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Abstract. In this paper, we examine an optimal control problem of a coupled nonlinear parabolic system
with cross-diffusion operators. The system describes the density of tumor cells, effector-immune cells,
circulating lymphocyte population and chemotherapy drug concentration. The distributed control has
been taken for drug concentration to control the amount of drug to be injected and to evade the side
effects of the drug. We prove the existence of a weak solution of the direct problem. Then, the existence of
control for the proposed control problem is proved. Further, we derive the optimality conditions and also
the existence of a solution of the adjoint problem. The finite element numerical method is implemented
for the proposed control problem. Then, theoretical results are illustrated with the help of numerical
experiments. Finally, the importance of control function and the cross-diffusion effect are studied for the
proposed control problem using numerical computations.

1 Introduction

Cancer is a disease caused by the growth of uncontrolled cells and their division. A cancer cell, or a malignant one,
can penetrate the surrounding normal tissues and also reaches other portions of the body. It continuously involves cell
separation and irregulates the function of organs. Non-cancerous or benign cells can grow but will not spread. Cancer
has become one of the leading causes of death worldwide. The process of cancer cells spread and the extension of
secondary tumors is called metastasis, which is the main reason for mortality in patients. For prevention, better diag-
nosis and suitable treatment, one must understand the mechanism of cancer cell progression. Therefore, mathematical
models play a significant role in cancer studies for clinical and research communities via mathematical methods and
theories. Many mathematical models have been presented in the literature to interpret and predict how cancer cells
emerge and respond to therapy; for reference, see [1–9].

Treatment for cancer cells comes in various types, such as surgery, radiation therapy, chemotherapy and im-
munotherapy. Each treatment has its advantages and disadvantages. Surgical excision [10] is a treatment performed
by removing the solid tumor in a fixed area which may bring high damage to other near organs, severe pain, and
infection. Radiation therapy [11] is used to treat (or kill), with high-energy radiations, tumor cells however it also has
side-effects and might injure normal healthy tissues. The immunotherapy [12] treatment helps to improve the patient’s
immune system to fight against tumor cells, also causes side-effects. Chemotherapy uses powerful drugs to kill tumor
cells and to control their growth. Depending on the type of tumor and its severity, the patient may be prescribed
with one drug or a combination of drugs. Further, treatment as single chemotherapy or with other treatments, such as
radiation or surgery, is also possible. de Pillis et al. [13,14] developed and analyzed a mathematical model on tumor
growth using immunotherapy and drug therapy. Sharma et al. [15] considered a tumor growth model with the effect

� Supplementary material in the form of 4 .m files available from the Journal web page at
https://doi.org/10.1140/epjp/i2019-12866-8

a e-mail: sowndarrajan@nitgoa.ac.in
b e-mail: manimaranj@nitgoa.ac.in
c e-mail: amar debbouche@yahoo.fr
d e-mail: shangerganesh@nitgoa.ac.in



Page 2 of 21 Eur. Phys. J. Plus (2019) 134: 463

of tumor-immune interactions and analyzed its dynamics with chemotherapy and immunotherapy. Similarly, models
describe the interactions between the immune system and a growing tumor also developed (see [16–20]). Cattani et
al. [21] considered a family of nonlinear models to describe the asynchronous process of the tumor and the immune
cells. Kuznstsoz et al. [22] presented and analyzed a mathematical model of the cytotoxic T lymphocytes (CTL) cells
response to the growth of immunogenic tumor and estimated the parameters of the target model. Recently, Pang
et al. [23] proposed and analyzed an optimal strategy for a tumor model with combination of immunotherapy and
chemotherapy. They established that the combination of therapies are the most-effective strategy for tumor treatment.
But during the treatment, it also kills the normal cells and induces some side-effects. To avoid the side-effects caused
by chemotherapy treatment, oncologists found a new treatment called targeted chemotherapy. It targets the changes
in cancer cells that help them to grow, divide and spread [24,25]. Therefore, we consider a mathematical model repre-
sents a tumor-immune system with targeted chemotherapy. In this work, we analyse a tumor growth model concerning
only the chemotherapy treatment. It means that we use drugs to kill the tumor or to reduce the growth and invasion
of the tumor. The analytical study of the cancer invasion mathematical model is very beneficial to understand the
dynamics of tumor-immune. Most of the models of chemotherapy in the literature have omitted the spatial effects
and therefore ignored an important part in tumor growth treatment model. These spatial displacements can occur
naturally due to several factors including social, economic and demographic inequalities. Therefore, it is important
to include spatial dimensions in a mathematical model of targeted chemotherapy. Thus, we propose a mathematical
model with distributed controls subject to partial differential equations (PDEs) constraints.

Our main aim of the proposed problem is to minimize the tumor burden and the total amount of drugs used during
the targeted chemotherapy. Anaya et al. [26] investigated a nonlinear reaction-diffusion equation modelling the spread
of tumor cells in spatial domain. Many researchers have proposed mathematical models for tumor growth and related
studies (see [1,2,5,7–9,27,28]). Further, the gradient in the density of any cells which provokes a flux in either linear or
nonlinear form of another density of cells is called cross-diffusion. There has been increasing attention, in recent years,
in the research of mathematical models of reaction-diffusion type with cross-diffusion operators, also including cases
in cancer invasion modelling, that is, chemotaxis or haptotaxis effect. Therefore, in addition to the reaction-diffusion
effect, we also added cross-diffusion terms in our system to examine the mathematical model. In the literature, there
are many papers investigating various applications with cross-diffusion effect, see [29–35] and references therein.

In this work, we mainly focus on performing the optimal control analysis constrained by a system of PDEs. Many
researchers started analysing the optimal control problems constrained by reaction-diffusion equations. Anderson et
al. studied the existence of optimal control solutions for tumor invasion model in [36]. They studied the distributed
optimal control problem for the two-dimensional mathematical model belonging to the wide class of chemotaxis models.
Colli et al. studied the distributed optimal control of a diffuse interface model consisting of the Cahn-Hilliard equation
for tumor growth in [37]. Optimal radiotherapy fractionations for the low-grade glioma model was studied in [38].
Optimal control for a parabolic-hyperbolic free boundary problem modeling the tumor growth with drug application
was studied in [39]. Belmiloudi investigated a mathematical model of tumor-normal cells interaction dynamics on the
role of drugs in the brain-tumor–targeted treatment in [40]. He proved the existence and uniqueness of an optimal
solution and formulated an optimal control problem to minimize the drug delivery and tumor cell burden in different
situations. Also, he derived the necessary conditions for optimality.

Apart from theoretical works, there are numerical investigations proposed in the literature related to an optimal
control of the problem for cancer invasion and the related continuum mathematical models, for example, see [41–
44] and references therein. Quiroga et al. [45] proposed an optimal control problem for the two-dimensional (2D)
non-linear reaction diffusion equation of cancer invasion. They solved a parameter estimation problem of the cancer
invasion model proposed by [9]. A distributed parameters reaction-diffusion model for brain tumor treatment was
presented in [46] using the Galerkin finite element method. The authors formulated an optimal control problem and
successfully minimized the density of the tumor cell and also reduced the side-effects of the drugs. Moreover, the
work of Knopoff et al. [41] showed a PDE constrained optimization for tumor growth model whose spatial domain is
the tumor, that changes in size over time. Further, they defined an appropriate functional to compare both the real
data and the numerical solution. Recently, Sakine et al. [47] proposed and numerically analysed an optimal control
problem with four control variables to control the concentration of nutrient and drug on the boundary and inside the
tumor. However, there is no paper available to study the mathematical and numerical analysis of distributed control
problem constrained by the cancer invasion PDE model with the cross-diffusion process. By taking the above studies
as motivation, we have made an attempt in this work to study the optimal control problem proposed for tumor growth
model that takes into account the spatial diffusion.

