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Abstract. We calculate the spectral function in the pseudoscalar (scalar) channel in the high-temperature
phase of QCD in the presence of a background magnetic field. The spatial and temporal screening masses
are determined from the long-distance behavior of the corresponding correlation functions.

1 Introduction

Under extreme conditions of temperature and baryon density, the strongly interacting matter of quantum chromody-
namics (QCD) liberates a large number of degrees of freedom indicating a phase transition to a deconfined, quasi-ideal
state known as the quark gluon plasma (QGP) [1]. There is an overall consensus that heavy-ion collision experiments
have shown us glimpses of such a state of matter. It has been known for some time that the ultra-relativistic motion
of charged particles create an intense magnetic field in the early stage of non-central heavy-ion collision. The energy
scale of the magnetic field thus generated is comparable with the characteristic scale of QCD, for example, B ∼ m2

π/e
at RHIC and could be as high as B ∼ 10m2

π/e at LHC [2–6]. Here mπ is pion mass in vacuum and e is the charge
of the proton. An external magnetic field modifies the QCD vacuum and entails a rich spectrum of phenomena -
chiral magnetic effect (CME) [2,7–9], chiral vortical effect (CVE) [10,11], magnetic catalysis [12–14], inverse magnetic
catalysis [15,16], modification of the phase diagram [15,17,18] and so on. There is a tremendous amount of activities,
both theoretical and experimental, going on to understand the properties of QCD matter under an external magnetic
field [19]. Apart from QCD, the effects induced by an external magnetic field are important in astrophysics [20],
cosmology [21], physics beyond the standard model [22], or condensed matter physics [23].

Hadronic correlation functions are useful objects to understand the intricate dynamics of QCD [24–26]. By studying
the correlation functions of colorless currents at large separation one can, in principle, determine the hadronic spectrum.
At zero temperature properties of the hadronic spectra are determined by nonperturbative fluctuations of quark and
gluon fields. Average characteristics of these fluctuations, called condensates, are fairly known at zero temperature.
Although QCD as a confining theory is yet to be fully understood, it is a remarkable fact that the knowledge about
a few condensates allows to estimate the masses of hadrons quite successfully. Temperature, density or external field
modify the condensates and hence the hadronic masses and decay widths. In fact, first-principle calculation of lattice
QCD established that the modification of the spectrum of QCD at high temperature is linked with the melting of
quark and gluon condensates. For temperature (T ) much higher than the pseudo critical temperature (Tc) of QCD,
mesons of course do not exist in the medium. The large distance asymptotic of the correlators are now determined by
the normal modes of excitations in the plasma.

Thus spectral functions of hadronic correlators are of topical interest. These objects encode complete information
of in-medium hadron properties, transport coefficients and electromagnetic emissivity from the hot and dense plasma.
Mesonic spectral functions at finite temperature have been calculated in the literature using analytic methods [27–31]
or numerical simulations of lattice QCD [32–35]. Hadronic correlators in a background magnetic field have also been
studied in different settings, see [36–47] for the latest developments in the field.

The purport of the present paper is to discuss the modification of mesonic spectral densities in the high-temperature
deconfined phase of QCD. We work to O(α0

s) in the strong-coupling constant albeit the effect of magnetic field, by
construction, is included to all orders. Neglect of QCD radiative corrections provides a clean benchmark to understand
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the effect of a magnetic field on the propagation of mesons and it serves to define an appropriate starting point for a
refined analysis with higher-order QCD effects systematically embedded.

For brevity, we shall consider only neutral pseudo scalar (scalar) mesons of chiral quarks in this paper. We also
assume that mesons are composed of only one kind of quark flavor which will be either u or d. These meson states con-
structed from the connected diagrams are not physical states per se. Nonetheless, they appear in QCD inequalities [48]
and can be constructed in lattice QCD [49, 50]. Let us note that physical meson states in a background electromag-
netic field are nontrivial admixture of spin eigenstates and for Nf > 1 one should also include the contribution from
disconnected diagrams, see for example [49,50]. However, these subtleties show up in higher-order calculation and lie
outside the scope of the present paper.

