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Abstract. This article aims to analyse the global nonlocal dynamics of imperfect nanoscale fluid-conveying
nanotubes subject to pulsatile flow. The nanotubes are assumed to be viscoelastic. Utilising nonlocal
strain gradient theory, Beskok-Karniadakis assumptions, Kelvin-Voigt scheme and Euler-Bernoulli theory,
the coupled size-dependent equations are presented to account for the size effects for the nanoscale fluid
and solid. Additionally, Coriolis and centrifugal accelerations, imperfection effects are considered in this
article. Using different parameters, the response of the system is plotted and investigated. This investi-
gation shows that the bifurcation response for transverse and longitudinal direction is highly dependent
on the imperfection of nanotubes, the velocity and frequency of pulsatile flow. Moreover, varying differ-
ent velocity components results in different responses. The preliminary results show that imperfections in
fluid-conveying nanotubes reduce the chaos region.

1 Introduction

Nanotubes are largely used these days with a wide range of applications, including actuators, transistors and sensors
at nanoscales [1,2]. In particular, fluid-conveying nanotubes have sparked great interest due to their variety of ap-
plications, specifically in the medical field, which includes nanopipettes, biomimetic selective transport of ions, drug
delivery devices and fluid filtration devices [3–5]. Size effects play an important role in the behaviour of ultrasmall sys-
tems and structures [6–14]. A nanoscale solid, which constantly interacts with nanoscale fluid, affects the mechanical
response of the system. Therefore, to be able to model the interaction of fluid with nanotube, solid-fluid interactions
need to be predicted.

A plethora of literature has been done on the nonlinear dynamics and mechanical behaviour of macroscale pipes
conveying fluid [15–19]. Nonetheless, the studies on the mechanical characteristics of ultrasmall pipes subject to the
pulsations of a flowing fluid are limited. For macroscale structures, researchers utilise scale free formulations based on
the classical continuum mechanics (CLCM), which is incapable of describing the size-dependent behaviours that an
ultrasmall structure exhibits [20–23]. Therefore, to better understand the behaviour of ultrasmall structures, theoretical
continuum-based models [24–27] are developed besides carrying out experimental techniques or molecular dynamics
simulations. Among various theoretical modes, the modified couple stress theory (MCST) [28–33], nonlocal model [34–
40] and nonlocal strain gradient theory (NSGT) [41–45] are employed for capturing size influences. In general, the
MCST is utilised for microscale structures, which are governed by structural stiffness hardening, while researchers
apply nonlocal modelling and NSGT to nanoscale level in which structures demonstrate stiffness softening. In this
paper, the NSGT is employed for size influences.

A nonlocal elasticity theory was developed by Wang [36] for exploring the mechanics of fluid-conveying tubular
ultrasmall beams; in this model, small length-scale effects were taken into consideration. Using a nonlocal elastic
theory, the frequency parameters of single-walled carbon nanotube (SWCNT) conveying fluid resting on an external
foundation were investigated in ref. [46]; the impacts of nonlocal stress, viscosity parameter and foundation coefficient
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on the vibration of the nanosystem were studied. Furthermore, the oscillation features of non-uniform fluid-conveying
SWCNTs resting on a viscoelastic foundation were studied by Rafiei et al. [47] using a non-classical formulation; the
effects of scale parameters and viscoelastic foundation on the frequency and critical velocity were studied. It has been
found that neglecting the scale effects would deliver inaccurate results as it has a significant impact on the mechanical
features at nanoscale [9,48]. In addition, Askari and Esmailzadeh [49] implemented a non-classical beam theory for
studying thermal and flow speed effects on the large-amplitude vibrations of carbon nanotubes (CNTs) conveying fluid.
A nonlocal beam model was employed by Xia and Wang [50] to scrutinise the motion features of CNTs conveying
fluid; CNTs were of a curved axial shape; the frequencies of curved CNTs were compared to those pf straight CNTs,
and it was obtained that curved nanotubes have unconditionally high stability even at high fluid velocity. Liang and
Su [51] also proposed a non-classical elasticity formulation for investigating the instability of a SWCNT conveying
pulsatile flow.

In practical applications, the speed of the fluid flowing through a nanodevice would not be constant as it would
be time-dependent. Besides, geometrical imperfection is likely to exist in real-world situations due to manufacturing
imprecision at nanoscale levels. This initial deflection can cause significant change in the nonlinear behaviour of a
nanosystem. In addition, viscosity, which models the internal energy loss due to friction, can influence the mechanical
behaviour of an ultrasmall structure.

All the above-mentioned important and relevant studies on the mechanical behaviour and the nonlinear dynamics
of fluid-conveying nanotubes are limited to completely perfect nanotubes with constant fluid speed. As far as is
known, the simultaneous effects of imperfections coupled with flow pulsation influences on the global dynamics of
viscoelastic nanotubes have not yet been studied. Therefore, this article investigates the bifurcation behaviour of
imperfect viscoelastic nanotube conveying pulsatile fluid to fully understand the effects of these parameters on the
nanoscale tube. By applying Hamilton’s principle, coupled nonlinear equations are obtained. Then, using the approach
of Galerkin’s method and technique of direct integration, a reliable solution methodology is obtained for the two
nonlinear equations. Subsequently, the Euler-Bernoulli strain-displacement relations are used to consider the effect of
geometric imperfection of the nanotube. This is done by defining a deflection for the viscoelastic nanoscale beam along
transverse axis. The effects of the fluid velocity amplitude and mean value of fluid velocity as well as the impact of
geometrical imperfection on the nonlinear dynamical features of the viscoelastic nanoscale tube are explored.