This paper is organized as follows. We present the mathematical model of a tumor-immune non-linear coupled
system with cross-diffusion in sect. 2. In sect. 3, using the Faedo-Galerkin scheme, we prove the existence of a weak
solution of the state system. In sect. 4, we prove the existence of control. Then, we establish the adjoint problem as
well as the first-order optimality conditions for the proposed control problem. Further, we obtain the existence of a
weak solution to the derived adjoint problem. In sect. 5, we propose the finite element numerical scheme for our control
problem. Then, we perform various numerical simulations associated to our control problem to understand the effect
of control in the treatment.
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2 Mathematical model and optimal control problem

In this section, first, we propose the distributed optimal control problem subject to PDEs constraints. The proposed
PDEs represent tumor-immune interactions with chemotherapy treatment. It is a highly nonlinear coupled system with
cross-diffusion effect. The proposed model is extended from the original ordinary differential equation model proposed
in [48]. In this paper, we assume that the interactions of unknowns not only depends on time t but also depends on
the space x.

In this paper, we frame an optimal control problem to minimize the tumor cells and also the total amount of drug
used to weaken or slow down the growth of tumors. Here, J is the cost functional to minimize and u1 is the state
variable. Then, we use v as the control variable to reduce the tumor burden minimizing total drug administered and vd

denotes some nominal (or expected) control. Further u1Q, u1T are the corresponding desired terminal states belong to
L2(QT ), L2(Ω) respectively. Moreover, A > 0, B > 0 and C > 0 are the corresponding weight parameter. Furthermore,
there is no assumption about the control constraints, but vd works as a physical limitation on the measure and costs
of drugs given to the patients.

We consider the optimal control problem governed by the nonlinear system of parabolic equations with cross-
diffusion as follows:

min J(u1, v) =
A

2
‖u1 − u1Q‖2

L2(QT ) +
B

2
‖u1(T ) − u1T ‖2

L2(Ω) +
C

2
‖v − vd‖2

L2(QT ), (1)

subject to the following PDEs constraints:

∂tu1 = D1Δu1 + ∇ · ((a1u1 + u2)∇u1 + u1∇u2) + α1u1(1 − bu1) − c1u2u1 − KT u4u1, in QT ,

∂tu2 = D2Δu2 + ∇ · (u2∇u1 + (u1 + a2u2)∇u2) + c2u2(1 − du2) − μu2 − ρu1u2 − KN (1 − ν)u4u2, in QT ,

∂tu3 = ∇ · (D3(u3)∇u3) + α2u3 − βu3 − KC(1 − ν)u4u3, in QT ,

∂tu4 = ∇ · (D4(u4)∇u4) − γu4 + v − kT u1u4, in QT . (2)

Further, we have assumed the following initial and no-flux Neumann boundary conditions for the state system (2):

ui(x, 0) = ui,0(x), in Ω,

∂ui

∂η
= 0, in ΣT ,

where i = 1, · · · , 4. Here, QT = Ω × (0, T ), ΣT = ∂Ω × (0, T ), Ω is an open bounded domain in R
N , (N ≤ 3) and η is

the unit outward normal vector on boundary ∂Ω. The given model consists of four physical variables, namely tumor
cell density u1 = u1(x, t), immune cell density u2 = u2(x, t), circulating lymphocyte density u3 = u3(x, t) and the
chemotherapeutic drug concentration u4 = u4(x, t). In (2), Di, i = 1, 2 are diffusion coefficients of tumor and immune
cells and Di(ui), i = 3, 4 denotes the density-dependent diffusion coefficients of the lymphocyte population and the
drug concentration, respectively. Further, a1 and a2 are, respectively, the self-diffusion rates of tumor and immune
cells. The parameters α1, b, c1, c2, d, KT , μ, ρ, KN , ν, α2, β, KC , γ, kT are positive constants, which are shown in
table 1. In this model, v(x, t) acts as the control variable for drug concentration in the fourth equation of the model
and ui,0(x), i = 1, 2, 3, 4 represent the initial conditions of unknown variables ui, i = 1, 2, 3, 4, respectively.

We consider the equivalent dimensionless form of system (2) as follows:

∂tu1 = D1Δu1 + ∇ · ((a1u1 + u2)∇u1 + u1∇u2) + α1u1 − F1(u1, u2, u4), in QT ,

∂tu2 = D2Δu2 + ∇ · (u2∇u1 + (u1 + a2u2)∇u2) + c2u2 − μu2 − F2(u1, u2, u4), in QT ,

∂tu3 = ∇ · (D3(u3)∇u3) + α2u3 − βu3 − F3(u3, u4), in QT ,

∂tu4 = ∇ · (D4(u4)∇u4) − γu4 + v − F4(u1, u4), in QT , (3)

where

F1(u1, u2, u4) = u1(α1bu1 + c1u2 + KT u4),
F2(u1, u2, u4) = u2(cdu2 + ρu1 + KN (1 − ν)u4),

F3(u3, u4) = u3(KC(1 − ν)u4),
F4(u1, u4) = u4(kT u1).
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Table 1. Symbols and description of parameters.

Symbol Description

u1 Density of cancer cells

u2 Density of immune cells

u3 Density of circulating lymphocytes

u4 Concentration of chemotherapeutic drug

D1, D2 Diffusion coefficients

D3(u3), D4(u4) Density-dependent coefficients

T Time

u1,0 Initial cancer cells

u2,0 Initial immune cells

u3,0 Initial circulating lymphocyte

u4,0 Initial chemotherapeutic drug

Ω Spatial domain

ΣT Neumann boundary

η Unit outward normal vector

a1, a2 Self diffusion rates

α1 Tumor growth rate

α2 Growth rate of circulating lymphocytes

b 1
b

is tumor carrying capacity

c1 Death rate of cancer cells due to immune cells

c2 Growth rate of immune cells

d 1
d

is immune carrying capacity

KT Death rate of cancer cells due to chemotherapy

μ Death rate of immune cells

ρ Inactive rate of immune cells by cancer cells

KN Death rate of immune cells due to chemotherapy

ν Efficacy of chemotherapy

β Death rate of circulating lymphocytes

KC Death rate of circulating lymphocytes due to chemotherapy

γ Decay rate of drug

kT Combination rate of drug with cancer cells

J Cost functional

u1Q, u1T Desired terminal states

v Control variable

vd Expected control

A, B, C Positive weight constants

For technical reasons, we extend the above-mentioned function in the following form, for j = 1, 2:

Fj(x, t, u1, u2, u4) =

⎧
⎪⎪⎨

⎪⎪⎩

Fj(x, t, 0, u2, u4), if u2 ≥ 0 and u4 ≥ 0,

Fj(x, t, u1, 0, u4), if u1 ≥ 0 and u4 ≥ 0,

Fj(x, t, u1, u2, 0), if u1 ≥ 0 and u2 ≥ 0,

F3(x, t, u3, u4) =

{
Fj(x, t, 0, u4), if u4 ≥ 0,

Fj(x, t, u3, 0), if u3 ≥ 0,

F4(x, t, u1, u4) =

{
Fj(x, t, 0, u4), if u4 ≥ 0,

Fj(x, t, u1, 0), if u1 ≥ 0.
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First, to prove the existence of weak solutions of (3), we assume that diffusion functions Di(s), s ∈ R satisfies following
conditions:

H1) Di(s)ζζ ≥ δi|ζ|2 for every ζ ∈ R
N , where δi > 0, and i = 3, 4.

H2) For any k > 0, there exists Λk > 0 and a function Ck(x, t) ∈ L2(QT ), such that |Di(s)ζ| ≤ Ck(x, t) + Λk|ζ|,
i = 3, 4.

