m2φ2 (17)

without any interaction terms, with m being the mass of the field. In noncommutative field
theories deformations are induced via the Moyal product, or “star product”, which replaces
the usual product, and which is defined by [76]

Fig. 1 Left: lapse function vs radial coordinate for M = 1 and θ = 0.04 (there is an event horizon as well as
an inner horizon), θ = 0.08 (there are no horizons), and θ = 0.0634 (critical case). Middle: effective potential
vs radial coordinate for M = 1, θ = 0.04 for massless scalar field and l = 0, 1, 2 from bottom to top. Right:
effective potential vs radial coordinate for M = 1, θ = 0.04 for l = 0 and μ = 0, 0.15, 0.3 from bottom to top
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Fig. 2 Imaginary part vs real part of the QN frequencies computed for a massless test scalar field, M =
1, θ = 0.04 (right panel), and l = 1 (black), l = 2 (orange), l = 3 (blue) and l = 4 (red). For comparison
reasons we show the modes of the standard 5D black hole (left panel)

Fig. 3 Imaginary part vs real part of the QN frequencies computed for a massive test scalar field for M =
1, θ = 0.04, and l = 1 (black), l = 2 (orange), l = 3 (blue) and l = 4 (red). From left to right we have the
cases μ = 0.15 and μ = 0.3, respectively

( f � g)(x) = f (x) exp

(
1

2
iΘμν←−∂ μ

−→
∂ ν

)
g(x), (18)

for any two functions f, g of the spacetime point x . However, quadratic terms in the
action are the same both in the usual and in the case of commutativity [77], and therefore
deformations are expected through interactions only.

We perturb the black hole with a probe minimally coupled massive scalar field with
equation of motion

1√−g
∂μ(

√−ggμν∂ν)Φ = μ2Φ, (19)

where μ is the mass of the test scalar field, and we consider the propagation of the test scalar
field in the fixed gravitational background of the previous subsection. We separate variables
making the standard ansatz

Φ(t, r, θ, φ, ψ) = e−iωt Ψ (r)

r3/2 Ỹl(Ω), (20)

with Ỹl(Ω) being the higher-dimensional generalization of the usual spherical harmonics
depending on the angular coordinates [78], and we obtain a Schrödinger-like equation of the
form

d2Ψ

dx2 + (ω2 − V (x))Ψ = 0, (21)
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with x being the so-called tortoise coordinate

x =
∫

dr

f (r)
, (22)

while the effective potential is given by the expression [58,59]

V (r) = f (r)

(
μ2 + l(l + 2)

r2 + 3 f ′(r)
2r

+ 3 f (r)

4r2

)
, (23)

where l(l+2) is the eigenvalue of the Laplace operator on the S3 hypersurface, and the prime
denotes differentiation with respect to r . The effective potential as a function of the radial
coordinate can be seen in the middle (for l = 0, 1, 2 from bottom to top) and right panels
(for μ = 0, 0.15, 0.3 from bottom to top) of Fig. 1.

For asymptotically flat spacetimes the Schrödinger-like equation is supplemented by the
boundary conditions at the horizon and at infinity [79]

Ψ (x) →
⎧⎨
⎩

Ae−iωx if x → −∞

Ceiωx if x → +∞,

(24)

where A,C are arbitrary coefficients. The purely ingoing wave physically means that nothing
can escape from the horizon, while the purely outgoing wave corresponds to the requirement
that no radiation is incoming from infinity [79]. The quasinormal condition allows us to
obtain an infinite set of discrete complex numbers called the quasinormal frequencies of the
black hole. Given the time dependence of the scalar field, ∼ e−iωt , the mode is unstable
(exponential growth) when ωI > 0 and stable (exponential decay) when ωI < 0. In the latter
case the real part determines the frequency of the oscillation, ωR/(2π), while the inverse of
|ωI | determines the dumping time, t−1

D = |ωI |.

3 QNMs of NC BHs in the WKB approximation

3.1 Numerical results

Computing the QNMs of black holes analytically is possible only in some cases, see e.g. [60,
80–89]. Semi-analytical methods based on the WKB approximation [59,90,91] are perhaps
the most popular ones, and they have been applied extensively to several cases. For an
incomplete list see e.g. [92–97], and for more recent works [98–102], and references therein.

The QN frequencies are given by

ω2 = V0 + (−2V ′′
0 )1/2Λ(n) − iν(−2V ′′

0 )1/2[1 + Ω(n)] (25)

where n = 0, 1, 2, . . . is the overtone number, ν = n + 1/2, V0 is the maximum of the
effective potential, V ′′

0 is the second derivative of the effective potential evaluated at the
maximum, while Λ(n),Ω(n) are complicated expressions of ν and higher derivatives of the
potential evaluated at the maximum, and can be seen e.g. in [93,98].

Here, we have used the Wolfram Mathematica [103] code with WKB at any order from
one to six (here we have worked in sixth order) presented in [104] (see, however, [105,106]
for higher order WKB corrections, and recipes for quick and accurate computations). We
have fixed the mass of the black hole to be M = 1, the mass of the test scalar field is taken
to be either μ = 0 or μ = 0.15, 0.3, while for the noncommutative parameter Θ we have
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considered the range 0 < Θ < 0.0634. Since the WKB approximation works very well for
l > n [95], here we shall consider the cases (i) l = 1, n = 0, (ii) l = 2, n = 0, n = 1, (iii)
l = 3, n = 0, n = 1, n = 2 and (iv) l = 4, n = 0, n = 1, n = 2, n = 3. Finally, the eikonal
regime l 	 1 will be considered separately in the end before concluding our work.