Analytic studies in a background magnetic field have rarely been pushed beyond one loop and even at one-loop
order the calculations are arranged for some special configurations of fields most of the time. If the magnetic field
dominates other scales in the problem, then it makes sense to place the charged particles in the lowest Landau level
(LLL) because states at higher Landau levels are too heavy to be excited. The virtue of the LLL approximation
is that it allows complete separation of motion along the direction parallel to the magnetic field and gyromagnetic
motion in the transverse space. Furthermore, it allows much simpler tensorial structure of n point functions and
easy Gaussian integrations over transverse momenta of the virtual particles. In general, long-distance properties are
sensitive to the LLL. However, barring special observable like chiral magnetic current or spin polarization where
only the LLL contribute, restriction to the LLL brings in uncertainty in the calculation. Effect of higher Landau
levels are accommodated in the loop calculation either by choosing special direction of propagation with respect to the
external magnetic field (�p ‖ or ⊥ �B ) or through a partial resummation of arbitrary Landau levels [51] in the strong-field
limit. Another kind of resummation of Landau levels is applicable when the magnetic field is weaker than pertinent
mass scales in the problem. Here the resummation is equivalent to the expansion of the propagator in powers of the
magnetic field [52] which is mostly useful to calculate the high frequency tail of the massive correlators [53, 54]. Such
expansion coincides with the operator product expansion which has been widely used in the context of QCD sum rule
calculations in nonperturbative background of color electromagnetic fields. For massless particle, the exercise of OPE
needs certain care. The point is that the propagator becomes increasingly sensitive to the infrared as one moves to
higher order in the expansion which is translated in the infrared sensitivity of the correlator. To save the whole scheme
from doom, one needs to absorb long-distance divergences in the definition of condensates leaving short-distance
contributions in coefficient functions. The procedure is known for QCD [55–57] and we have explicitly checked in the
case of electromagnetic correlator that it works in the presence of a background U(1) field too. We do not discuss this
type of calculation here which in a sense is redundant when the complete result is known. The interested reader may
see [58] for a case in this point.

2 Formalism

For definiteness, we assume a spatio-temporally constant magnetic field along the z-direction. The hadronic current
is given by Jh(τ, �x ) = q̄(τ, �x )Γhq(τ, �x ). Here, Γh = 1, γ5 for scalar (S), pseudo-scalar (PS), respectively.

2.1 Correlation function

Since the magnetic field breaks the isotropy of space, the in-medium correlation functions depend on longitudinal (z)
and transverse (x⊥) coordinates separately,

χh(τ, x⊥, z) =
〈
Jh(τ, x⊥, z)J†

h(0, 0⊥, 0)
〉

β
,

=
1
β

+∞∑
n=−∞

∫
d3p

(2π)3
e−i(ωnτ−�p·�x )χh(ωn, p⊥, pz). (1)

The spectral density σh(ω, p⊥, pz), upto possible subtractions, is defined as

χh(ωn, p⊥, pz) =
∫ +∞

−∞
du

σh(u, p⊥, pz)
u − iωn

,

⇒ σh(ω, p⊥, pz) =
1
π
�χh(iωn = ω + iε, p⊥, pz) . (2)

Correlation functions of interest can be expressed in terms of the spectral function.
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– Temporal meson correlation function:

χτ
h(τ, p⊥, pz) =

∫
d3x e−i�p·�xχh(τ, x⊥, z),

=
1
β

+∞∑
n=−∞

e−iωnτχh(ωn, p⊥, pz),

=
∫ ∞

0

dω σh(ω, p⊥, pz)K(ω, τ), (3)

where, K(ω, τ) = cosh ω(τ− β
2 )

sinh βω
2

.
– Longitudinal correlation function:

χz
h(z) =

∫ β

0

dτ

∫
d2x⊥ χh(τ, x⊥, z),

=
∫ +∞

−∞

dpz

2π
eipzz

∫ ∞

0

dω
σh(ω, p⊥ = 0, pz)

ω
. (4)

– Transverse plane correlation function

χxy
h (�x⊥) =

∫ β

0

dτ

∫
dz χh(τ, x⊥, z),

=
∫

d2p⊥
(2π)2

ei�p⊥·�x⊥

∫ ∞

0

dω
σh(ω, p⊥, pz = 0)

ω
. (5)

If the spectrum of the theory is characterized by simple poles, then the corresponding Fourier transforms will
feature exponential fall off at long distance. The inverse of the characteristic range of the correlation function is called
the screening mass. In the chiral limit, temporal and spatial screening masses are equal in free theory and given by
mscr = 2πT which has simple interpretation as arising due to independent propagation of two quarks. If we neglect
QCD effects, equality of the screening masses still hold for longitudinal and temporal directions even when a magnetic
field is present. In the lowest order of perturbation theory, the screening masses are in fact independent of magnetic
field and given by the free theory value. This is a consequence of the fact that the long-distance properties of the
correlator are determined by the LLL which is independent of B. It will be shown later that the transverse-plane
correlator shows a Gaussian fall-off at large distance with a mass scale ∼

√
|qfB|, where qf is the charge of the flavor

f . This is not a screening behavior per se, but reminiscent of the magnetic confinement in the transverse plane with
a characteristic scale r⊥ ∼ 1/

√
|qfB|.