Definition 1. A weak solution of (3) is a 4-tuple (u1, u2, u3, u4), such that

u1, u2, u3, u4 ∈ L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω)) ∩ C([0, T ], L2(Ω)),

∂tu1, ∂tu2, ∂tu3, ∂tu4 ∈ L2(0, T ; (W 1,∞(Ω))∗),

Di(ui) ∈ L2(0, T ;H1(Ω)), i = 3, 4,

ui(0) = ui,0 a.e. in Ω, i = 1, 2, 3, 4,

and satisfies the following weak formulation:
∫ T

0

〈∂tu1, φ1〉dt + D1

∫

QT

∇u1 · ∇φ1dxdt +
∫

QT

((a1u1 + u2)∇u1 + u1∇u2) · ∇φ1dxdt =

α1

∫

QT

u1φ1dxdt −
∫

QT

F1(u1, u2, u4)φ1dxdt,

∫ T

0

〈∂tu2, φ2〉dt + D2

∫

QT

∇u2 · ∇φ2dxdt +
∫

QT

(u2∇u1 + (u1 + a2u2)∇u2) · ∇φ2dxdt =
∫

QT

c2u2φ2dxdt − μ

∫

QT

u2φ2dxdt −
∫

QT

F2(u1, u2, u4)φ2dxdt,

∫ T

0

〈∂tu3, φ3〉dt +
∫

QT

D3(u3)∇u3 · ∇φ3dxdt =
∫

QT

α2u3φ3dxdt − β

∫

QT

u3φ3dxdt −
∫

QT

F3(u3, u4)φ3dxdt,

∫ T

0

〈∂tu4, φ4〉dt +
∫

QT

D4(u4)∇u4 · ∇φ4dxdt = −
∫

QT

γu4φ4dxdt +
∫

QT

v(x, t)φ4dxdt −
∫

QT

F4(u1, u4)φ4dxdt,

for all φi ∈ L2(0, T ;W 1,∞(Ω)), i = 1, · · · , 4. Here, 〈·, ·〉 denotes the duality pairing between W 1,∞(Ω) and (W 1,∞(Ω))∗.

We prove the main result, the existence of a weak solution for the direct problem in the following theorem. For
simplicity, we use the generic constant c throughout this paper.

Theorem 1. Assume the hypotheses (H1) and (H2), Dj(uj) > 0, Dj(uj) ∈ C1(R), where j = 3, 4 and if ui,0 ∈ L2(Ω),
i = 1, · · · , 4 and v ∈ L2(QT ), then there exists a weak solution for (2) in the sense of definition 1.

The proof of theorem 1 is based on introducing the approximation system to which we apply the Faedo-Galerkin
approximation method and the convergence of a weak solution of the approximate solution using monotonicity and
compactness methods.

3 Existence of a weak solution for the direct problem

In this section, we prove the existence and nonnegativity of a weak solution. To show the result, first introduce an
approximation system for (2). Therefore, we consider the regularized system of (3) as follows: For ε > 0,

∂tu
ε
1 = D1Δuε

1 + ∇ · ((a1f
+
ε (uε

1) + f+
ε (uε

2))∇uε
1 + f+

ε (uε
1)∇uε

2) + α1u
ε
1 − F1,ε(uε

1, u
ε
2, u

ε
4), in QT ,

∂tu
ε
2 = D2Δuε

2 + ∇ · (f+
ε (uε

2)∇uε
1 + (f+

ε (uε
1) + a2f

+
ε (uε

2))∇uε
2) + c2u

ε
2 − μuε

2 − F2,ε(uε
1, u

ε
2, u

ε
4), in QT ,

∂tu
ε
3 = ∇ · (D3(uε

3)∇uε
3) + α2u

ε
3 − βuε

3 − F3,ε(uε
3, u

ε
4), in QT ,

∂tu
ε
4 = ∇ · (D4(uε

4)∇uε
4) − γuε

4 + v − F4,ε(uε
1, u

ε
4), in QT ,

uε
i (x, 0) = ui,0(x), in Ω,

∂uε
i

∂η
= 0, i = 1, 2, 3, 4, in ΣT , (4)

where Fi,ε = Fi

1+ε|Fi| , fε(r) = r
1+ε|r| and s+ = max(0, s) for any r, s ∈ R.

In order to prove theorem 1, we first prove the existence of solutions of the regularized system and then sending
the parameter ε to zero, we find a weak solution of our original system (2).
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Remark 1. The diffusion matrix

M =

(
a1f

+
ε (uε

1) + f+
ε (uε

2) f+
ε (uε

1)

f+
ε (uε

2) f+
ε (uε

1) + a2f
+
ε (uε

2)

)

is uniformly nonnegative. Using, a1 ≥ 1, a2 ≥ 1 and the inequality ab ≥ −a2−b2 for all a, b ∈ R and ξ = (ξ1, ξ2) ∈ R
N ,

we have

ξTMξ = (a1f
+
ε (uε

1) + f+
ε (uε

2))ξ
2
1 + f+

ε (uε
2)ξ1ξ2 + f+

ε (uε
1)ξ1ξ2 + (a2f

+
ε (uε

2) + f+
ε (uε

1))ξ
2
2

≥ (a1 − 1)f+
ε (uε

1)ξ
2
1 + (a2 − 1)f+

ε (uε
2)ξ

2
2 ≥ 0.

Theorem 2. Assume that theorem 1 holds true. Then there exists a weak solution of (4) as follows:

uε
1, u

ε
2, u

ε
3, u

ε
4 ∈ L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω)) ∩ C([0, T ], L2(Ω)),

with ∂tu
ε
i ∈ L2(0, T ; (H1(Ω))∗) such that for any φi ∈ L2(0, T ;H1(Ω)), i = 1, · · · , 4,

∫ T

0

〈∂tu
ε
1, φ1〉dt + D1

∫

QT

∇uε
1 · ∇φ1dxdt +

∫

QT

((a1f
+
ε (uε

1) + f+
ε (uε

2))∇uε
1 + f+

ε (uε
1)∇uε

2) · ∇φ1dxdt =

α1

∫

QT

uε
1φ1dxdt −

∫

QT

F1,ε(uε
1, u

ε
2, u

ε
4)φ1dxdt,

∫ T

0

〈∂tu
ε
2, φ2〉dt + D2

∫

QT

∇uε
2 · ∇φ2dxdt +

∫

QT

(f+
ε (uε

2)∇uε
1 + (f+

ε (uε
1) + a2f

+
ε (uε

2))∇uε
2) · ∇φ2dxdt =

∫

QT

(c2 − μ)uε
2φ2dxdt −

∫

QT

F2,ε(uε
1, u

ε
2, u

ε
4)φ2dxdt,

∫ T

0

〈∂tu
ε
3, φ3〉dt +

∫

QT

D3(uε
3)∇uε

3 · ∇φ3dxdt =
∫

QT

(α2 − β)uε
3φ3dxdt −

∫

QT

F3,ε(uε
3, u

ε
4)φ3dxdt,

∫ T

0

〈∂tu
ε
4, φ4〉dt+

∫

QT

D4(uε
4)∇uε

4 ·∇φ4dxdt =−
∫

QT

γuε
4φ4dxdt +

∫

QT

v(x, t)φ4dxdt −
∫

QT

F4,ε(uε
1, u

ε
4)φ4dxdt, (5)

hold. Here, 〈·, ·〉 represents the duality pairing between H1(Ω) and (H1(Ω))∗.

Proof. We consider the appropriate spectral problem as in [49]. Then the identified eigenfunctions el(x) orthogonal
in H1(Ω) and orthonormal in L2(Ω). Here, we look to find the finite dimensional approximation solutions for the
system (4) as sequences {uε

i}, i = 1, · · · , 4 and v defined for t ≥ 0 and x ∈ Ω̄ by

uε
i,n(x, t) =

n∑

l=1

ci,n,l(t)el(x) and vn(x, t) =
n∑

l=1

(v, el)L2(QT )el(x).

The goal is to find the set of coefficients {ci,n,l}n
l=1, i = 1, · · · , 4, such that, for m = 1, 2, . . . , n,

(∂tu
ε
1,nem)L2(Ω) + D1

∫

Ω

∇uε
1,n · ∇emdx +

∫

Ω

((a1f
+
ε (uε

1,n) + f+
ε (uε

2,n))∇uε
1,n + f+

ε (uε
1,n)∇uε

2,n) · ∇emdx =

α1

∫

Ω

uε
1,nemdx −

∫

Ω

F1,ε(uε
1,n, uε

2,n, uε
4,n)emdx,

(∂tu
ε
2,nem)L2(Ω) + D2

∫

Ω

∇uε
2,n · ∇emdx +

∫

Ω

(f+
ε (uε

2,n)∇uε
1,n + (f+

ε (uε
1,n) + a2f

+
ε (uε

2,n))∇uε
2,n) · ∇emdx =

∫

Ω

(c2 − μ)uε
2,nemdx −

∫

Ω

F2,ε(uε
3,n, uε

2,n, uε
4,n)emdx, (∂tu

ε
3,nem)L2(Ω) +

∫

Ω

D3(uε
3,n)∇uε

3,n · ∇emdx =
∫

Ω

(α2 − β)uε
3,nemdx −

∫

Ω

F3,ε(uε
3,n, uε

4,n)emdx, (∂tu
ε
4,nem)L2(Ω) +

∫

Ω

D4(uε
4,n)∇uε

4,n · ∇emdx =

−
∫

Ω

(γuε
4,n − v)emdx −

∫

Ω

F4,ε(uε
1,n, uε

4,n)emdx, (6)
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with the initial conditions

uε
i,n(x, 0) = ui,0,n(x) :=

n∑

l=1

ci,n,l(0)el(x),

where
ci,n,l(0) = (ui,0, el)L2(Ω), i = 1, · · · , 4.