Our numerical results for the QN modes of the NC regular black holes are summarized in
the Tables 1, 2 and 3 below separately for the three cases μ = 0, 0.15, 0.3. For comparison
reasons the QNMs of the standard (Θ = 0) 5D black hole are shown as well in Table 4.
For better visualization all modes corresponding to a given μ are shown in a single figure
where the real part and the imaginary of the modes are put on the horizontal and vertical
axes, respectively. All modes are complex numbers with a positive real part and a negative
imaginary part. For a given mass μ and angular degree l, as the overtone number n increases
the real part of the modes decreases, while the absolute value of the imaginary part increases.
Furthermore, for a given mass and overtone number, as the angular degree increases the real
part increases as well while the absolute value of the imaginary part decreases. Finally, we
see that the real part increases, while the absolute value of the imaginary part decreases with
the mass of the scalar field.

3.2 QNMs in the eikonal approximation

Finally, in the eikonal approximation (l 	 1) the WKB method becomes increasingly accu-
rate, and it is possible to obtain analytical expressions for the QN frequencies. In the eikonal
limit (l → ∞) the angular momentum term is the dominant one in the effective potential

Table 1 QN frequencies for M = 1,Θ = 0.04, μ = 0

n l = 1 l = 2 l = 3 l = 4

0 0.539924–1.40113 i 1.5548–0.424775 i 2.16755–0.3848 i 2.71583–0.381501 i

1 1.0682–2.2103 i 1.93747–1.30872 i 2.5945–1.18577 i

2 1.54614–3.03226 i 2.30746–2.24034 i

3 1.98674–3.94797 i

Table 2 QN frequencies for M = 1,Θ = 0.04, μ = 0.15

n l = 1 l = 2 l = 3 l = 4

0 0.534454–1.4136 i 1.55935–0.422435 i 2.1702–0.384021 i 2.71787–0.381066 i

1 1.06649–2.20842 i 1.93937–1.30614 i 2.59617–1.18448 i

2 1.54483–3.03194 i 2.30792–2.23885 i

3 1.98549–3.94925 i

Table 3 QN frequencies for M = 1,Θ = 0.04, μ = 0.30

n l = 1 l = 2 l = 3 l = 4

0 0.519028–1.44467 i 1.57336–0.41529 i 2.17818–0.381679 i 2.72396–0.379759 i

1 1.06181–2.20052 i 1.94521–1.29825 i 2.6012–1.1806 i

2 1.54097–3.03039 i 2.30936–2.23431 i

3 1.98177–3.95294 i
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Table 4 QN frequencies for M = 1, μ = 0, Θ = 0

n l = 1 l = 2 l = 3 l = 4

0 1.10108–0.396434 i 1.6395–0.388248 i 2.17936–0.3862 i 2.72033–0.385311 i

1 1.51141–1.19977 i 2.08063–1.17802 i 2.64043–1.16829 i

2 1.89592–2.02892 i 2.48675–1.98905 i

3 2.27294–2.8726 i

Fig. 4 Critical frequency Ωc (left panel) and Lyapunov exponent λL (right panel) vs non-commutative
parameter Θ for M = 1

V (r) ≈ f (r)l2

r2 ≡ l2g(r), (26)

where we introduce a new function g(r) = f (r)/r2, and it is easy to verify that the maximum
of the potential is located at r1 that is computed solving the following algebraic equation

2 f (r1) − r1 f
′(r)|r1 = 0. (27)

Then, following the formalism developed in [107], the QN modes in the eikonal limit can be
computed by the formula

ωl	1 = Ωcl − i

(
n + 1

2

)
|λL|, (28)

where the Lyapunov exponent λL is given by [107]

λL = r2
1

√
g′′(r1)g(r1)

2
, (29)

while the angular velocity Ωc at the unstable null geodesic is given by [107]

Ωc =
√

f (r1)

r1
. (30)

We see that the angular velocity determines the real part of the modes, where only the degree
of angular momentum l enters, while the Lyapunov exponent determines the imaginary part
of the modes, where only the overtone number n enters. In Fig. 4 we show the angular
velocity (left panel) as well as the Lyapunov exponent (right panel) as a function of Θ for
M = 1. The angular velocity increases monotonically with the noncommutative parameter,
while the Lyapunov exponent decreases monotonically, similarly to the regular Bardeen black
hole studied in [98], where it was found that λL decreases monotonically and Ωc increases
monotonically with the charge q of the black hole.
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4 Conclusions

In this article, we have computed the quasinormal modes of five-dimensional black holes in
the framework of noncommutative geometry. We have studied scalar perturbations using a
Schrödinger-like equation with the appropriate effective potential, and we have adopted the
popular and extensively used WKB approximation of sixth order. All modes are found to
be stable. Our numerical results are summarized in tables, and for better visualization we
have shown graphically on the (real part-imaginary part) plane. For comparison reasons the
QNMs of the standard 5D Schwarzschild black hole are shown as well.
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