2 Slip end condition

Slip conditions at the nanofluid/nanotube interface are implemented by a mathematical procedure using Karniadakis-
Beskok assumptions. The fluid effective viscosity is

μv =
(

1
γKn + 1

)
μv0. (1)

Here γ, Kn and μv0 are a coefficient, Knudsen number and bulk viscosity, respectively. The appropriate value of γ is
obtained as

γ =
2
π

γ0 tan−1(α0Knα1), (2)

where
γ0 = lim

Kn→∞
γ =

64λ

3π(λ − 4)
, (3)

in which λ, α0 and α1 are constant values. To determine the velocity profile inside the tube, Navier-Stokes equations
are employed as

ρf
dv

dt
= μv∇2v −∇P. (4)

Here ρf , v and P denote the fluid density, velocity vector and pressure, respectively. ∇2 and ∇ represent the Laplacian
and gradient operators, respectively. Using eq. (4) and assuming an incompressible laminar Newtonian fluid flow, one
obtains

vx =
1

4μv

∂P

∂x
r2 − R2

i

4μv

∂P

∂x

{
1 +

(
Kn

λKn − 1

)(
2τv − 4

τv

)}
, (5)

where Ri and τv indicate the inner radius of the nanotube and tangential momentum accommodation factor, respec-
tively. Employing the above relations, the slip correction factor is obtained as

κslip =
μv0

μv

{
1 +

(
4Kn

λKn − 1

)(
τv − 2

τv

)}
. (6)

The above relation is utilised for simulating the impacts of slip boundary conditions at nanofluid/nanotube interfaces.
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Fig. 1. A viscoelastic clamped-clamped nanotube with geometrical imperfection conveying pulsatile flow.

3 A NSGT nonlinear model for nanotubes conveying pulsatile flow

Incorporating the effects of flow pulsation, strain gradients and nonlocal stresses as well as geometrical imperfections
and viscoelasticity, a nonlinear continuum model is presented in the following for the above-described problem. A thin
nanoscale tube with Young’s modulus E and viscosity constant η is taken into account (see fig. 1). The strain of the
nanotube is

εxx = exx − zκxx, (7)

where

exx =
∂u

∂x
+

1
2

(
∂w

∂x

)2

+
∂w

∂x

dw0

dx
, κxx =

∂2w

∂x2
, (8)

in which w0, w and u denote the imperfection amplitude, transverse and axial displacements, respectively. In view of
the NSGT, the strain-stress equation is

Γnlσxx = Γsgσ
cl
xx(el) + Γsgσ

cl
xx(vis) = EΓsgεxx + ηΓsg

∂εxx

∂t
, (9)

where Γnl and Γsg are the nonlocal and strain gradient operators, respectively. In the present formulation, they are
given by

Γnl(•) = (•) − (e0�c)2∇2(•),
Γsg(•) = (•) − (�sg)2∇2(•), (10)

In eq. (10), �sg, �c and e0 are the strain gradient size parameter, nonlocal size parameter and calibration coefficient,
respectively. In eq. (9), “cl”, “vis” and “el” as well as “sg” and “nl” are applied so as to indicate “classical”,
“viscoelastic” and “elastic” as well as “strain gradient” and “nonlocal”, respectively. The total stress is

σxx = σxx(el) + σxx(vis). (11)

Assuming A as the area of cross-section, the force and moment resultants are

Nxx =
∫

A

σxxdA, Mxx =
∫

A

zσxxdA. (12)

Using eqs. (12), (9) and (8) as well as eq. (7), one obtains

ΓnlNxx = EAΓsg

(
∂u

∂x
+

1
2

(
∂w

∂x

)2
)

+ EAΓsg

(
∂w

∂x

dw0

dx

)
+ ηAΓsg

(
∂2u

∂t∂x
+

∂w

∂x

∂2w

∂t∂x

)
+ ηAΓsg

(
∂2w

∂t∂x

dw0

dx

)
(13)

and

ΓnlMxx = −EIΓsg

(
∂2w

∂x2

)
− ηIΓsg

(
∂3w

∂t∂x2

)
, (14)
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in which I is the second area moment. In view of the NSGT, the potential energy variation is

δUel =
∫ L

0

∫
A

(
σ

(1)
xx(el)∇δεxx + σ

(0)
xx(el)δεxx

)
dAdx

=
[∫

A

σ
(1)
xx(el)δεxxdA

]L

0

+
∫ L

0

∫
A

(
−∇σ

(1)
xx(el)δεxx + σ

(0)
xx(el)δεxx

)
dAdx

=
[∫

A

σ
(1)
xx(el)δεxxdA

]L

0

+
∫ L

0

∫
A

σxx(el)δεxxdAdx. (15)

