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Abstract. A novel two-dimensional phase and amplitude electromagnetically induced grating is proposed.
This model improves the sensitivity of electromagnetically induced grating to the microwave field. The
system experiences electromagnetically induced transparency (EIT) via interacting dark resonances. When
two-dimensional standing control fields are applied to a Rydberg five-level EIT system, two sub-EIT
systems appear and the central peak in the EIT window is splitted. Frequency splitting of two central
absorption peaks is proportional to the microwave field strength. The simulations show that the efficiency
of higher orders of two-dimensional EIG could be enhanced compared to a common four-level single-dark-
state system without microwave field. Therefore, one can take advantage of the phase modulation to control
the probe light dispersing into the required high orders. This proposed model is appropriate to be utilized
as an all-optical switch and router in optical networking and communication based on microwave field.

1 Introduction

Quantum coherence and interference have substantial functions in modifying and controlling the optical response of
a medium and have been attracted extensively attention in recent years. Electromagnetically induced transparency
(EIT) based on quantum coherence and interference, refers to the medium that becomes transparent to a probe laser
field just by means of another strong coupling field. EIT has been significantly investigated in recent years for its novel
potential applications such as giant Kerr nonlinearity [1], slow light [2], optical bistability and multistability [3], four-
wave mixing [4]. Electromagnetically induced grating (EIG) as a consequence of EIT, can be observed via applying a
strong standing control field in the EIT medium. By means of the standing field, the probe field experiences periodic
modulation in space. Consequently, the Fraunhofer diffraction of the probe field is created. EIG has been investigated
in different media such as hot and cold atoms theoretically and experimentally [5–7].

EIG has attracted growing attention due to its potential applications, for example, electromagnetically induced
Talbot effect, surface solitons, polarization-dependent multiple beam splitting in the Raman-Nath limit [8].

To improve and modify the higher-order diffraction efficiency in an EIG medium, so many models have been
proposed and explored in multi-level atomic systems. For instance, EIG in the coherent population trapping (CPT)
condition in a four-level microwave driven N -type atomic system has studied in which a novel nonlinear optical storage
was obtained via linear absorption vanishing and giant Kerr nonlinearity during light propagation [9]. Moreover,
efficient electromagnetically induced phase grating by spontaneous generated coherence (SGC) was studied [10]. EIG
in an asymmetric semiconductor quantum well (SQW) structure via Fano interference has been proposed [11]. Also,
gain-phase grating (GPG) based on the spatial modulation of active Raman gain has theoretically studied [12] and
another novel EIG scheme in a monolayer graphene nanostructure under Raman excitation has also investigated [13].

The huge electric-dipole moments, large extensions of the electronic wave functions, long radiative lifetimes and
extreme sensitivity to external electric fields of Rydberg atoms, make them very interesting to investigate quantum
optics phenomena experimentally to overcome the main drawback of practical implementation of microscopic quantum
objects. Newly, EIG in an ensemble of strongly interacting Rydberg atoms has been proposed [14,15]. Since the size
of Rydberg atoms is huge, the geometric cross section of the medium is tunable and, consequently, their response and,
sensitivity to the external electromagnetic fields is enhanced [16]. Recently, multi-level Rydberg atoms have been used
for microwave field sensing [17,18].

a e-mail: tayebe.naseri@gmail.com



Page 2 of 7 Eur. Phys. J. Plus (2019) 134: 530

Fig. 1. (a) The schematic diagram of the five-level system for the 87Rb Rydberg atom. (b) The schematic diagram of the
microwave and coupling fields and probe field propagating through the cold atomic medium.

All of the aforementioned schemes were concentrated on the one-dimensional EIG (1D EIG) via quantum coherence
and interference in multi-level different media. Two-dimensional electromagnetically induced cross-grating in two-
level [19], three-level [20], four-level tripod-type [21] and N -type atomic systems [22] have been offered lately.