2.2 Fermion propagator

The exact charged fermion propagator in a homogeneous external field can be written as

S̃f (x, x′) = eλ(x,x′)

∫
d4k

(2π)4
e−ik(x−x′)Sf (k). (6)

Here Sf (k) is the translation and gauge-invariant part of the fermion propagator in a background potential Aext
μ (x).

The holonomy factor λ(x, x′) breaks gauge and translation invariance. The explicit form of λ is not important here, it
drops out in a gauge-invariant calculation.

Sf can be decomposed as sum over the discrete Landau levels [59,60],

iSf (k) = ie−ρ
∞∑

n=0

(−1)nDn

(
k‖, k⊥

)
Δf

(
k‖, εn

)
, (7a)

Dn(k‖, k⊥) = 2
(
/k‖ + m

) (
P−Ln(2ρ) − P+Ln−1(2ρ)

)
− 4/k⊥L1

n−1(2ρ), (7b)

Δf (k‖, εn) =
(
k2
‖ − (εn)2

)−1

=
(
k2
‖ − m2

f − 2n|qfB|
)−1

. (7c)
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Fig. 1. Magnetically confined but otherwise free meson correlator. Double lines represent the exact fermion propagator in a
magnetic field.

Our notation here is as follows: the four-vectors are decomposed into components parallel and perpendicular to
magnetic field, aμ = aμ

‖ + aμ
⊥, where aμ

‖ = (a0, 0, 0, a3) and aμ
⊥ = (0, a1, a2, 0). The metric tensor is written as

gμν = gμν
‖ +gμν

⊥ , where gμν
‖ = diag(1, 0, 0,−1) and gμν

⊥ = diag(0,−1,−1, 0). The scalar product naturally splits as a·b =
(a·b)‖+(a·b)⊥ where (a·b)‖ = a0b0−a3b3 and (a·b)⊥ = −(a1b1+a2b2). Let us also note that qf and mf are the charge
and mass of the fermion, respectively. We have taken ρ = k2

⊥/|qfB|. P± = 1
2 (1 ± iγ1γ2sgn(|qfB|)) are spin projection

operators along the magnetic-field direction. Lα
n are associated Laguerre polynomials. By definition, Ln = 0, if n < 0.

3 Spectral function

The correlation function is given by the convolution of fermion propagators (fig. 1). Using the propagator (7) the
pseudoscalar correlator can be recast in the form

χps(ω, p⊥, pz) = −4Nc

∑
rs

∫∑
k‖

∫
d2k⊥
(2π)2

(−1)r+se−(ρk+ρq)Δf (k‖, εr)Δf (q‖, εs)

×
[
Fr,s

{
Lr(2ρk)Ls(2ρq) + Lr−1(2ρk)Ls−1(2ρq)

}
− 16(k · q)⊥L1

r−1(2ρk)L1
s−1(2ρq)

]
+ C,

with Fr,s = (s‖ − 2|qfB|r − 2|qfB|s). (8)

C represents terms without discontinuities. Here s‖ = ω2 − p2
z and the sum integral stands for

∫
d2k‖
(2π)2

→ iT
∑
k0

∫
dkz

2π
= i

∫∑
k‖

. (9)

The frequency sum in (8) is most conveniently done using the mixed representation of the propagator

Δf (τ) = T
∑
k0

e−k0τΔf (k‖, εr), (10)

where
Δf (τ) = − 1

2ωr(k)

[(
1 − nf (ωr(k))e−ωr(k)τ

)
− nf (ωr(k))eωr(k)τ

]
. (11)

Here ωr(k) =
√

k2
z + ε2r and nf is Fermi-Dirac distribution function. Let us define

T α,β,γ
r,s = (−1)r+s

∫
d2k⊥
(2π)2

e−(ρk+ρq)Lα
r (2ρk)Lβ

s (2ρq)
(
�k⊥ · �q⊥

)γ

, (12a)

Ir,s = −
∫∑
k‖

Δf (k‖, εr)Δf (q‖, εs). (12b)