Here σ
(1)
xx(el) and σ

(0)
xx(el) show the elastic nonlocal stresses of the first and zeroth orders, respectively. Similarly, for the

viscous work variation, we have

δWvis = −
∫ L

0

∫
A

(
σ

(1)
xx(vis)∇δεxx + σ

(0)
xx(vis)δεxx

)
dAdx

= −
[∫

A

σ
(1)
xx(vis)δεxxdA

]L

0

−
∫ L

0

∫
A

(
−∇σ

(1)
xx(vis)δεxx + σ

(0)
xx(vis)δεxx

)
dAdx

= −
[∫

A

σ
(1)
xx(vis)δεxxdA

]L

0

−
∫ L

0

∫
A

σxx(vis)δεxxdAdx. (16)

In the above relation, σ
(1)
xx(vis) and σ

(0)
xx(vis) are the viscoelastic nonlocal stresses of the first and zeroth orders, respec-

tively. For various stress components, one has

σxx = σ(0)
xx −∇σ(1)

xx ,

σxx(el) = σ
(0)
xx(el) −∇σ

(1)
xx(el),

σxx(vis) = σ
(0)
xx(vis) −∇σ

(1)
xx(vis), (17)

and

σxx = σxx(el) + σxx(vis),

σ(0)
xx = σ

(0)
xx(el) + σ

(0)
xx(vis),

σ(1)
xx = σ

(1)
xx(el) + σ

(1)
xx(vis). (18)

Suppose that m and M represent (mass)/(length) for nanotube and nanofluid, respectively. Furthermore, U(t) is the
time-dependent fluid speed. The kinetic energy variation is

δTk = m

∫ L

0

∂u

∂t

∂δu

∂t
dx + m

∫ L

0

∂w

∂t

∂δw

∂t
dx + M

∫ L

0

(
∂u

∂t
+ κslipU(t)

(
1 +

∂u

∂x

))(
∂δu

∂t
+ κslipU(t)

∂δu

∂x

)
dx

+ M

∫ L

0

(
∂w

∂t
+ κslipU(t)

(
∂w

∂x
+

dw0

dx

))(
∂δw

∂t
+ κslipU(t)

∂δw

∂x

)
dx. (19)

For the above-described nanoengineering problem, the Hamilton law, which is used for equation derivations, is ex-
pressed as ∫ t2

t1

(δTk − δUel + δWvis)dt = 0. (20)

Substitution of elastic energy, viscous work and kinetic energy variations from eqs. (15), (16) and (19) into eq. (20),
leads to

(m + M)
∂2u

∂t2
+ M [U(t)]2(κslip)2

∂2u

∂x2
+ κslipM

∂U(t)
∂t

(
1 +

∂u

∂x

)
+ 2U(t)Mκslip

∂2u

∂t∂x
− ∂Nxx

∂x
= 0, (21)

(m + M)
∂2w

∂t2
− ∂2Mxx

∂x2
− ∂

∂x

[
Nxx

(
∂w

∂x
+

dw0

dx

)]
+ 2U(t)Mκslip

∂2w

∂t∂x
+ κslipM

∂U(t)
∂t

(
∂w

∂x
+

dw0

dx

)

+ M [U(t)]2(κslip)2
(

∂2w

∂x2
+

d2w0

dx2

)
= 0. (22)
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It is worth mentioning that when the slip correction factor is set to 1, eqs. (21) and (22) are reduced to those of
no-slip boundary conditions. Applying eqs. (21) and (22) as well as eqs. (13) and (14), moment and force resultants
are obtained as

Nxx = EAΓsg

(
∂u

∂x
+

1
2

(
∂w

∂x

)2
)

+ EAΓsg

(
∂w

∂x

dw0

dx

)

+ ηAΓsg

(
∂2u

∂t∂x
+

∂w

∂x

∂2w

∂t∂x

)
+ ηAΓsg

(
∂2w

∂t∂x

dw0

dx

)

+ (e0�c)2
{

(m + M)
∂3u

∂x∂t2
+ 2U(t)Mκslip

∂3u

∂t∂x2

+M [U(t)]2(κslip)2
∂3u

∂x3
+ κslipM

∂U(t)
∂t

∂2u

∂x2

}
, (23)

Mxx = −EIΓsg
∂2w

∂x2
− ηIΓsg

∂3w

∂t∂x2
− (e0�c)2

∂

∂x

[
Nxx

(
∂w

∂x
+

dw0

dx

)]

+(e0�c)2
{

(m+M)
∂2w

∂t2
+M [U(t)]2(κslip)2

(
∂2w

∂x2
+

d2w0

dx2

)

+2U(t)Mκslip
∂2w

∂t∂x
+κslipM

(
∂w

∂x
+

dw0

dx

)
∂U(t)

∂t

}
. (24)

Substitution of eqs. (23) and (24) into eqs. (21) and (22), assuming the fluid speed as U = U0 + U1 cos(ωf t), and then
using the following dimensionless parameters:

ξ =
x

L
, ∇̄2 =

∂2

∂ξ2
, χnl =

e0�c

L
,

χsg =
�sg

L
, u∗ =

u

d
, w∗

0 =
w0

d
,

w∗ =
w

d
, Ξ =

AL2

I
, s =

L

d
,

M̄ =
M

M + m
, t∗ =

t

L2

√
EI

m + M
, U∗ =

√
M

EI
UL,

ω∗ =

√
L4(m + M)