To our knowledge, the relevant topic of exploring controllable 2D EIG in Rydberg atoms by means microwave
field has received little attention. In this paper, we propose an efficient scheme for two-dimensional EIG with Rydberg
atoms via microwave field. When the microwave field drives an assistant transition of a common four-level single-dark-
state system, the system becomes a five-level double-dark-state one. By exploring the impact of a MW field on the
linear susceptibility and applying standing field coupling, the two-dimensional EIG is studied. In comparison with the
two-dimensional amplitude electromagnetically induced grating based on electromagnetically induced transparency,
the two-dimensional phase grating has much higher diffraction intensities in the first order of the high-order directions.
Therefore, it is appropriate to be utilized as all-optical switches and routers as a microwave field sensing in optical
networking and communication.

This paper is prepared as follows: In sect. 2 theoretical model and the governing equations are presented. In sect. 3,
by using microwave and two cross standing-wave coupling fields, the 2D spatial modulation of the absorption and
dispersion is studied to obtain Fraunhofer diffraction patterns. The conclusion is offered in sect. 4.

2 Theoretical model and methods

Let us consider a five-level double-dark resonance state system for Rydberg rubidium 87 in the present study as shown
in fig. 1. Various experimental implementations of the above scheme could be used. For example in cold Rydberg
rubidium 87, the two hyperfine ground levels |1〉 and |2〉 with 5S1/2, F = 1, 2 can be chosen. (n + 1)P3/2 to be |3〉,
5P3/2 to be |4〉 and nD5/2 to be |5〉.

A weak probe laser field couples the transition |1〉 ↔ |4〉 with Rabi frequency Ωp. The transition |2〉 ↔ |4〉 is
driven by a laser field with Rabi frequency Ωc1. |4〉 ↔ |5〉 transition is driven by the superposition of two orthogonal
standing-wave fields with Rabi frequency Ωc2 = Ω[sin(πx/Λx) + sin(πy/Λy)].

Moreover, a microwave field (MW) couples the transition |3〉 ↔ |5〉 with respective Rabi frequency ΩM . The
detuning parameters Δi are given by Δp = ωp − ω41, Δc1 = ωc1 − ω42, Δc2 = ωc2 − ω45, and ΔM = ωM − ω53. It
should be noticed that the Doppler broadening and the van der Waals (vdW) interaction are not considered in the
calculations.

After applying the dipole approximation and the rotating wave approximation (RWA), the Hamiltonian of this
multi-level system becomes

HI = −h̄[(Δp − Δc1) |2〉 〈2| + (Δp + Δc2 − ΔM ) |3〉 〈3| + Δp |4〉 〈4|
+ (Δp + Δc2) |5〉 〈5| + Ωp |4〉 〈1| + Ωc2 |5〉 〈4| + Ωc1 |4〉 〈2| + ΩM |5〉 〈3| + h.c.], (1)

where “h.c.” is the Hermitian conjugate of the preceding off-diagonal terms. The master equation then takes the form

ρ̇ = − i

h̄
[HI , ρ] + Lρ, (2)
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in terms of the density-matrix operator ρ. Lρ indicates the decay part of the system. After applying the Hamiltonian
of eq. (1) to the master equation, inserting the expressions for the decay rates, and transforming in standard fashion,
one obtains:

ρ̇11 = γ41ρ44 − iΩp(ρ14 − ρ41)
ρ̇22 = γ42ρ44 − iΩc1(ρ24 − ρ42)
ρ̇44 = −[γ41 + γ42]ρ44 + γ54ρ55 − iΩp(ρ41 − ρ14) − iΩc1(ρ42 − ρ24) − iΩc2(ρ45 − ρ54)
ρ̇55 = −[γ53 + γ54]ρ55 − iΩM (ρ53 − ρ35) − iΩc2(ρ54 − ρ45)
ρ̇21 = −[γ21 + i(Δc1 − Δp)]ρ21 − iΩpρ24 + iΩc1ρ41

