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Abstract. In this paper, we concentrate on the optical soliton solutions of spatially temporal Biswas-Milovic
equation with power law and dual-power law nonlinearities. This model accounts for several imperfections
for the transmission of solitons through optical fibers. The first integral method is employed in order to
construct singular and dark 1-soliton solutions from the governing Biswas-Milovic equation with spatio-
temporal dispersion. Some parametric restrictions are also enumerated which guarantee the existence of
these soliton solutions. Moreover, the obtained results are demonstrated by 3D and 2D plots.

1 Introduction

Nonlinear partial differential equations (PDEs) are often used as models to describe several major physical phenomena
and assume a perceptible part in numerous areas of engineering. Recently, various analytical traveling wave solutions
of nonlinear PDEs are obtained, which are important to reveal their rheological properties. In the last three decades,
a variety of powerful and productive methods have been introduced and utilized to construct variety of exact traveling
wave solutions of nonlinear PDEs [1–13].

The theory of optical solitons is potentially the most energetic and striking field of research in theoretical physics,
telecommunication engineering and in nonlinear fiber optics [14–23].

In nonlinear sciences, the dynamics of soliton propagation is comprehensively addressed by nonlinear Schrödinger
equation [24–34]. This equation works as a basic model to describe optical pulse transmission in nonlinear mediums
when the pulse width is above 100 femto-seconds. However, as the intensity of the incident light increases, it produce
pulses of shorter width and the effect of non-Kerr nonlinearity become vital. To accomodate the higher order nonlinear
and dispersive effects, Biswas and Milovic proposed the generalized form of nonlinear Schrödinger equation that
describes the dynamics of optical solitons more comprehensively [35–43]. The Biswas-Milovic equation along with
spatio-temporal dispersion is given by [44]

i(vm)t + a(vm)xt + b(vm)xx + c�(|v|2)vm = 0, (1)

where t is the temporal variable, x denotes the non-dimensional distance along the fiber and v(x, t) is designated for
wave profile of the soliton. First term in eq. (1) denotes the evolution term, while the real constants a, b and c are the
coefficients of spatio-temporal dispersion (STD), group velocity dispersion (GVD) and nonlinear term, respectively.
The functional �, in general, denotes the non-Kerr law nonlinearity.

In the present work, we analyze eq. (1) for two types of nonlinear mediums through power law and dual-power law
nonlinearities. The first integral method is implemented which give various soliton solutions of eq. (1).

The rest of the paper is structured as follows. In sect. 2, key concepts of the first integral method are introduced. In
sect. 3, exact soliton solutions of eq. (1) are formulated with two types of nonlinearity. Finally, the paper is concluded
in sect. 4.
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2 First integral method

The first integral method was introduced by Feng [45] and has been applied successfully to construct various analytic
solutions [46–51].

We summarize this method in the following steps:
Assume that, we have a nonlinear PDE of the form

G(v, vt, vx, vtt, vxt, vxx, · · · ) = 0, (2)

where G is a polynomial in v(x, t).
By substituting v(x, t) = U(ζ), where ζ = x − νt, eq. (2) is transmuted into an ordinary differential equation

(ODE):
H(U,−νU ′, U ′, ν2U ′′,−νU ′′, U ′′, · · · ) = 0, (3)

where U ′ = dU
dζ , U ′′ = d2U

dζ2 and so on.
Next, we assume that

S(ζ) = U(ζ), T (ζ) = U ′(ζ), (4)
which leads to a system of nonlinear ODEs {

S′(ζ) = T (ζ),

T ′(ζ) = J (S(ζ), T (ζ)) .
(5)

By applying the division theorem of two variables in the complex domain C, which is followed by Hilbert-Nullstellensatz
theorem [52], we can find the first integral to eq. (5) which condenses eq. (3) into a first order integrable ODE. By
resolving this equation, an exact solution to (2) can be determined.