EI
ω, η∗ =

√
EI

m + M

η

EL2
, (25)

the dimensionless motion equations, which are both nonlinear and viscoelastically coupled, are derived as

s

Ξ

{
∂2u

∂t2
+ 2

√
M̄κslip

∂2u

∂t∂ξ
[U0 + U1 cos(ωf t)] + (κslip)2

∂2u

∂ξ2
[U0 + U1 cos(ωf t)]2 − κslipωf

√
M̄U1

(
s +

∂u

∂ξ

)
sin(ωf t)

}

− χ2
nl

s

Ξ

∂2

∂ξ2

{
∂2u

∂t2
+ 2

√
M̄κslip

∂2u

∂t∂ξ
[U0 + U1 cos(ωf t)] + (κslip)2

∂2u

∂ξ2
[U0 + U1 cos(ωf t)]2

− κslipωf

√
M̄U1

(
s +

∂u

∂ξ

)
sin(ωf t)

}
− ∂

∂ξ

[
s
∂u

∂ξ
+

1
2

(
∂w

∂ξ

)2

+
∂w

∂ξ

dw0

dξ

]
+ χ2

sg

∂3

∂ξ3

[
s
∂u

∂ξ
+

1
2

(
∂w

∂ξ

)2

+
∂w

∂ξ

dw0

dξ

]

− η
∂

∂ξ

(
s

∂2u

∂t∂ξ
+

∂w

∂ξ

∂2w

∂t∂ξ
+

∂2w

∂t∂ξ

dw0

dξ

)
+ χ2

sgη
∂3

∂ξ3

(
s

∂2u

∂t∂ξ
+

∂w

∂ξ

∂2w

∂t∂ξ
+

∂2w

∂t∂ξ

dw0

dξ

)
= 0, (26)
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∂2w

∂t2
+ 2κslip

√
M̄

∂2w

∂t∂ξ
[U0 + U1 cos(ωf t)] + (κslip)2

(
∂2w

∂ξ2
+

d2w0

dξ2

)
[U0 + U1 cos(ωf t)]2

− κslipωf

√
M̄U1

(
∂w

∂ξ
+

dw0

dξ

)
sin(ωf t) − χ2

nl

∂2

∂ξ2

{
∂2w

∂t2
+ 2

√
M̄κslip

∂2w

∂t∂ξ
[U0 + U1 cos(ωf t)]

+ (κslip)2
(

∂2w

∂ξ2
+

d2w0

dξ2

)
[U0 + U1 cos(ωf t)]2 − κslipωf

√
M̄U1

(
∂w

∂ξ
+

dw0

dξ

)
sin(ωf t)

}

+
∂4w

∂ξ4
− χ2

sg

∂6w

∂ξ6
+ η

∂5w

∂t∂ξ4
− χ2

sgη
∂7w

∂t∂ξ6
− Ξ

s2

∂

∂ξ

{(
∂w

∂ξ
+

dw0

dξ

)[
s
∂u

∂ξ
+

1
2

(
∂w

∂ξ

)2

+
∂w

∂ξ

dw0

dξ

]

− χ2
sg

(
∂w

∂ξ
+

dw0

dξ

)
∂2

∂ξ2

[
s
∂u

∂ξ
+

1
2

(
∂w

∂ξ

)2

+
∂w

∂ξ

dw0

dξ

]
+ η

(
∂w

∂ξ
+

dw0

dξ

)(
s

∂2u

∂t∂ξ
+

∂w

∂ξ

∂2w

∂t∂ξ
+

∂2w

∂t∂ξ

dw0

dξ

)

− χ2
sgη

(
∂w

∂ξ
+

dw0

dξ

)
∂2

∂ξ2

(
s

∂2u

∂t∂ξ
+

∂w

∂ξ

∂2w

∂t∂ξ
+

∂2w

∂t∂ξ

dw0

dξ

)
+

s

Ξ
χ2

nl

(
∂w

∂ξ
+

dw0

dξ

)

×
(

∂3u

∂ξ∂t2
+2

√
M̄κslip

∂3u

∂t∂ξ2
[U0+U1 cos(ωf t)]+(κslip)2

∂3u

∂ξ3
[U0+U1 cos(ωf t)]2−κslipωf

√
M̄U1

∂2u

∂ξ2
sin(ωf t)

)}

+
Ξ

s2
χ2

nl

∂3

∂ξ3

{(
∂w

∂ξ
+

dw0

dξ

)[
s
∂u

∂ξ
+

1
2

(
∂w

∂ξ

)2

+
∂w

∂ξ

dw0

dξ

]
− χ2

sg

(
∂w

∂ξ
+

dw0

dξ

)
∂2

∂ξ2

[
s
∂u

∂ξ
+

1
2

(
∂w

∂ξ

)2

+
∂w

∂ξ

dw0

dξ

]