ρ̇31 = −[γ31 − i(Δp + Δc2 − ΔM )]ρ31 + iΩpρ34 + iΩMρ51

ρ̇41 = −[γ41 − iΔp]ρ41 − iΩp(ρ44 − ρ11) + iΩc1ρ21 + iΩc2ρ51

ρ̇51 = −[γ51 − i(Δp + Δc2)]ρ51 + iΩc2ρ41 + iΩMρ31 − iΩpρ54

ρ̇32 = −[γ32 − i(Δc1 + Δc1 − ΔM )]ρ32 − iΩc1ρ34 + iΩMρ52

ρ̇42 = −[γ42 − iΔc1]ρ42 + iΩc1(ρ22 − ρ44) + iΩpρ12 + iΩc2ρ52

ρ̇52 = −[γ52 − i(Δc1 + Δc2)]ρ52 + iΩMρ32 + iΩc2ρ42 − iΩc1ρ54

ρ̇34 = −[γ43 − i(Δc2 − Δc1)]ρ34 − iΩpρ31 − iΩc1ρ32 − iΩc2ρ35 + iΩMρ54

ρ̇54 = −[γ54 − iΔc2]ρ54 + iΩMρ34 + iΩc2(ρ44 − ρ55) − iΩpρ51 − iΩc1ρ52, (3)

where γij = (Γi + Γj)/2, Γi =
∑

k Γik, Γik is the spontaneous relaxation rate from the states |i〉 to |k〉. The beyond
equations follow from the constraints:

ρ11 + ρ22 + ρ33 + ρ44 + ρ55 = 1; ρij = ρ∗ij , (4)

since the probe field is much weaker than the other coupling fields. Considering the initial conditions are ρ
(0)
11 = 1 and

other elements ρ
(0)
ij = 0, the steady state solution can be calculated using the iterative method:

ρ
(1)
41 =

iΩp

Γ4 + Ω2
c1

Γ2
+ Ω2

c2

Γ5+
Ω2

M
Γ3

, (5)

Γ2 = γ21 + i(Δc1 − Δp)
Γ3 = γ31 − i(Δp + Δc2 − ΔM )
Γ4 = γ41 − iΔp

Γ5 = γ51 − i(Δp + Δc2). (6)

Therefore, the linear susceptibility of the probe field can be defined as

χ41 =
2N0|μ41|2

ε0h̄Ωp
ρ
(1)
41 , (7)

where N0 is the atom number density and ε0 is the permitivity in the free space. As depicted in fig. 1(b), the probe
field propagates along the z-direction through a cold atomic sample of length L.

Under the slowly varying amplitude approximation and in the steady state, Maxwell’s equation describes the probe
field propagation [23],

∂Ωp

∂z
= iχ41Ωp. (8)

By solving the above equation, the transmission function of the probe field through the atomic medium at z = L can
be obtained

T (x, y) = eiχ41L. (9)

Consequently, the phase of the transmission function is calculated

φ(x, y) = Re[χ41]L. (10)

For a plane probe wave, the intensity distribution in the far field for Fraunhofer diffraction is given

I(θx, θy) = |F (θx, θy)|2 sin2(MπΛx) sin(θx/λ) sin2(NπΛy sin(θy/λ))
M2 sin2(πΛx sin(θx/λ))N2 sin2(πΛy sin(θy/λ))

, (11)
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Fig. 2. (a) Probe absorption and (b) dispersion as a function of ΩM and Δp. The parameters are Ωc1 = Ωc2 = 5γ, Δc1 =
Δc2 = ΔM = 0, γ41 = γ, and γ51 = γ31 = γ21 = 0.1γ.

where λ is the wavelength of the probe field; M and N are the numbers of spatial periods of the atomic grating along
the x- and y-axes,

F (θx, θy) =
∫ Λx

0

∫ Λy

0

T (x, y)e−2iπx sin θx/λe−2iπy sin θy/λdxdy (12)

is the Fraunhofer diffraction of a single space period; θx and θy are the diffraction angles along the x- and y-axes.
The (m,n) order of diffraction angle is determined by the grating equations sin θx = m

x and sin θy = n
x . Therefore,

the diffraction intensities of (0, 0) order, (1, 0) order, (0, 1) order and (1, 1) order can be obtained as follows:
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. (13)

3 Results and discussion

In this section, the effect of microwave field and other laser field parameters on the diffraction feature of the proposed
five-level Rydberg atomic system is investigated. Since the electric susceptibility as the optical response of the probe
laser field plays a crucial rule in electromagnetically induced grating. In fig. 2, the absorption and dispersion of the probe
field as a function of the probe detuning are plotted. Here, the resonant interaction is considered Δc1 = Δc2 = ΔM = 0.