Then the spectral function can be written as

σps(ω, �p⊥, pz) = −4Nc

∑
rs

[
Frs

(
T 0,0,0

r,s + T 0,0,0
r−1,s−1

)
+ 16T 111

r−1,s−1

]
�

(
Ir,s

π

)
. (13)

Similarly the spectral function in the scalar channel can be written as

σs(ω, �p⊥, pz) = −4Nc

∑
rs

[
Gr,s

(
T 0,0,0

r,s + T 0,0,0
r−1,s−1

)
+ 16T 111

r−1,s−1

]
�

(
Ir,s

π

)
, (14)

where Grs = (s‖ − 4m2 − 2|qfB|r − 2|qfB|s).



Eur. Phys. J. Plus (2019) 134: 478 Page 5 of 13

Expressions for �(Ir,s) and T integrals are worked out in appendices. Let us note that Ir,s are property of the
longitudinal (‖) space, whereas T integrals belong to the transverse (⊥) space. This near complete factorization makes
the interpretation of the spectral function clear. The correlator in (8) can be thought of as superposition of mesonic
states with quark-antiquark pair in (r, s) Landau levels. Each such mesonic state has its own spectral density σr,s.
σr,s consist of annihilation contribution and scattering contribution which is typical of a thermal medium. What is
different in the magnetized plasma is the dimensional reduction. Since the discontinuity of the correlator is determined
by Ir,s, the structure of the spectral function is essentially that of the two-dimensional field theory in the (0, 3)-plane.
The gyromagnetic motion of the charged particles in the transverse plane does not lead to any new cut in the energy
plane and its effect on the cut structure is subtle. Let us note that the quantized momentum of the charged particles
in the transverse plane acts like a mass term for motion in the longitudinal direction. Thus the background magnetic
field, in a sense, acts just like a medium and it shifts the location of cuts in the energy plane by endowing quarks an
effective mass ∼

√
qfB.

Fr,s and T integrals can be explained in the same way as the corresponding expressions in the free theory [61].
The magnetic field modifies the scattering amplitudes and these modifications are contained in the T integrals. Fr,s

can be obtained from the free theory by dropping all references to transverse dynamics (s → s‖) and augmenting the
quark mass by the quantized transverse momentum (m2 → m2 + 2l|qfB|).

We note that the spectral function of pseudoscalar and scalar channels is degenerate in the chiral limit σps = σs

although fermions of the theory became “massive”. Thus the magnetically generated mass does not lead to chiral-
symmetry breaking, at least it is not captured in the lowest order of perturbation theory.

The structure of the spectral function is much simplified in two special circumstances - 1) when momentum of the
meson is aligned with the magnetic field or 2) when the quark-antiquark pair occupies the LLL. Let us pause for a
while to discuss these two special cases before we disseminate the results.

3.1 Spectral function for �p⊥ = 0

Let us set �p⊥ = 0 in (13). T integrals now reduce to normalization integrals (see (B.4)),

T 0,0,0
r,s =

|qfB|
8π

δr,s , T 1,1,1
r,s =

|qfB|2
16π

δr,s. (15)

Substituting (15) in (8), we get

χps(ω, pz) = −Nc
|qfB|
2π

∑
r

(2 − δr,0)FrrIr,r − Nc
4|qfB|2

π

∑
r

rIr,r. (16)

The magnetic-field–dependent contribution in the first term from Frr cancels a similar contribution in the second
term. The spectral function now follows as

χps(ω, pz) = −Nc
|qfB|
2π

s‖
∑

r

(2 − δr,0)Ir,r. (17)

Using (A.2), the spectral function follows as

σps(ω, pz) = Nc
|qfB|
8π2

∑
r

(2 − δr,0)θ(s‖ − 4ε2r)
1√

1 − 4ε2r
s‖

(1 − nf (ω+
r ) − nf (ω−

r ))

+ Nc
|qfB|
8π2

∑
r

(2 − δr,0)θ(−s‖)
1√

1 − 4ε2r
s‖

(nf (ω̃+
r ) − nf (−ω̃−

r )),

where ω±
r =

ω

2
± pz

2

√
1 − 4ε2r

s‖
, ω̃±

r =
ω

2
± |pz|

2

√
1 − 4ε2r

s‖
. (18)