+ η

(
∂w

∂ξ
+

dw0

dξ

)(
s

∂2u

∂t∂ξ
+

∂w

∂ξ

∂2w

∂t∂ξ
+

∂2w

∂t∂ξ

dw0

dξ

)
− ηχ2

sg

(
∂w

∂ξ
+

dw0

dξ

)
∂2

∂ξ2

(
s

∂2u

∂t∂ξ
+

∂w

∂ξ

∂2w

∂t∂ξ
+

∂2w

∂t∂ξ

dw0

dξ

)

+ χ2
nl

s

Ξ

(
∂w

∂ξ
+

dw0

dξ

) (
∂3u

∂ξ∂t2
+ 2

√
M̄κslip

∂3u

∂t∂ξ2
[U0 + U1 cos(ωf t)]

+ (κslip)2
∂3u

∂ξ3
[U0 + U1 cos(ωf t)]2 − κslipωf

√
M̄U1

∂2u

∂ξ2
sin(ωf t)

)}
= 0. (27)

4 Numerical solution

Firstly, for convenience purposes, the nonlinear coupled motion equations are re-written using the following set of
differential operators:

Υ1,1(•) =
∂2

∂t2
(•)+2

√
M̄κslip[U0+U1 cos(ωf t)]

∂2(•)
∂t∂ξ

+(κslip)2[U0+U1 cos(ωf t)]2
∂2

∂ξ2
(•)−κslipωf

√
M̄U1 sin(ωf t)

(
s+

∂

∂ξ
(•)

)
,

Υ1,2(•, ∗, ◦) = s
∂

∂ξ
(•)+ 1

2

(
∂

∂ξ
(∗)

)2

+
[

∂

∂ξ
(∗)

] [
d
dξ

(◦)
]

,

Υ1,3(•, ∗, ◦) = s
∂2

∂t∂ξ
(•)+

[
∂

∂ξ
(∗)

] [
∂2

∂t∂ξ
(∗)

]
+

[
∂2

∂t∂ξ
(∗)

] [
d
dξ

(◦)
]

, (28)

Υ2,1(•, ◦) =
∂2

∂t2
(•)+2

√
M̄κslip[U0+U1 cos(ωf t)]

∂2(•)
∂t∂ξ

+(κslip)2[U0+U1 cos(ωf t)]2
[

∂2

∂ξ2
(•)+ ∂2

∂ξ2
(◦)

]

−κslipωf

√
M̄U1 sin(ωf t)

[
∂

∂ξ
(•)+ ∂

∂ξ
(◦)

]
,

Υ2,2(•) =
∂4

∂ξ4
(•)−χ2

sg

∂6

∂ξ6
(•)+η

∂5

∂t∂ξ4
(•)−χ2

sgη
∂7

∂t∂ξ6
(•),

Υ2,3(•, ◦) =
∂

∂ξ
(•)+ ∂

∂ξ
(◦),

Υ2,4(•) =
∂3

∂ξ∂t2
(•)+2

√
M̄κslip[U0+U1 cos(ωf t)]

∂3

∂t∂ξ2
(•)

+(κslip)2[U0+U1 cos(ωf t)]2
∂3

∂ξ3
(•)−κslipωf

√
M̄U1 sin(ωf t)

∂2

∂ξ2
(•). (29)
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Using the above differential operators, eqs. (26) and (27) are re-written as follows:

s

Ξ
Υ1,1(u) − χ2

nl

s

Ξ

∂2

∂ξ2
[Υ1,1(u)] − ∂

∂ξ
[Υ1,2(u,w,w0)]

+ χ2
sg

∂3

∂ξ3
[Υ1,2(u,w,w0)] − η

∂

∂ξ
[Υ1,3(u,w,w0)] + χ2

sgη
∂3

∂ξ3
[Υ1,3(u,w,w0)] = 0, (30)

Υ2,1(w,w0) + Υ2,2(w) − χ2
nl

∂2

∂ξ2
[Υ2,1(w,w0)]

− Ξ

s2

∂

∂ξ

{
[Υ1,2(u,w,w0)][Υ2,3(w,w0)] − χ2

sg[Υ2,3(w,w0)]
∂2

∂ξ2
[Υ1,2(u,w,w0)] + η[Υ2,3(w,w0)]Υ1,3(u,w,w0)

− χ2
sgη[Υ2,3(w,w0)]

∂2

∂ξ2
[Υ1,3(u,w,w0)] +

s

Ξ
χ2

nl[Υ2,3(w,w0)]Υ2,4(u)
}

+
Ξ

s2
χ2

nl

∂3

∂ξ3

{
Υ2,3(w,w0)Υ1,2(u,w,w0) − χ2

sgΥ2,3(w,w0)
∂2

∂ξ2
[Υ1,2(u,w,w0)] + ηΥ2,3(w,w0)Υ1,3(u,w,w0)

− ηχ2
sgΥ2,3(w,w0)

∂2

∂ξ2
[Υ1,3(u,w,w0)] + χ2

nl

s

Ξ
Υ2,3(w,w0)Υ2,4(u)

}
= 0. (31)