Now, the above equations can be rewritten as a system of ordinary differential equations in the following form:

c′1,n,m(t) = −D1

∫

Ω

∇uε
1,n · ∇emdx −

∫

Ω

((a1f
+
ε (uε

1,n) + f+
ε (uε

2,n))∇uε
1,n + f+

ε (uε
1,n)∇uε

2,n) · ∇emdx

+ α1

∫

Ω

uε
1,nemdx −

∫

Ω

F1,ε(uε
1,n, uε

2,n, uε
4,n)emdx,

=: Em
1 (t, {c1,n,l}n

l=1, {c2,n,l}n
l=1, {c4,n,l}n

l=1) ,

c′2,n,m(t) = −D2

∫

Ω

∇uε
2,n · ∇emdx −

∫

Ω

(f+
ε (uε

2,n)∇uε
1,n + (f+

ε (uε
1,n) + a2f

+
ε (uε

2,n))∇uε
2,n) · ∇emdx

+
∫

Ω

(c2 − μ)uε
2,nemdx −

∫

Ω

F2,ε(uε
1,n, uε

2,n, uε
4,n)emdx,

=: Em
2 (t, {c1,n,l}n

l=1, {c2,n,l}n
l=1, {c4,n,l}n

l=1) ,

c′3,n,m(t) = −
∫

Ω

D3(uε
3,n)∇uε

3,n · ∇emdx +
∫

Ω

(α2 − β)uε
3,nemdx −

∫

Ω

F3,ε(uε
3,n, uε

4,n)emdx,

=: Em
3 (t, {c3,n,l}n

l=1, {c4,n,l}n
l=1) ,

c′4,n,m(t) = −
∫

Ω

D4(uε
4,n)∇uε

4,n · ∇emdx −
∫

Ω

γuε
4,nemdx +

∫

Ω

vemdx −
∫

Ω

F4,ε(uε
1,n, uε

4,n)emdx,

=: Em
4 (t, {c1,n,l}n

l=1, {c4,n,l}n
l=1) . (7)

Next, we prove the existence of local solution to the system of ordinary differential equations (7). Then, the components
Em

i , i = 1, · · · , 4, can be bounded as follows:

|Em
1 (t, {c1,n,l}n

l=1, {c2,n,l}n
l=1, {c4,n,l}n

l=1)|

≤ D1

⎛

⎝

∫

Ω

∣
∣
∣
∣
∣

n∑

l=1

c1,n,l(t)∇el(x)

∣
∣
∣
∣
∣

2

dx

⎞

⎠

1
2 (∫

Ω

|∇em|2 dx

) 1
2

+
(a1 + 1)

ε

⎛

⎝

∫

Ω

∣
∣
∣
∣
∣

n∑

l=1

c1,n,l(t)∇el(x)

∣
∣
∣
∣
∣

2

dx

⎞

⎠

1
2 (∫

Ω

|∇em|2 dx

) 1
2

+
meas(Ω)

ε

(∫

Ω

|em|2 dx

) 1
2

+

⎛

⎜
⎝

1
ε

⎛

⎝

∫

Ω

∣
∣
∣
∣
∣

n∑

l=1

c2,n,l(t)∇el(x)

∣
∣
∣
∣
∣

2

dx

⎞

⎠

1
2

+ α1

⎛

⎝

∫

Ω

∣
∣
∣
∣
∣

n∑

l=1

c1,n,l(t)el(x)

∣
∣
∣
∣
∣

2

dx

⎞

⎠

1
2
⎞

⎟
⎠

(∫

Ω

|∇em|2 dx

) 1
2

≤ c(ε,R, n),

where the constant c > 0 depends only on ε, R and n. Similarly, we get

|Em
2 (t, {c1,n,l}n

l=1, {c2,n,l}n
l=1, {c4,n,l}n

l=1)| ≤ c(ε,R, n),
|Em

3 (t, {c3,n,l}n
l=1, {c4,n,l}n

l=1)| ≤ c(ε,R, n),
|Em

4 (t, {c1,n,l}n
l=1, {c4,n,l}n

l=1)| ≤ c(ε,R, n).

Therefore, using the standard ODE theory, there exist absolutely continuous functions {ci,n,l}n
l=1, i = 1, · · · , 4, satis-

fies (7) and the initial conditions for a.e. t ∈ [0, ρ′] where ρ′ > 0. This proves that the sequences {uε
i,n}, i = 1, · · · , 4 well

defined and the approximate solutions to (7) on T ′ ∈ [0, ρ′). For absolutely continuous coefficients bi,n,l, i = 1, · · · , 4,
we set φi,n(x, t) =

∑n
l=1 bi,n,l(t)el(x), i = 1, · · · , 4. Then, the approximate solutions satisfy the weak formulation,

∫

Ω

∂tu
ε
1,nφ1,ndx = −D1

∫

Ω

∇uε
1,n · ∇φ1,ndx −

∫

Ω

((a1f
+
ε (uε

1,n) + f+
ε (uε

2,n))∇uε
1,n + f+

ε (uε
1,n)∇uε

2,n) · ∇φ1,ndx

+ α1

∫

Ω

uε
1,nφ1,ndx −

∫

Ω

F1,ε(uε
1,n, uε

2,n, uε
4,n)φ1,ndx,
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∫

Ω

∂tu
ε
2,nφ2,ndx = −D2

∫

Ω

∇uε
2,n · ∇φ2,ndx

−
∫

Ω

(f+
ε (uε

2,n)∇uε
1,n + (f+

ε (uε
1,n) + a2f

+
ε (uε

2,n))∇uε
2,n) · ∇φ2,ndx

+
∫

Ω

(c2 − μ)uε
2,nφ2,ndx −

∫

Ω

F2,ε(uε
1,n, uε

2,n, uε
4,n)φ2,ndx,

∫

Ω

∂tu
ε
3,nφ3,ndx = −

∫

Ω

D3(uε
3,n)∇uε

3,n · ∇φ3,ndx +
∫

Ω

(α2 − β)uε
3,nφ3,ndx

−
∫

Ω

F3,ε(uε
3,n, uε

4,n)φ3,ndx,

∫

Ω

∂tu
ε
4,nφ4,ndx = −

∫

Ω

D4(uε
4,n)∇uε

4,n · ∇φ4,ndx −
∫

Ω

γuε
4,nφ4,ndx

+
∫

Ω

vφ4,ndx −
∫

Ω

F4,ε(uε
1,n, uε

4,n)φ4,ndx, (8)

Set φi,n = uε
i,n, i = 1, · · · , 4 respectively, in the above eqs. (8), using Holder’s inequality, Young’s inequality, assump-

tions of the theorem and then summing the equations, we get
1
2

d
dt

∫

Ω

(
|uε

1,n|2 + |uε
2,n|2 + |uε

3,n|2 + |uε
4,n|2

)
dx

+
∫

Ω

(D1|∇uε
1,n|2 + D2|∇uε

2,n|2 + δ3|∇uε
3,n|2 + δ4|∇uε

4,n|2)dx ≤

c

(∫

Ω

|uε
1,n|2 + |uε

2,n|2 + |uε
3,n|2 + |uε

4,n|2
)

dx, (9)

for some positive constant c independent of n. Using Gronwall’s inequality, we obtain
∫

Ω

(
|uε

1,n|2 + |uε
2,n|2 + |uε

3,n|2 + |uε
4,n|2

)
dx ≤ c. (10)

Use (10) into (9), we conclude that

‖uε
i,n‖L∞(0,T ′;L2(Ω)) + ‖uε

i,n‖L2(0,T ′;H1(Ω)) ≤ c, i = 1, 2, 3, 4, (11)

and
‖F1,ε(uε

1,n, uε
2,n, uε

4,n)uε
1,n‖L1(QT )