3 Soliton solutions
To tackle eq. (1) with first integral method, we apply the following transformation:

v(x, t) = U(ζ)eiψ(x,t), (6)

where U(ζ) denotes the wave profile and
ζ = x − νt, (7)

where ν denotes soliton velocity and ψ(x, t) represents the phase component

ψ(x, t) = −κx + ωt + ε, (8)

where κ and ω represent the frequency and wave number of the soliton, respectively, while ε is the phase constant.
Inserting eqs. (6)–(8) into eq. (1) and breaking into imaginary and real parts, we get

ν =
m(2bκ − aω)

amκ − 1
, amκ − 1 �= 0 (9)

and
(b − aν)(Um)′′ − m(ω + bmκ2 − amωκ)Um + c�(|U |2)Um = 0, (10)

where ′ = d
dζ .

Equation (9) provides the speed of soliton and eq. (10) can be evaluated to construct the wave profile if the
functional is identified. In the succeeding sections, eq. (1) is analyzed for two kinds of nonlinear mediums by first
integral approach.

3.1 Power law nonlinearity

The power law nonlinearity arises in theory of turbulence, plasma physics and in nonlinear fiber optics. This law of
nonlinearity is also presented in several process such as semiconductors and higher-order photons. For the power law
nonlinearity, eq. (1) becomes

i(vm)t + a(vm)xt + b(vm)xx + c(|v|2n)vm = 0, (11)
and eq. (10) reduces to

(b − aν)(Um)′′ − m(ω + bmκ2 − amωκ)Um + cU2n+m = 0. (12)
To attain the closed form solutions, we substitute

U = V 1/2n. (13)

This transformation reduces eq. (12) to an ODE

(b − aν){m(m − 2n)(V ′)2 + 2mnV V ′′} − 4mn2(ω + bmκ2 − amωκ)V 2 + 4n2cV 3 = 0. (14)
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3.1.1 First integral approach

In this section, we analyze eq. (14) by applying the first integral method. By substituting S(ζ) = V (ζ) and T (ζ) = V ′(ζ)
in eq. (14), we have the following two-dimensional autonomous system⎧⎪⎨

⎪⎩
S′(ζ) = T (ζ),

T ′(ζ) =
(
1 − m

2n

) T 2

S
+

2n

S(b − aν)

[(
ω + bmκ2 − amωκ

)
S2 −

( c

m

)
S3

]
.

(15)

To avoid the singular line S = 0, we use the transformation

dζ = S dη. (16)

Then, the system in (15) becomes⎧⎪⎪⎨
⎪⎪⎩

dS

dη
= ST,

dT

dη
=

(
1 − m

2n

)
T 2 +

2n

(b − aν)

[(
ω + bmκ2 − amωκ

)
S2 −

( c

m

)
S3

]
.

(17)

Assume that S(η) and T (η) are nontrivial solutions to system (17) and Q(S, T ) =
∑M

i=0 αi(S)T i is an irreducible
polynomial in C, such that

Q (S(η), T (η)) =
M∑
i=0

αi(S(η))T i(η) = 0, (18)

where αi(S) (i = 0, 1, . . . ,M) are polynomials of S and αM (S) �= 0. Notice that (dQ/dη) is a polynomial of S and T ,
and Q(S(η), T (η)) = 0 infers that (dQ/dη)|(17) = 0.

By the division theorem, there exists a polynomial g(S) + h(S)T in C, such that

dQ

dη
=

dQ

dS

dS

dη
+

dQ

dT

dT

dη
= [g(S) + h(S)T ]

M∑
i=0

αi(S)T i. (19)

Taking M = 1 in (18) and using eqs. (17) and (19), we get(
1∑

i=0

α′
i(S)T i

)
ST+α1(S)

[{
1 − m

2n

}
T 2 +

2n(ω + bmκ2 − amωκ)
b − aν

S2 − 2nc

m(b − aν)
S3

]
= {g(S) + h(S)T}

1∑
i=0

αi(S)T i,

(20)
where primes denote differentiation with respect to S. By comparing the coefficients of T i (i = 2, 1, 0) in eq. (20), we
obtain:

– T 2 coeff,
Sα′

1(S) = α1(S)
{

h(S) −
(
1 − m

2n

)}
; (21)

– T 1 coeff,
Sα′

0(S) = α1(S)g(S) + α0(S)h(S); (22)

– T 0 coeff,

α1(S)
[{

2n(ω + bmκ2 − amωκ)
b − aν

}
S2 −

{
2nc

m(b − aν)

}
S3

]
= α0(S)g(S). (23)

Since αi(S) (i = 0, 1) are polynomials, from eq. (21) we deduce that α1(S) is constant and h(S) = 1−m/2n. Let us take
α1(S) = 1. Matching the degrees of g(S) and α0(S), we found that deg(g(S)) = 1 and deg(α0(S)) = 2. Assume that

g(S) = A0 + A1S, A1 �= 0, (24)

and
α0(S) = B0 + B1S + B2S

2, B2 �= 0, (25)

where A0, A1, B0, B1, B2 are arbitrary constants to be recognized.
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Fig. 1. (a) 3D representation of dark soliton solution (30) with a = 1, b = 1.9, c = 1, κ = 1, ω = 2.9, ε = 1, m = 3, n = 1 and
−20 ≤ x ≤ 30, −20 ≤ t ≤ 20. (b) 2D representation of dark soliton solution (30) with t = 0 and −20 ≤ x ≤ 30.

Replacing eqs. (24) and (25) into (22), we attain

A0 =
( m

2n
− 1

)
B0, A1 =

( m

2n

)
B1. (26)

Inserting these values in (24), we obtain

g(S) =
( m

2n
− 1

)
B0 +

( m

2n

)
B1S. (27)

Substituting α0(S), α1(S) and g(S) into (23) and equating all the coefficients of Sj to zero, we attain a nonlinear
system of equations, which recovers

B0 = 0, B1 = ±2n

√
ω + bmκ2 − amκω

m(b − aν)
, B2 = ∓ 2nc

m
√

m(b − aν)(ω + bmκ2 − amκω)
. (28)

Using these values in eq. (18) and combining with system (17), we obtain

S′(ζ) = ∓2n

√
ω + bmκ2 − amκω

m(b − aν)
S ± 2nc

m
√

m(b − aν)(ω + bmκ2 − amκω)
S2. (29)

By solving eq. (29), we determine exact solutions to eq. (14). Exact solutions to eq. (11) can then be written as follows.

1) Dark 1-soliton solution:

v(x, t) =

[
±m(ω + bmκ2 − amκω)

2c

{
1 ± tanh

(
n
√

ω + bmκ2 − amκω√
m(b − aν)

(x − m(2bκ − aω)
amκ − 1

t)

)}]1/2n

× exp (i {−κx + ωt + ε}) . (30)

2) Singular 1-soliton solution:

v(x, t) =

[
±m(ω + bmκ2 − amκω)

2c

{
1 ± coth

(
n
√

ω + bmκ2 − amκω√
m(b − aν)

(x − m(2bκ − aω)
amκ − 1

t)

)}]1/2n

× exp (i {−κx + ωt + ε}) . (31)

The validity of these solutions holds for

(ω + bmκ2 − amκω)(b − aν) > 0. (32)

In figs. 1(a) and (b), the 3D and 2D graphs of the dark soliton solution (30) are presented while, in figs. 2(a) and (b),
the 3D and 2D graphs of the singular soliton solution (31) are presented, along with specified values of parameters.
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Fig. 2. (a) 3D representation of singular soliton solution (31) with a = 1, b = 1.9, c = 1, κ = 1, ω = 2.9, ε = 1, m = 3, n = 1
and −10 ≤ x, t ≤ 10. (b) 2D representation of singular soliton solution (31) with t = 0 and −10 ≤ x ≤ 10.