Now the simplified nonlinear coupled equations are discretised via application of a weighted-residual technique [52–55].
Assuming both ends of the tube as clamped ends, the axial and transverse components of the displacement field are

u(t, ξ) =
Nu∑
k=1

pk(t)Φk(ξ),

w(t, ξ) =
Nw∑
k=1

qk(t)Ψk(ξ), (32)

where (p, q) and (Φ, Ψ) stand for the generalised coordinates and basis functions, respectively, [56,57]. Ni (i = u,w)
is also employed to show the number of generalised coordinates. Substitution of eq. (32) into eqs. (30) and (31), then
implementing Galerkin’s scheme, yields

∫ 1

0

Φj(ξ)

{
s

Ξ
Υ1,1

(
Nu∑
k=1

pk(t)Φk(ξ)

)
− χ2

nl

s

Ξ

[
Υ1,1

(
Nu∑
k=1

Φk(ξ)pk(t)

)]′′

−
[
Υ1,2

(
Nu∑
k=1

Φk(ξ)pk(t),
Nu∑
k=1

Ψk(ξ)qk(t), A0Ψ1(ξ)

)]′

+ χ2
sg

[
Υ1,2

(
Nu∑
k=1

Φk(ξ)pk(t),
Nu∑
k=1

Ψk(ξ)qk(t), A0Ψ1(ξ)

)]′′′

− η

[
Υ1,3

(
Nu∑
k=1

Φk(ξ)pk(t),
Nu∑
k=1

Ψk(ξ)qk(t), A0Ψ1(ξ)

)]′

+ χ2
sgη

[
Υ1,3

(
Nu∑
k=1

Φk(ξ)pk(t),
Nu∑
k=1

Ψk(ξ)qk(t), A0Ψ1(ξ)

)]′′′ }
dξ = 0, (33)
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∫ 1

0

Ψj(ξ)

{
Υ2,1

(
Nu∑
k=1

qk(t)Ψk(ξ), A0Ψ1(ξ)

)

− χ2
nl

[
Υ2,1

(
Nu∑
k=1

qk(t)Ψk(ξ), A0Ψ1(ξ)

)]′′

+ Υ2,2

(
Nu∑
k=1

qk(t)Ψk(ξ)

)

− Ξ

s2

{[
Υ2,3

(
Nu∑
k=1

qk(t)Ψk(ξ), A0Ψ1(ξ)

)][
Υ1,2

(
Nu∑
k=1

Φk(ξ)pk(t),
Nu∑
k=1

Ψk(ξ)qk(t), A0Ψ1(ξ)

)]

− χ2
sg

[
Υ2,3

(
Nu∑
k=1

qk(t)Ψk(ξ), A0Ψ1(ξ)

)]( [
Υ1,2

(
Nu∑
k=1

pk(t)Φk(ξ),
Nu∑
k=1

qk(t)Ψk(ξ), A0Ψ1(ξ)

)]′′ )

+ η

[
Υ2,3

(
Nu∑
k=1

qk(t)Ψk(ξ), A0Ψ1(ξ)

)][
Υ1,3

(
Nu∑
k=1

Φk(ξ)pk(t),
Nu∑
k=1

Ψk(ξ)qk(t), A0Ψ1(ξ)

)]

− χ2
sgη

[
Υ2,3

(
Nu∑
k=1

Ψk(ξ)qk(t), A0Ψ1(ξ)

)]( [
Υ1,3

(
Nu∑
k=1

pk(t)Φk(ξ),
Nu∑
k=1

qk(t)Ψk(ξ), A0Ψ1(ξ)

)]′′ )

+
s

Ξ
χ2

nl

[
Υ2,3

(
Nu∑
k=1

Ψk(ξ)qk(t), A0Ψ1(ξ)

)]
Υ2,4

(
Nu∑
k=1

Φk(ξ)pk(t)

) }′

+
Ξ

s2
χ2

nl

{ [
Υ2,3

(
Nu∑
k=1

Ψk(ξ)qk(t), A0Ψ1(ξ)

)][
Υ1,2

(
Nu∑
k=1

Φk(ξ)pk(t),
Nu∑
k=1

Ψk(ξ)qk(t), A0Ψ1(ξ)

)]

− χ2
sg

[
Υ2,3

(
Nu∑
k=1

qk(t)Ψk(ξ), A0Ψ1(ξ)

)]( [
Υ1,2

(
Nu∑
k=1

pk(t)Φk(ξ),
Nu∑
k=1

Ψk(ξ)qk(t), A0Ψ1(ξ)

)]′′ )

+ η

[
Υ2,3

(
Nu∑
k=1

Ψk(ξ)qk(t), A0Ψ1(ξ)

)][
Υ1,3

(
Nu∑
k=1

pk(t)Φk(ξ),
Nu∑
k=1

Ψk(ξ)qk(t), A0Ψ1(ξ)

)]

− ηχ2
sg

[
Υ2,3

(
Nu∑
k=1

Ψk(ξ)qk(t), A0Ψ1(ξ)

)]( [
Υ1,3

(
Nu∑
k=1

pk(t)Φk(ξ),
Nu∑
k=1

Ψk(ξ)qk(t), A0Ψ1(ξ)

)]′′ )

+ χ2
nl

s

Ξ
Υ2,3

(
Nu∑
k=1

qk(t)Ψk(ξ), A0Ψ1(ξ)

)
Υ2,4

(
Nu∑
k=1

Φk(ξ)pk(t)

) }′′′}
dξ = 0. (34)

Finally, to determine the global nonlocal viscoelastic dynamic characteristics of fluid-conveying imperfect nanotubes
with flow pulsation, a technique of direct integration is implemented. It should be noticed that the number of generalised
coordinates along the x-axis is assumed to be the same as that of the z-axis.