‖F2,ε(uε
1,n, uε

2,n, uε
3,n)uε

2,n‖L1(QT )

‖F3,ε(uε
3,n, uε

4,n)uε
3,n‖L1(QT )

‖F4,ε(uε
1,n, uε

4,n)uε
4,n‖L1(QT )

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

≤ c, (12)

where constant c is positive depends on the given data and is independent of n. Moreover, to prove that
(∂tu

ε
1,n, ∂tu

ε
2,n, ∂tu

ε
3,n, ∂tu

ε
4,n) are bounded in L2(0, T ′; (H1(Ω))∗), choosing φi,n = φi ∈ L2(0, T ′;H1(Ω)), i = 1, 2, 3,

respectively, in (8) and using the boundedness, we get
∣
∣
∣
∣
∣

∫ T ′

0

〈∂tu
ε
i,n, φi,n〉dt

∣
∣
∣
∣
∣
≤ c ‖φi‖L2(0,T ′;H1(Ω)) , (13)

where c > 0 is a constant independent of n. To prove the global existence, we use the similar approach as in [29,49]
and the above estimates.

Using the previous results and compactness arguments, the sequences have convergent subsequences (also denoted
by {uε

i,n}, i = 1, · · · , 4). Then, there exist limit functions {uε
i,n}, i = 1, · · · , 4. Therefore as n → ∞, we have,

uε
i,n ⇀ uε

i weakly ∗ in L∞(0, T ;L2(Ω)),

uε
i,n ⇀ uε

i weakly in L2(0, T ;H1(Ω)), i = 1, 2, 3, 4,

∇uε
i,n ⇀ ∇uε

i weakly in L2(QT ), i = 1, 2,

Di(uε
i,n)∇uε

i,n ⇀ ξi weakly in L2(QT ), i = 3, 4,

f+
ε (uε

i,n) → f+
ε (uε

i ) a.e. in QT , i = 1, 2,

∂tu
ε
i,n ⇀ ∂tu

ε
i weakly in L2(0, T ; (H1(Ω))∗), i = 1, 2, 3, 4.
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Next, we prove Di(uε
i )∇uε

i = ξi, i = 3, 4. Multiply the third equation of (4) by uε
3,n, then integrate with QT and

as n → ∞, we get

1
2

∫

Ω

|uε
3(x, T )|2dx +

∫

QT

ξ3∇uε
3dxdt = α2

∫

QT

|uε
3|2dxdt − β

∫

QT

|uε
3|2dxdt

−
∫

QT

F3,ε(uε
3, u

ε
4)u

ε
3dxdt +

1
2

∫

Ω

|u3,0(x)|2dx. (14)

Assume the following monotonicity condition holds true. Then
∫

Ω

(
D3(uε

3,n)∇uε
3,n − D3(uε

n)∇uε
n

)
(∇uε

3,n −∇uε
n)dx ≥ 0.

Next, multiply the third equation of (4) by uε
3,n, and integrating with Ω, we have

1
2

d
dt

∫

Ω

|uε
3,n|2dx +

∫

Ω

D3(uε
3,n)∇uε

3,n · ∇uε
3,ndx = α2

∫

Ω

|uε
3,n|2dx − β

∫

Ω

|uε
3,n|2dx

−
∫

Ω

F3,ε(uε
3,n, uε

4,n)uε
3,ndx,

Using the above monotonicity condition, we get

− 1
2

d
dt

∫

Ω

|uε
3,n|2dx −

∫

Ω

D3(uε
3,n)∇uε

3,n · ∇uε
ndx −

∫

Ω

D3(uε
n)∇uε

n (∇uε
3,n −∇uε

n)dx

+ α2

∫

Ω

|uε
3,n|2dx − β

∫

Ω

|uε
3,n|2dx −

∫

Ω

F3,ε(uε
3,n, uε

4,n)uε
3,ndx ≥ 0.

Integrating over (0, T ), taking limit as n → ∞ and comparing the resulting equation with (14), we get
∫

QT

(ξ3 − D3(uε)∇uε) (∇uε
3 −∇uε) dxdt ≥ 0.

We set uε := uε
3 − η1φ for any η1 > 0 and φ ∈ L2(0, T ;H1(Ω)) in previous inequality and obtain

∫

QT

(ξ3 − (D3(uε
3 − η1φ))(∇uε

3 − η1∇φ))∇φdxdt ≥ 0.

As η1 → 0 and by the dominated convergence theorem, we have
∫

QT

(ξ3 − (D3(uε
3)∇uε

3))∇φdxdt ≥ 0,

for any φ ∈ L2(0, T ;H1(Ω)). This proves that D3(uε
3)∇uε

3 = ξ3. Similarily, it is easy to prove that D4(uε
4)∇uε

4 = ξ4. �

Lemma 1. If ui,0 ∈ L2(Ω), v ∈ L2(QT ) are nonnegative, then uε
i , i = 1, · · · , 4, is nonnegative.

Proof. We consider u−ε
i = sup(−uε

i , 0), i = 1, · · · , 4. Multiplying (4), respectively, by u−ε
i and integrating with Ω, we

get
1
2

d
dt

∫

Ω

(
|u−ε

1 |2 + |u−ε
2 |2 + |u−ε

3 |2 + |u−ε
4 |2

)
dx ≤ 0,

where we have used the nonnegativity of the right-hand side and initial conditions. �

Proof of theorem 1. Choosing, φi = uε
i , i = 1, · · · , 4, respectively, in (5) and using the hypothesis, we obtain

1
2

d
dt

∫

Ω

(
|uε

1|2 + |uε
2|2 + |uε

3|2 + |uε
4|2

)
dx +

∫

Ω

(D1|∇uε
1|2 + D2|∇uε

2| + δ3|∇uε
3| + δ4|∇uε

4|2) ≤

c

(∫

Ω

|uε
1|2 + |uε

2|2 + |uε
3|2 + |uε

4|2
)

dx. (15)
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Then, the application of Gronwall’s inequality proves that
∫

Ω

(
|uε

1|2 + |uε
2|2 + |uε

3|2 + |uε
4|2

)
dx ≤ c. (16)

From (15) and (16), we prove that

‖(uε
1, u

ε
2, u

ε
3, u

ε
4)‖L∞(0,T ;L2(Ω)) + ‖(uε

1, u
ε
2, u

ε
3, u

ε
4)‖L2(0,T ;H1(Ω)) ≤ c, (17)

and
‖F1,ε(uε

1, u
ε
2, u

ε
4)u

ε
1‖L1(QT )

‖F2,ε(uε
1, u

ε
2, u

ε
3)u

ε
2‖L1(QT )

‖F3,ε(uε
3, u

ε
4)u

ε
3‖L1(QT )

‖F4,ε(uε
1, u

ε
4)u

ε
4‖L1(QT )

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

≤ c. (18)

Moreover, one can show that

‖(∂tu
ε
1, ∂tu

ε
2, ∂tu

ε
3, ∂tu

ε
4)‖L2(0,T ;(W 1,∞(Ω))∗) ≤ c, (19)

where c > 0 is a constant depending only on the given data and is independent of ε. Now, we show that Di(uε
i ) ∈

L2(0, T ;H1(Ω)), i = 3, 4. To prove this, we take Di(r) =
∫ r

0
Di(s)ds. Now, we multiply third and fourth equation

of (4), by D3(uε
3) and D4(uε

4), respectively, and integrating over QT and using boundedness of solutions, we obtain
∫

QT

|∇D3(uε
3)|2 + |∇D4(uε

4)|2dx ≤ c,

where c > 0 is a constant independent of ε.
From the above results and compactness arguments, there exist limit functions (u1, u2, u3, u4) such that as ε → 0,

we obtain

uε
i ⇀ ui weakly ∗ in L∞(0, T ;L2(Ω)),

uε
i ⇀ ui weakly in L2(0, T ;H1(Ω)), i = 1, 2, 3, 4,

∇uε
i ⇀ ∇ui weakly in L2(QT ), i = 1, 2,

Di(uε
i )∇uε

i ⇀ ξi weakly in L2(QT ), i = 3, 4,

fε(uε
i ) → ui a.e. in QT , i = 1, 2,

∂tu
ε
i ⇀ ∂tui weakly in L2(0, T ; (W 1,∞(Ω))∗), i = 1, 2, 3, 4.