3.2 Dual-power law nonlinearity

Dual-power law nonlinearity is utilized to explicate the saturation phenomena of the nonlinear refractive index. More-
over, this law works as a basic model to define the soliton dynamics in photovoltaic-photorefractive materials such as
LiNbO3 [53].

For dual-power law nonlinearity, eq. (1) becomes

i(vm)t + a(vm)xt + b(vm)xx +
(
c1|v|2n + c2|v|4n

)
vm = 0, (33)

and eq. (10) reduces to

(b − aν)(Um)′′ − m(ω + bmκ2 − amωκ)Um + (c1U
2n + c2U

4n)Um = 0. (34)

To attain the closed form solutions, we replace
U = V 1/2n. (35)

This transformation reduces eq. (34) to an ODE:

m(b − aν)
[
(m − 2n)(V ′)2 + 2nV V ′′] − 4n2

[
m(ω + bmκ2 − amωκ)V 2 − c1V

3 − c2V
4
]

= 0. (36)

3.2.1 First integral approach

In this subsection, we apply the first integral method to solve eq. (36). By substituting S(ζ) = V (ζ) and T (ζ) = V ′(ζ)
in eq. (36), we have the following two-dimensional autonomous system:⎧⎪⎨

⎪⎩
S′(ζ) = T (ζ),

T ′(ζ) =
(
1 − m

2n

) T 2

S
+

2n

S(b − aν)

[
(ω + bmκ2 − amωκ)S2 − c1

m
S3 − c2

m
S4

]
.

(37)

To avoid the singular line S = 0, we use the transformation

dζ = S dη. (38)

Then, the system in (37) becomes⎧⎪⎨
⎪⎩

dS

dη
= ST,

dT

dη
=

(
1 − m

2n

)
T 2 +

2n

b − aν

[
(ω + bmκ2 − amωκ)S2 − c1

m
S3 − c2

m
S4

]
.

(39)
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Suppose that M = 1 in (18) and using eqs. (39) and (19), we get

[
1∑

i=0

α′
i(S)T i

]
ST +α1(S)

(
1− m

2n

)
T 2+

2nα1(S)
b−aν

[
(ω+bmκ2−amωκ)S2− c1

m
S3− c2

m
S4

]
=[g(S)+h(S)T ]

1∑
i=0

αi(S)T i.

(40)
Balancing the coefficients of T i (i = 2, 1, 0) in eq. (40), we obtain

– T 2 coeff,
Sα′

1(S) = α1(S){h(S) − (1 − m/2n)}; (41)

– T 1 coeff,
Sα′

0(S) = α1(S)g(S) + α0(S)h(S); (42)

– T 0 coeff,
2nα1(S)
b − aν

[
(ω + bmκ2 − amωκ)S2 − c1

m
S3 − c2

m
S4

]
= α0(S)g(S). (43)

Since αi(S) (i = 0, 1) are polynomials, from eq. (41) we deduce that α1(S) is constant and h(S) = 1−m/2n. For the sake
of convenience, we take α1(S) = 1. Matching the degrees of g(S) and α0(S), we found that deg(g(S)) = deg(α0(S)) = 2.
Assume that

g(S) = A0 + A1S + A2S
2, A2 �= 0, (44)

and
α0(S) = B0 + B1S + B2S

2, B2 �= 0, (45)

where A0, A1, A2, B0, B1, B2 are arbitrary constants.
Replacing eqs. (44) and (45) into (42), we obtain

A0 =
( m

2n
− 1

)
B0, A1 =

m

2n
B1, A2 =

( m

2n
+ 1

)
B2. (46)

Inserting these values in (44), we obtain

g(S) =
( m

2n
− 1

)
B0 +

m

2n
B1S +

( m

2n
+ 1

)
B2S

2. (47)