5 Numerical results

A nanoscale tube, which is utilised as an ultrasmall device to convey pulsatile fluid, is taken into account. For the
solid part, we assume that E = 610MPa, Poisson’s ratio = 0.3, density = 1024 kg/m3, outer radius = 290.5 nm,
thickness = 66.0 nm and s = 20. The Knudsen number, dimensionless fluid mass and slip correction factor are
Kn = 0.015, M̄ = 0.5915 and κslip = 1.119, respectively. Furthermore, it is assumed that Ξ = 4006.94, η∗ = 0.0004,
χsg = 0.04 and χnl = 0.08. In numerical calculation, 20 degrees of freedom are considered. In addition, the coefficient
associated with slip boundary conditions are taken as λ = −1, τv = 0.7, α0 = 4, α1 = 0.4 and γ0 = 64/(15π) in this
nonlinear dynamical analysis.

The static bifurcation response is first plotted in figs. 2, varying A0 from 0.005 to 0.05. This shows the relationship
between U0 and the resultant transverse deflection at x = 0.50. From the figure, it is observed that the system remains
unchanged till U0 reaches a certain speed where the system starts to deflect. For the system where A0 = 0.005, the
speed is 4.8 and the effect of the speed is evident in figs. 3 when the pulsatile fluid is introduced, (U1 = 0.05U0).
Comparing the transverse deflection of the nanobeam as U0 exceeds the critical speed when A0 = 0.005, it can be seen
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Fig. 2. Static bifurcations of initially imperfect nanofluid-conveying nanotubes showing the transverse deflection at x = 0.50
for U1 = 0: (a) A0 = 0.005; (b) A0 = 0.05.

Fig. 3. Bifurcation response of initially imperfect nanofluid-conveying viscoelastic nanotubes for A0 = 0.005, ωf = 10.50, and
U1 = 0.05U0: (a) w[x = 0.50]; (b) u[x = 0.65].

the coupled motion after U0 = 4.8, increases from period-1 to period-2 and the motion is unpredictable after that. It
is also observed that period-3 coupled motion is seen after U0 = 5.5, and it is complete chaos starting at U0 = 5.76.
To be able to understand more about the chaotic motion, more detailed plots at U0 = 6.3 are shown in figs. 4. It is
worth noting that the pattern of motion cannot be predicted over time.

Figure 5 demonstrates the bifurcation response when the system has a higher imperfection (A0 = 0.05). ωf is
increased from 10.50 to 12, and the speed of U1 is increased to 0.10U0. Different motion types can be observed in these
figures. The system’s transverse motion response is similar to the static bifurcation shown in fig. 1 but with larger
amplitude until U0 = 4.6. The coupled motion is periodic for 0 < U0 < 4.84, a mixture of period-2 and period-1 as
well as period-3 motion is seen for 4.86 < U0 < 5.08, after that it is observed to be chaos. Numerous period-1 motions
are found for 5.54 < U0 < 6.6 in between intervals. For example, it is observed that chaos happens when U0 = 6.3 and
the system returns to a period-1 motion after that, and again chaos happens when U0 = 6.4. However, it is noted that
a system with higher imperfections shows more intervals of chaos. To be able to observe the periodic motion more
clearly, fig. 6 is plotted to show the variation of transverse and longitudinal motion at U0 = 4.6 as time varies. For
further clarification, the chaotic motion at U0 = 5.5 is plotted in fig. 7. From the figure, it is observed that the system
experiences chaotic motions where a pattern cannot be spotted in transverse and longitudinal directions.
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Fig. 4. Response of the tube in fig. 3 at U0 = 6.30 for A0 = 0.005, ωf = 10.50, and U1 = 0.05U0: (a), (c), (e), and (g)
phase-plane, FFT, time trace, and Poincaré sections for w[x = 0.5], respectively; (b), (d), (f), and (h) phase-plane, FFT, time
trace, and Poincaré sections for u[x = 0.65], respectively.
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Fig. 5. Bifurcation response of initially imperfect nanofluid-conveying viscoelastic nanotubes for A0 = 0.05, ωf = 12.00, and
U1 = 0.10U0: (a) w[x = 0.50]; (b) u[x = 0.65].

Fig. 6. Response of the tube in fig. 5 at U0=4.60 for A0 = 0.05, ωf = 12.00, and U1 = 0.10U0: (a) and (c) time history and
phase-plane for w[x = 0.5], respectively; (b) and (d) time history and phase-plane for u[x = 0.65], respectively.

While maintaining all the other parameters constant, ωf is increased to 24, twice of the original system, and the
bifurcation response is plotted in fig. 8. The transverse motion shows a similar trend as shown in fig. 1 till U0 = 4.06.
However, in the longitudinal direction, the tube moves in the negative direction. In the transverse direction, a period-2
motion is seen after U0 = 4.06 till U0 = 5.2.
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Fig. 7. Response of the tube in fig. 5 at U0 = 5.50 for A0 = 0.05, ωf = 12.00, and U1 = 0.10U0: (a) and (c) time history and
phase-plane for w[x = 0.5], respectively; (b) and (d) time history and phase-plane for u[x = 0.65], respectively.