Similarily, we use the same method as in theorem 2 to prove Di(ui)∇ui = ξi, i = 3, 4. Finally, we apply Young’s and
Holder’s inequality to get

‖fε(uε
i ) − ui‖L2(QT ) ≤

√
2‖uε

i − ui‖L2(QT ) +
√

2
∥
∥
∥
∥

εuε
i ui

1 + εuε
i

∥
∥
∥
∥

L2(QT )

≤
√

2‖uε
i − ui‖L2(QT ) +

√
2

∥
∥
∥
∥

εuε
i ui

(1 + εuε
i )2/3(εuε

i )1−2/3

∥
∥
∥
∥

L2(QT )

≤
√

2‖uε
i − ui‖L2(QT ) +

√
2ε2/3

∥
∥
∥(uε

i )
2/3

ui

∥
∥
∥

L2(QT )

≤
√

2‖uε
i − ui‖L2(QT ) +

√
2ε2/3‖uε

i‖
2/3
L∞(0,T ;L2(Ω))‖ui‖L2(0,T ;L6(Ω)). (20)

By the Sobolev embedding (H1(Ω) ⊂ L6(Ω)) we deduce from (20) that fε(uε
i ) → ui, i = 1, 2, 3, 4 a.e. in QT and

strongly in Lr(QT ) for all r ∈ [1, 2]. Therefore, we prove that there exists a weak solution (u1, u2, u3, u4) to the
system (2) in the sense of definition 1. �

4 Existence of optimal control

In this section, we study the existence of optimal solution of the optimal control problem. Then, we derive the adjoint
problem and the optimality conditions for the optimal control. The goal is to minimize the functional (1) subject to
state equations with respect to input rate v. Introducing the reduced cost functional as follows:

J(v) := Ĵ(u1, v). (21)
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Theorem 3. Suppose (u1, u2, u3, u4) are the weak solutions of the system (2), then there exists an optimal solution v∗

of the optimal control problem (21).

Proof. The main goal of this theorem is to prove that there exists an optimal control v∗ such that J(v∗) = infv J(v).
Since the functional J is bounded, there exists a minimizing sequence (vn) such that J(vn) → inf J(v) and

inf
v

J(v) ≤ J(vn) ≤ inf
v

J(v) +
1
n

, ,

for n ≥ 1. Since the sequence (vn) is bounded, we extract a subsequence denoted by (vn) such that vn ⇀ v∗ in L2(QT ).
Furthermore, replacing (u1, u2, u3, u4, v) in (2) by (u1,n, u2,n, u3,n, u4,n, vn) and passing the limits theorem 1, we have
that (u∗

1, u
∗
2, u

∗
3, u

∗
4, v

∗) satisfies (2). Further, using the lower-semicontinuity on L2- norm, we get,

J(v∗) ≤ lim
n→∞

inf J(vn) = min
v

J(v).

Finally, we get v∗ := v is an optimal solution of (21). �

4.1 Optimality conditions and adjoint problem

Define the Lagrangian function as follows:

L (u1, u2, u3, u4, p1, p2, p3, p4, v) =
A

2

∫

QT

|u1 − u1Q|2dxdt +
B

2

∫

Ω

|u1(T ) − u1T |2dx +
C

2

∫

QT

|v − vd|2dxdt

−
∫

QT

∂tp1u1dxdt − D1

∫

QT

Δp1u1 +
∫

QT

((a1u1 + u2)∇u1 + u1∇u2) · ∇p1dxdt

−
∫

ΓT

((a1u1 + u2)∇u1 + u1∇u2)p1dy dt −
∫

QT

α1u1(1 − bu1)p1dxdt

+
∫

QT

c1u2u1p1dxdt +
∫

QT

KT u4u1p1dxdt

−
∫

QT

∂tp2u2dxdt − D2

∫

QT

Δp2u2 +
∫

QT

(u2∇u1 + (u1 + a2u2)∇u2) · ∇p2dxdt

−
∫

ΓT

(u2∇u1 + (u1 + a2u2)∇u2)p2dy dt −
∫

QT

c2u2(1 − du2)p2dxdt

+
∫

QT

μu2p2dxdt +
∫

QT

ρu1u2p2dxdt +
∫

QT

KN (1 − ν)u4u2p2dxdt

−
∫

QT

∂tp3u3dxdt −
∫

QT

∇ · (D3(u3)∇p3)u3dxdt

+
∫

ΓT

u3(D3(u3))∇p3dy dt −
∫

ΓT

(D3(u3)∇u3)p3dy dt −
∫

QT

α2u3p3dxdt

+
∫

QT

βu3p3dxdt +
∫

QT

KC(1 − ν)u4u3p3dxdt −
∫

QT

∂tp4u4dxdt

−
∫

QT

∇ · (D4(u4)∇p4)u4dxdt +
∫

ΓT

u4(D4(u4))∇p4dy dt −
∫

ΓT

(D4(u4)∇u4)p4dy dt

+
∫

QT

γu4p4dxdt −
∫

QT

vp4dxdt +
∫

QT

kT u1u4p4dxdt.
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Theorem 4. If (u∗
1, u

∗
2, u

∗
3, u

∗
4) and v∗ is an optimal solution of the system (2) and optimal control of (1) respectively,

then there exists the adjoint solution (p1, p2, p3, p4) of the following system:

− ∂tp1 − D1Δp1 + (a1∇u1 + ∇u2) · ∇p1 + ∇u2 · ∇p2 − α1(1 − 2bu1)p1 + c1u2p1 + KT u4p1

+ ρu2p2 + kT u4p4 − A(u1 − u1Q) = 0, in QT ,

− ∂tp2 − D2Δp2 + (∇u1 + a2∇u2) · ∇p2 + ∇u1 · ∇p1 − c2(1 − 2du2)p2 + μp2 + ρu1p2

+ KN (1 − ν)u4p2 + c1u1p1 = 0, in QT ,

− ∂tp3 −∇ · (D3(u3)∇p3) + D′
3(u3)∇u3 · ∇p3 + βp3 − α2p3 + KC(1 − ν)u4p3 = 0, in QT ,

− ∂tp4 −∇ · (D4(u4)∇p4) + D′
4(u4)∇u4 · ∇p4 + γp4 + kT u1p4 + KT u1p1

+ KN (1 − ν)u2p2 + KC(1 − ν)u3p3 = 0, in QT ,

subject to boundary and final conditions

∂p1

∂η
= 0 on ΣT and p1(T ) = B (u1(x, T ) − u1T (x)) , on Ω,

∂pi

∂η
= 0 on ΣT and pi(T ) = 0, on Ω, i = 2, 3, 4.

Furthermore, the optimality condition is given by

v∗ = vd − p4

C
in QT , provided C �= 0.

Proof. Using the Karush-Kuhn-Tucker (KKT) conditions, we obtain the optimality system by equating the partial
derivatives of L(u1, u2, u3, u4, p1, p2, p3, p4, v) with respect to u1, u2, u3 and u4 to zero. Now, we get

(
∂L

∂u1
, δu1

)

=
∫

QT

{−∂tp1 − D1Δp1 + (a1∇u1 + a2∇u2) · ∇p1 + ∇u2 · ∇p2 − α1(1 − 2bu1)p1 + c1u2p1

+ KT u4p1 + ρu2p2 + kT u4p4 − A(u1 − u1Q)}δu1dxdt,
(

∂L

∂u2
, δu2

)

=
∫

QT

{−∂tp2 − D2Δp2 + (a3∇u1 + a4∇u2) · ∇p2 + ∇u1 · ∇p1 − c2(1 − 2du2)p2 + μp2

+ ρu1p2 + KN (1 − ν)u4p2 + c1u1p1}δu2dxdt,
(

∂L

∂u3
, δu3

)

=
∫

QT

{−∂tp3 −∇ · (D3(u3)∇p3) + D′
3(u3)∇u3 · ∇p3 + βp3 − α2p3

+ KC(1 − ν)u4p3}δu3dxdt,
(

∂L

∂u4
, δu4

)