Substituting α0(S), α1(S) and g(S) into (43) and equating all the coefficients Sj to zero, we attain a nonlinear system
of equations, which reveals

B0 = 0, B1 = ∓ nc1

√
m + 2n

(m + n)
√

mc2(aν − b)
, B2 = ± 2n

√
c2√

m(m + 2n)(aν − b)
,

ω =
c2
1(m + 2n)

4c2(m + n)2(amκ − 1)
+

bmκ2

amκ − 1
. (48)

Substituting these values in eq. (18) and combining with system (39), we obtain

S′(ζ) = ± nc1

√
m + 2n

(m + n)
√

mc2(aν − b)
S ∓ 2n

√
c2√

m(m + 2n)(aν − b)
S2. (49)

By solving eq. (49), we determine the exact solutions to eq. (36). Exact solutions to eq. (33) can then be written as
follows.

1) Dark 1-soliton solution:

v(x, t) =

[
±c1(m + 2n)

4c2(m + n)

{
1 ± tanh

(
nc1

√
m + 2n

2(m + n)
√

mc2(aν − b)
(x − m(2bκ − aω)

amκ − 1
t)

)}]1/2n

× exp
(

i

{
−κx +

(
c2
1(m + 2n)

4c2(m + n)2(amκ − 1)
+

bmκ2

amκ − 1

)
t + ε

})
. (50)
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Fig. 3. (a) 3D representation of dark soliton solution (50) with a = 1, b = −50, c1 = 1, c2 = 1, κ = 1, ε = 1, m = 3, n = 1 and
−60 ≤ x ≤ 40, −40 ≤ t ≤ 40. (b) 2D representation of dark soliton solution (50) with t = 0 and −60 ≤ x ≤ 40.

Fig. 4. (a) 3D representation of singular soliton solution (51) with a = 1, b = −50, c1 = 1, c2 = 1, κ = 1, ε = 1, m = 3, n = 1
and −3 ≤ x, t ≤ 3. (b) 2D representation of singular soliton solution (51) with t = 0 and −3 ≤ x ≤ 3.

2) Singular 1-soliton solution:

v(x, t) =

[
±c1(m + 2n)

4c2(m + n)

{
1 ± coth

(
nc1

√
m + 2n

2(m + n)
√

mc2(aν − b)
(x − m(2bκ − aω)

amκ − 1
t)

)}]1/2n

× exp
(

i

{
−κx +

(
c2
1(m + 2n)

4c2(m + n)2(amκ − 1)
+

bmκ2

amκ − 1

)
t + ε

})
. (51)

These solutions are valid for
c2(aν − b) > 0. (52)

Note. By assuming M = 2 in eq. (18) and using eqs. (39) and (19), we obtain the soliton solutions of eq. (33) identical
to (50) and (51).

In figs. 3(a) and (b) the 3D and 2D graphs of the dark soliton solution (50) are presented while, in figs. 4(a)
and 4(b), the 3D and 2D graphs of the singular soliton solution (51) are presented, along with specified values of
parameters.
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Remark 1. When n = 1 in eq. (11), we get Kerr-law nonlinearity and the corresponding results follow.

Remark 2. When n = 1/2 in eq. (33), we get quadratic-cubic law nonlinearity and the corresponding results follow.

Remark 3. When a = 0 in eqs. (50) and (51), the results recovered are same as those created in [43].

4 Conclusion

In this work, we successfully established optical soliton solutions for Biswas-Milovic equation in addition with STD.
This model is investigated in two nonlinear mediums through power law and dual-power law nonlinearities, which
accounts for several imperfections for the propagation of solitons in nonlinear optical fibers. We effectively applied
the first integral method and retrieved dark and singular 1-soliton solutions in association with some parametric
restrictions, from the governing Biswas-Milovic equation with spatio-temporal dispersion. Moreover, for the physical
interpretation the 3D and 2D graphs of the obtained solutions are presented. These novel results are important for
practical problems in nonlinear optics.
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