Indicated in fig. 9 is the size-dependent responses of perfectly straight viscoelastic nanotubes conveying pulsatile
fluid with mean speed of U0 = 5.10 for displacements along both transverse and longitudinal directions. The transverse
motion is taken at displacement x = 0.5 while the axial motion is taken at x = 0.65. Furthermore, as this nanotube
is perfectly straight, the geometrical imperfection amplitude is zero. The frequency of the nanotube is determined as
ω1 = 1.8886. From fig. 9, it is evident that if the amplitude of flow speed grows, the nanotube experiences different
motion kinds involving period-k (k = 1, 2, 3, 6) together with chaotic motion.

Figure 10 illustrates the bifurcation response of initially imperfect nanofluid-conveying viscoelastic nanotubes with
geometrical imperfection amplitude, A0 = 0.005. The mean speed, U0 and the fundamental natural frequency ω1

are 5.10 and 5.2407, respectively. It is observed that the nanotube undergoes the same motion type at the same
amplitude for both transverse and longitudinal motions despite having different displacements. For small velocity
amplitudes (U1 ≤ 0.008), the coupled behaviour is of period-1. By further increasing amplitude, the transverse and
longitudinal motion types observed include period-2, period-4 and period-6. Beyond U1 = 0.28, only period-2 motions
are observed for the coupled motions. It is important to note that no complicated response is observed in fig. 10. The
detailed motions of the nanotube of fig. 10 at U1 = 0.20 is given in fig. 11. At this point, the system response is of
period-4.

Furthermore, to investigate the effects of geometrical imperfection on the nanofluid-conveying viscoelastic nanotube,
fig. 12 is plotted. This figure shows the bifurcation response of the viscoelastic nanotube for displacements in the
transverse direction when A0 = 0.05 and A0 = 0.15. The point of displacement, mean speed and frequency ratio are
x = 0.5, U0 = 5.10 and ω/ω1 = 2.0, respectively. When geometrical imperfection amplitude is A0 = 0.05, period-1
motion type is seen for small amplitudes of fluid speed. For large values of U1, it is observed that the transverse motion
experiences a period-2 response. As the geometrical defect rises to A0 = 0.15, the transverse motion is observed to
undergo large amplitudes.
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Fig. 8. Bifurcation response of initially imperfect nanofluid-conveying viscoelastic nanotubes for A0 = 0.05, ωf = 24.00, and
U1 = 0.10U0: (a) w[x = 0.50]; (b) u[x = 0.65].

Fig. 9. Bifurcation response of perfectly straight nanofluid-conveying viscoelastic nanotubes for U0 = 5.10, A0 = 0, ω1 = 1.8886,
and ω/ω1 = 2.0: (a) w[x = 0.50]; (b) u[x = 0.65].

Fig. 10. Bifurcation response of initially imperfect nanofluid-conveying viscoelastic nanotubes for U0 = 5.10, A0 = 0.005,
ω1=5.2407, and ω/ω1 = 2.0: (a) w[x = 0.50]; (b) u[x = 0.65].
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Fig. 11. Period-4 response of the tube in fig. 10 at U1 = 0.20 for U0 = 5.10, A0 = 0.005, ω1 = 5.2407, and ω/ω1 = 2.0: (a) and
(c) phase-plane and time trace for w[x = 0.5], respectively; (b) and (d) phase-plane and time trace for u[x = 0.65], respectively.

Fig. 12. Bifurcation response of initially imperfect nanofluid-conveying viscoelastic nanotubes; (a) w[x = 0.5] when U0 = 5.10,
A0 = 0.05, ω1 = 12.0047, and ω/ω1 = 2.0; (b) w[x = 0.5] when U0 = 5.10, A0 = 0.15, ω1 = 17.9556, and ω/ω1 = 2.0.
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6 Conclusions

The bifurcation response of viscoelastic imperfect nanotubes conveying pulsatile fluid was investigated in this article.
A scale-dependent nonlinear fluid-structure interaction model was utilised to explore the bifurcations of imperfect
nanotubes conveying flow. The model was developed using nonlocal strain gradient theory, Beskok-Karniadakis theory,
Kelvin-Voigt method, Euler-Bernoulli theory and Hamilton’s principle. Viscoelastic features were assumed for the solid
part of the nanosystem. Coriolis and centrifugal accelerations and imperfection effects were factored in the model used.
It was concluded that imperfections in nanotubes, the velocity and frequency of pulsatile flow all significantly affect the
bifurcation response along transverse and longitudinal directions. The viscoelastic imperfect nanotube shows a period-
1 motion when the pulsatile fluid has a low velocity. However, when the nanofluid exceeds a certain speed, numerous
different motions are observed, from period-1 and period-3 to a chaotic behaviour. Changing the imperfection of
nanotubes changes the chaos pattern. Compared to perfect nanotubes, imperfect nanotubes exhibit less chaos, and
even none in some cases. In general, a nanosystem with higher U0 or U1 shows more chaos.
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