=
∫

QT

{−∂tp4 −∇ · (D4(u4)∇p4) + D′
4(u4)∇u4 · ∇p4 + γp4 + kT u1p4 + KT u1p1

+ KN (1 − ν)u2p2 + KC(1 − ν)u3p3}δu4dxdt, (22)

with

∂p1

∂η
= 0 and p1(T ) = B (u1(x, T ) − u1T (x)) ,

∂p2

∂η
= 0 and p2(T ) = 0,

∂p3

∂η
= 0 and p3(T ) = 0,

∂p4

∂η
= 0 and p4(T ) = 0. (23)
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From (22)-(23), we get,

− ∂tp1 − D1Δp1 + (a1∇u1 + a2∇u2) · ∇p1 + ∇u2 · ∇p2 − α1(1 − 2bu1)p1

+ c1u2p1 + KT u4p1 + ρu2p2 + kT u4p4 − A(u1 − u1Q) = 0, in QT ,

− ∂tp2 − D2Δp2 + (a3∇u1 + a4∇u2) · ∇p2 + ∇u1 · ∇p1 − c2(1 − 2du2)p2

+ μp2 + ρu1p2 + KN (1 − ν)u4p2 + c1u1p1 = 0, in QT ,

− ∂tp3 −∇ · (D3(u3)∇p3) + D′
3(u3)∇u3 · ∇p3 + βp3 − α2p3 + KC(1 − ν)u4p3 = 0, in QT ,

− ∂tp4 −∇ · (D4(u4)∇p4) + D′
4(u4)∇u4 · ∇p4 + γp4 + kT u1p4 + KT u1p1

+ KN (1 − ν)u2p2 + KC(1 − ν)u3p3 = 0, in QT , (24)

with following boundary conditions:
∂p1

∂η
=

∂p2

∂η
=

∂p3

∂η
=

∂p4

∂η
= 0 on ΣT . (25)

The above system (24) and (25) is the required dual problem for the given control problem 3 with PDE constraints (2).
Further, to find the optimality conditions, we calculate the gradient of the functional J(v):

(
∂L

∂v
, δv

)

=
∫

QT

{C(v − vd) + p4}δvdxdt and ∇J(v) =
∂L

∂v
.

Furthermore, the optimality condition is then

v∗ = vd − p4

C
in QT .

�

4.2 Existence of a weak solution for the adjoint problem

In this subsection, we prove the existence of solution for the system (24)-(25). Before that we give the definition of
weak solution of system as follows:

Definition 2. A weak solution of the system (24) is a 4-tuple (p1, p2, p3, p4) such that

pi ∈ L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω)) ∩ C([0, T ], L2(Ω)),

∂tpi ∈ L2(0, T ; (W 1,∞(Ω))∗), i = 1, 2, 3, 4,

and satisfying the following weak formulation:

−
∫ T

0

〈∂tp1, ψ1〉dt + D1

∫

QT

∇p1 · ∇φ1dxdt +
∫

QT

(a1∇u1 + a2∇u2)∇p1ψ1dxdt +
∫

QT

∇u2 · ∇p2ψ1dxdt

+
∫

QT

ρu2p2ψ1dxdt +
∫

QT

kT u4p4ψ1dxdt +
∫

QT

(−α1(1 − 2bu1) + c1u2 + KT u4)p1ψ1dxdt

− A

∫

QT

(u1 − u1Q)ψ1dxdt = 0,

−
∫ T

0

〈∂tp2, ψ2〉dt + D2

∫

QT

∇p2 · ∇φ2dxdt +
∫

QT

(a3∇u1 + a4∇u2)∇p2ψ2dxdt +
∫

QT

∇u1 · ∇p1ψ2dxdt

+
∫

QT

c1u1p1ψ2dxdt +
∫

QT

(−c2(1 − 2du2) + μ + ρu1 + KN (1 − ν)u4)p2ψ2dxdt = 0,

−
∫ T

0

〈∂tp3, ψ3〉dt +
∫

QT

D3(u3)∇p3∇ψ3dxdt +
∫

QT

D′
3(u3)∇u3∇p3ψ3dxdt

+
∫

QT

(β − α2 + KC(1 − ν)u4)p3ψ3dxdt = 0,

−
∫ T

0

〈∂tp4, ψ4〉dt +
∫

QT

D4(u4)∇p4∇ψ4dxdt +
∫

QT

D′
4(u4)∇u4∇p4ψ4dxdt

+
∫

QT

(KT u1p1 + KN (1 − ν)u2p2 + KC(1 − ν)u3p3)ψ4dxdt +
∫

QT

(γ + kT u1)p4ψ4dxdt = 0,

∀, ψi ∈ L2(0, T ;W 1,∞(Ω)), i = 1 to 4.
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Theorem 5. If the hypotheses of theorem 1 are true and (u1, u2, u3, u4) is a weak solution of the system (2), then there
exists a weak solution to the system (24)-(25).

The proof of the above theorem is based on the Faedo-Galerkin method. Then, to show the existence of solution to
the adjoint system (24) with (25), we consider the regularized system. First, we prove the existence of solutions of the
regularization system. Then, we show the existence of solutions of adjoint problem by taking the parameter ε → 0.
Therefore, proceeding as in theorem 1, we prove the existence solution interval (0, T ] for the Faedo-Galerkin solution
and also the global existence of the Faedo-Galerkin weak solution, so we excluded the details of the proof.

5 Numerical experiments

In this section, we perform a series of numerical computations to understand the impact of control terms in the tumor
invasion system. Here, all numerical computations are performed in the unit square domain Ω = [0, 1] × [0, 1] and
T > 0. We used Freefem++ [50] for finite element scheme and UMFPACK [51,52] to solve the resulting algebraic
system. All computations are carried out using Intel (R) Core (TM) i7-7700 CPU with 3.60GHz and 8GB RAM.
We considered the following parameter values for the proposed control problem in all our computations as in [48].
However, without loss of generality, we assumed diffusion and cross-diffusion coefficients according to the theoretical
results in sect. 2:

D1 = 10−8, D2 = 10−7, D3 = 10−6, D4 = 10−6, KC = 0.6, a1 = 1.2,

α1 = 4.31 × 10−1, b = 1.02 × 10−14, c1 = 3.41 × 10−10, kT = 3.2 × 10−9,

KT = 0.8, a2 = 1.2, c2 = 4.12 × 10−2, μ = 4.12 × 10−2, d = 1.02 × 10−14,

ρ = 2.00 × 10−11, KN = 0.6, ν = 0.8, α2 = 2.4 × 10−2, β = 1.2 × 10−2,

A = 0.1, B = 0.1, C = 0.1.

We assumed the no-flux Neumann boundary conditions for all unknowns with the following initial conditions:

u1(x, 0) = 1.01 exp
(
−r2

ε1

)

, u2(x, 0) = 0.01 (1 − u1(x, 0)) ,

u3(x, 0) = 1 − 0.99 exp
(
−r2

ε1

)

, u4(x, 0) = 0.95 exp
(
−r2

ε2

)

,

u1Q = 1.01 exp
(
−r2

ε1

)

, vd = 0.9 exp
(
−r2

ε1

)

,

where r2 = (x − 0.5)2 + (y − 0.5)2, ε1 = 0.005 and ε2 = 0.075. Further, for simplicity, we assume D3(u3) = D3 and
D4(u4) = D4 in numerical computations. The above initial conditions for each unknown u1, u2, u3 and u4 are depicted
in fig. 1. Here, we briefly mention the numerical procedure algorithm to solve the state and costate system of proposed
control problem.

Algorithm

1. Fix the δt, tol, Ω.
2. Pick up an initial guess of the control v0

h.
3. Initialize the state uj,0 and adjoint state pj,N . Set the final time T .

For n = 1, 2, . . . , N do
4. With the known control vn, solve the state equation forward time for the state variables.
5. With known state variable, solve the adjoint equation backward in time for the adjoint variables.
6. Update the optimal control vn+1

h = vn
h − 1

C (C(vn − vd) + pn
4 ).

7. Calculate the tol = ‖vn+1,m
h − vn+1,m−1

h ‖2. Iterate until the tol is less than prescribed value.