Figure 2(a) and (b) show the results for imaginary (absorption) and real (dispersion) part of the linear electric
susceptibility for the fixed Rabi frequency of coupling Ωc1 and Ωc2.

The Rabi frequency of the microwave field and the probe field detuning are varied. There is an EIT window with two
side absorption peaks in fig. 2(a), in the absence of microwave field coupling. When the microwave field is applied, two
new absorption peaks appear in the EIT window. By increasing the amplitude of the microwave field, the central EIT
window becomes wider. Moreover, It is remarkable that the frequency splitting of two central peaks is proportional
to the microwave field strength. Accordingly, the magnitude of the applied microwave field can be estimated from
their relationship above. Furthermore, the distance between the two side peaks remains unchanged as increase of the
microwave field strength.

When the microwave field drives the |(n + 1)P3/2〉 ↔ |nD5/2〉 transition, the frequency splitting of two central
peaks can be written approximately as

Δf = 1.4ΩM . (14)

The corresponding dispersion diagram is shown in fig. 2(b).
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Fig. 3. (a) Probe absorption and (b) dispersion as a function of α = Ωc1/Ωc2 and Δp. The parameters are ΩM = 3γ,
Δc1 = Δc2 = ΔM = 0, γ41 = γ, and γ51 = γ31 = γ21 = 0.1γ.

Fig. 4. The amplitude T (x, y) of the transmission function as a function of x (in units of Λx) and y (in units of Λy): (a) without
microwave field; (b) with microwave field. The parameters are Ωc1 = Ωc2 = 5γ, ΩM = 3γ, Δp = 3.093γ, Δc1 = Δc2 = ΔM = 0,
γ41 = γ, γ51 = γ31 = γ21 = 0.1γ, and L = 300ξ.

The effect of the ratio of two coupling fields Ωc1/Ωc2 on the absorption and dispersion is investigated in fig. 3. It
can be seen that the position of the two side peaks noticeably is changed in linear absorption spectrums by increasing
α = Ωc1/Ωc2. In addition, it is interesting to find that the frequency splitting of two central peaks gets wider by
increasing the ratio of two coupling fields α. When ΩM is fixed, the change of Δf depends on Ωc1/Ωc2.

It is also noticed that interacting dark resonances much narrow the linewidth of absorption spectrum, which may
help to improve the probe accuracy.

It is clear, from fig. 3(a), that the maximum distance is when Ωc1 = Ωc2. Consequently, by increasing α up to
more than 1, Δf remains constant. It is enlightening to study the physical mechanism of the above results with the
dressed-state theory [24]. Four transition channels exist with the coupling of the probe field corresponding to the left
side, two central and right side peaks in fig. 2(a), respectively.

3.1 Absorption grating

The Fraunhofer diffraction intensity of the probe field through a Rydberg atomic system is investigated. The amplitude
of the transmission function determines the diffraction pattern here. As was shown in sect. 2, the diffraction intensity
depends strongly on the susceptibility of the medium. In all of the calculations and simulations, the three driving fields
are considered to be in resonance with their corresponding transitions (Δc1 = Δc2 = ΔM = 0). In order to illustrate
the gain modulation, we plot the amplitude |T (x, y)| of the transmission function in fig. 4. In fig. 4, the amplitude
T (x, y), depending on the coordinates x and y and microwave field for the weak driving probe field, is plotted. One
can see from fig. 4(a) that the probe field, which propagates through the atomic sample, does not lose a significant
portion of energy.
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Fig. 5. The normalized amplitude diffraction intensity I(θx, θy) a function of sin(θx) and sin(θy) for the corresponding trans-
mission function shown in fig. 4: (a) without microwave field; (b) with microwave field. The parameters are Ωc1 = Ωc2 = 5γ,
ΩM = 3γ, Δp = 3.093γ, Δc1 = Δc2 = ΔM = 0, γ41 = γ, γ51 = γ31 = γ21 = 0.01γ, M = N = 5, and L = 300ξ.

Fig. 6. The phase Φ(x, y)/π of the transmission function as a function of x (in units of Λx) and y (in units of Λy): (a) without
microwave field; (b) with microwave field. The parameters are Ωc1 = Ωc2 = 5γ, ΩM = 3γ, Δp = 3.093γ, Δc1 = Δc2 = ΔM = 0,
γ41 = γ, γ51 = γ31 = γ21 = 0.1γ, and L = 300ξ.

As is shown in fig. 4(b), it is clear that the space-dependent amplitude suppression happens in the system in the
presence of microwave field. Consequently, an absorption grating is formed in the medium. Similar to one-dimensional
gain grating, the gain modulation plays a fundamental role in enhancing the diffraction efficiency. So as to show
the 2D diffraction based on the spatially modulated gain of the probe field in the present system, the Fraunhofer
diffraction intensity I(θx, θy) is plotted in fig. 5 as a function of sin(θx) and sin(θy) for investigating the effect of
microwave field on electromagnetic induced amplitude grating. At the absence of applied microwave field, probe light
does not diffract to higher orders of grating and from fig. 5(a), I(θ1

x, θ0
y) and I(θ0

x, θ1
y) are just appeared, while, in the

presence of microwave field, higher orders of diffraction, such as I(θ1
x, θ1

y), I(θ2
x, θ0

y) and I(θ0
x, θ2

y) show higher efficiency.
Moreover, the efficiency of I(θ1

x, θ0
y) and I(θ0

x, θ1
y) increased considerably. These results are based on gain modulation

accompanied by microwave field, which could help enhance the diffraction efficiency in high-order directions. At the
same time, the central light intensity would become weak and most of the probe light is diffracted. Definitely, the
diffraction intensities could be greatly enhanced via increasing the amplitude of coupling fields, the atoms or the
interaction length. It is discovered that the first-order diffraction intensity can reach to its maximal value under an
appropriate ΩM . In fig. 5(b), the energy transfers from the center maximum to high-order diffraction peaks.

3.2 Phase grating

The phase of the transmission function determines the diffraction pattern here. As is shown in fig. 6, Φ(x, y) of the
probe field changes periodically in the x- and y-directions, which deflects the probe beam intensity out of the zeroth
diffraction into additional side diffraction patterns.

As pointed out in the above discussion, the diffraction efficiency via absorption grating is very small and limited
due to the large absorption. Therefore, the probe energy can be diffracted from zeroth-order into high-order directions
due to the large phase modulation. By applying the microwave field, it is obvious, from fig. 7(b), that the phase
modulation becomes dominant and the diffracting power increases notably.
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Fig. 7. The normalized phase diffraction intensity I(θx, θy) a function of sin(θx) and sin(θy) for the corresponding transmission
function shown in fig. 6: (a) without microwave field; (b) with microwave field. The parameters are Ωc1 = Ωc2 = 5γ, ΩM = 3γ,
Δp = 3.093γ, Δc1 = Δc2 = ΔM = 0, γ41 = γ, γ51 = γ31 = γ21 = 0.1γ, M = N = 5, and L = 300ξ.

In such a circumstance, the atomic system reaches a reasonable level of transparency across the probe beam with
enhanced refraction due to the destructive quantum interference of microwave field, hence a large phase modulation
on the probe field to higher orders I(θ1

x, θ2
y) and I(θ2

x, θ1
y) can be initiated.

4 Conclusion

In conclusion, 2D electromagnetically induced grating in a five-level Rydberg atomic system driven by two standing-
wave fields is investigated. A double-dark-state system is used to improve sensitivity of 2D EIG to microwave field.
Interacting dark resonances boost the linear absorption and two central peaks which are very delicate to the Rabi
frequency of the microwave field. Increasing the ratio of two coupling field strengths enhances the higher probe
sensitivity. Consequently; a sensitive 2D EIG can be observed. The numerical calculations show that the high orders
of 2D phase and amplitude EIG can be improved via microwave field compared to the single-dark-state system.
This proposed system would be suitable for designing novel microwave sensing devices in optical networking and
communication.

Publisher’s Note The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional
affiliations.
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