End
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Fig. 1. Assumed initial conditions of unknowns u1, u2, u3 and u4 of the proposed control problem.

In this algorithm, we first fix the values of δt = 0.1, tol = 10−3, Ω = [0, 1] × [0, 1] and T = 5. We discretize the
unit square domain using triangular elements with characteristic element length 120 × 120 and a uniform mesh size
h = 0.0117851. We used 14641 degrees of freedom for each unknown in all computations. First, we fix an initial guess
the control variable v0

h = 0. Further, we initialize the state unknowns uj,0, j = 1, 2, 3, 4 and the adjoint unknowns pj,N ,
j = 1, 2, 3, 4. For known control v, we solve the state equation forward in time, Further, an iteration of fixed point type
is proposed to handle the nonlinear terms of the system as in [7,8]. In addition, we iterate until the residual is less than
the prescribed threshold value (10−6) or the given maximal number of iterations is reached. All our computations are
completed within 3 or 4 iterations. For known state variable, solve the adjoint equation backward in time. Now, we
update the optimal control and calculate the tol. We iterate until the tol is reached less than prescribed value 10−3.
In this proposed algorithm, iterations are completed within 3 iterations for all our simulations.

5.1 Observations on effects of optimal control without cross-diffusion

The computationally obtained numerical results of the cancer cell density, immune cell density, circulating lymphocyte
density and the chemotherapeutic drug concentration without cross-diffusion effect at various dimensionless time
T = 1, 3, 5 are depicted in figs. 2 and 3. Simulations are performed for the above parameter values with and without
control variable in the proposed cancer invasion system. In these figures, solid line represents the density/concentration
without control variable. Similarly, dashed line represents the density/concentration with control variable.

In fig. 2, columns (i) and (ii), respectively, represent the evolution of density of cancer cells and immune cells at
T = 1, 3 and 5. Similarly, in fig. 3, columns (i) and (ii), respectively, represent the evolution of density of circulating
lymphocyte and concentration of drug at T = 1, 3 and 5. In all these figures, effect of control is compared with absence
of control variable in the proposed system. First, we observed that there is no huge morphological change in the
density of cancer cells from the initial density at time T = 1, 3 and 5. It occurred due to the absence of the cross
diffusion terms. Figure 2 (column (i)) clearly indicates that the introduction of a control variable in the chemotherapy
treatment results in reduction of density of cancer cells at T = 3 and 5. It means that density of cancer cells (u1)
decreases gradually than without control for increased in treatment duration. For example, see the time instance at
T = 3 and 5 in fig. 2 (column (i)). The density of immune cells remain same in all time instances, see fig. 2 (column
(ii)) with/without control terms. The population of immune cells not increased may be the impact of treatment side
effects.

Further, in simulations, we observed that density of lymphocyte remain same from the initial density, see fig. 3
(column (i)). It means that density of lymphocyte level rebound to normal level after recover from the infection.
Lymphocyte counts indicates that are either too low or too high density may signify patient have an infection or mild
illness. Finally, we have seen very important observation in drug concentration with control variable.

Chemotherapy drugs are reducing the production of cancer cells with and without control variable in the system,
see fig. 3 (column (ii)). However, presence of control variable increases the amount of drug when there is large density
of cancer cells, see fig. 3 (column (ii)) at T = 3 and 5. The concentration of drugs gradually decreases to zero, when
the control term did not involve in the system. We noticed that level of drug to be taken is reduced drastically in the
absence of control variable even there is large density of cancer cells, see fig. 3 (column (ii)) solid lines.
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Fig. 2. Sequence of images in columns (i) and (ii), shows the evolution of u1 and u2, respectively, at different instances
T = 1, 3, 5 along the line y = x. Solid lines: density without optimal control. Dashed lines: density with optimal control. All
other parameters of the model (2) are fixed as in sect. 5.

5.2 Observations on effects of optimal control with cross-diffusion

In this section, observations of the dynamical behavior of cancer cells in the presence of immune cells, circulating lym-
phocyte and the chemotherapeutic drug concentration with cross-diffusion effect is given by the numerical simulations
of the proposed control model. Further, all the computations results are depicted in figs. 4 and 5 at dimensionless
time T = 1, 3, 5. The initial conditions and all the parameter values of the model are assumed as in the previous
section. In order to observe the cross diffusion effect, simulations are performed with and without control variable as
in the previous section. Similarly, in figures, solid line represents the density/concentration without control variable
and dashed line represents the density/concentration with control variable.
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Fig. 3. Sequence of images in columns (i) and (ii), shows the evolution of u3 and u4, respectively, at different instances
T = 1, 3, 5 along the line y = x. Solid lines: density/concentration without optimal control. Dashed lines: density/concentration
with optimal control. All other parameters of the model (2) are fixed as in sect. 5.

In fig. 4, columns (i) and (ii), respectively, represent the evolution of density of cancer cells and immune cells at
T = 1, 3 and 5 with cross-diffusion effect. Similarly, in fig. 5, columns (i) and (ii), respectively, represent the evolution
of density of circulating lymphocyte and concentration of drug at T = 1, 3 and 5 with cross-diffusion effect. Now,
we discuss the effect of cross-diffusion with and without control variables in the system. It is observed that in both
the cases, density of cancer cells resulted in appreciable decreases from initial density in population due to the cross-
diffusion effect, see fig. 4 (column (i)) at T = 1, 3 and 5. However, all the strategies are effectively restrain invasion
of cancer cells, they cannot totally eliminate a large tumor during the course of treatment. Eventhough density of
cancer cells is less, control variable in the chemotherapy treatment reduce the cancer cells population than in the case
without control, see fig. 4 (column (i)) at T = 1, 3 and 5.
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Fig. 4. Sequence of images in columns (i) and (ii), shows the evolution of u1 and u2, respectively, at different instances
T = 1, 3, 5 along the line y = x. Solid lines: density without optimal control. Dashed lines: density with optimal control. All
other parameters of the model (2) are fixed as in sect. 5.

Furthermore, the density of immune cells increases when time T increases, see fig. 4 (column (ii)) due to the cross-
diffusion effect. Eventually, it decreases the population cancer cells, see fig. 4 (columns (i) and (ii)). In particular,
the density of cancer cells decrease whenever there is increase in the population of immune cells. Increase in the
immune cells can help to fight against cancer cells to destroy them. It delineates that, the influence of control with
cross-diffusion plays a vital role in the decreasing the cancer cells and increasing the growth of the immune cells.
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Fig. 5. Sequence of images in columns (i) and (ii), shows the evolution of u3 and u4, respectively, at different instances
T = 1, 3, 5 along the line y = x. Solid lines: density/concentration without optimal control. Dashed lines: density/concentration
with optimal control. All other parameters of the model (2) are fixed as in sect. 5.

Finally, similar morphological changes also observed in density of circulating lymphocyte and chemotherapy drug
concentration as in the previous section, see fig. 5 (columns (i) and (ii)) at T = 1, 3 and 5. We observed that the
concentration of chemotherapeutic drugs remains maximum level (vd) at every instance in the case of control. But
the concentration of drugs gradually decreases to zero when there is no control term in the treatment. The influence
of control plays a vital role in the decreasing the cancer cells and increasing the growth of the immune cells. It is
clear that the presence of control function in the system, minimize the density of cancer cells compared with the case
without control function.
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6 Conclusion

We investigated a distributed optimal control problem constrained by the system of PDEs. The model considered here
represents the tumor invasion with cross-diffusion effects. Further, the control parameter of the problem considered
in drug concentration is used to minimize the growth of the tumor and side effects of drugs. The existence of a weak
solution of the state system established using the Faedo-Galerkin approximation method. Moreover, we derived the
first-order necessary optimality conditions and also proved the existence of optimal control and the existence of a
weak solution of the adjoint system. Numerical simulations of the above proposed model was performed using finite
element scheme in two dimensional domains. Computations are used to understand the effect of cross-diffusion for the
considered model. We observed that density of cancer cells minimized with control function and cross-diffusion effect.
Furthermore, concentration of chemotherapeutic drug varies in both the case without control and with control under
the physical limitations on control. Finally, numerical results suggested that the cross-diffusion with control function
is more effective to minimize the invasion of tumor cells. However, all these effects may not be enough to eliminate
the entire cancer cells from the body.
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