In the limit of very weak field, the difference in energy between adjacent Landau levels becomes very small and r in
this case can be taken as a continuous variable. Replacing summation over r by an integration and using the following
identities:

nf (x) =
∞∑

r=1

(−1)r+1e−rx, (19)

log(1 + e−x) =
∞∑

r=1

(−1)r+1

r
e−rx, (20)
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Fig. 2. Spectral function in the pseudoscalar channel for two different values of field strength. The meson state is assumed to
be made up of massless u quarks.

it is not difficult to show that in the limit of very weak field, the spectral function is approximated by free field value

σps(ω, pz)
|qfB|→0

� Nc

8π2

T

|pz|

[
θ(s‖ − 4m2) log

cosh βω̃+
2

cosh βω̃−
2

+ θ(−s‖) log
(1 + e−βω̃+)
(1 + eβω̃−)

]
. (21)

3.2 Spectral function in the strong field limit

Suppose all mass scales in the problem are smaller than |qfB|. We may assume that quarks are occupying the lowest
Landau level, which is the lowest energy state. The fermion propagator in LLL is obtained by setting n = 0 in (7),

iSLLL
f (k) = 2ie

− k2
⊥

|qf B| (/k‖ + mf )P−Δf (k‖). (22)

Apart from spin projection operator, (/k‖ + mf )Δf (k‖) is just the free particle propagator in ‖ space. We notice that
in the lowest Landau level, the dynamics in ‖ and ⊥ space have been completely separated at the propagator level.
The spectral function can be obtained from (A.2) and (B.11) as

|σs| = |σps| =
|qfB|
4π2

e
− p2

⊥
2|qf B|

(√
1 − 4m2

f

s‖

) (1 − nF (ω+) − nf (ω−))θ(s‖ − 4m2
f ). (23)

3.3 Results for spectral function

In fig. 2, we show the spectral function in the limit p⊥ = 0. The sawtooth nature of the spectral function is due
to singularities at particle thresholds. Physically at the threshold point the meson is unstable with respect to the
decay into a quark-antiquark pair. The origin of these singularities is dimensional reduction and infinitesimally narrow
Landau levels which are artefact of lowest order of perturbation theory. Let us note that the peaks become narrower
and their number increases as the intensity of the magnetic field decreases. This is easy to understand. For a given ω,
the highest Landau level that contributes to the spectral function is rmax = 	(s‖−4m2)/(8|qfB|)
 which increases with
dwindling magnetic field. On the other hand, in the high-frequency tail of the spectral function, the spacing between
two successive peaks is given by δω � |qfB|/4ω (ω � |qfB|), which decreases when the magnetic field decreases or the
frequency increases.

We show in fig. 3 the spectral function for nonzero transverse momentum. The results are similar in nature to those
of fig. 2 but more spiky and stay above the corresponding result at p⊥ = 0. These can be understood as a consequence
of the availability of more decay channels at nonzero p⊥.
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Fig. 3. Same as fig. 2 but for nonzero p⊥ (pt in the figures has the same meaning as p⊥) and only annihilation contribution is
shown in the magnetized case. For p⊥ → 0 we should get back fig. 2. This is shown in the right panel.
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Fig. 4. Pseudoscalar correlator made up of up-quark in the presence of a magnetic field.

4 Screening masses

At zero momenta, the spectral function is obtained from

σ(ω) = Nc

∑
l

(2 − δl0)
|qfB|
4π2

θ(ω2 − 8l|qfB|)
ω√

ω2 − 8l|qfB|
tanh

βω

4
. (24)

We notice that far away from the threshold, the spectral function for each mode consist of a frequency-independent
part together with power-suppressed corrections. This is a consequence of dimensional reduction and is in contrast to
the free field limit where the spectral function grows as ω2.

Now, from (3) and (24), the temporal correlation function can be written as

χτ = χτ
0 +

∑
l>0

χτ
l , (25)

where χτ
0 is the correlator with the LLL approximation. χτ

0 is obtained as

χ̃τ
0 = Nc

|qfB|
2π2T 2

(1 − 2τ̃)
π

sin (2πτ̃)
, (26)

where τ̃ = τ/β and χ̃τ = β3χτ .
We show the temporal correlator in the presence of a magnetic field in fig. 4. The effect of the magnetic field on

the temporal correlator is marginal even for extreme value of the field achievable in the heavy-ion collision. Let us also
note that the contribution of the LLL on the temporal correlator is small and an all-order summation over the Landau
levels is necessary. The screening mass in the time direction, on the other hand, is dictated by the LLL. The screening
mass is given by mτ

scr = 2πT which is same as in the free field theory. This behavior is understood as a consequence
of the B-independence of the LLL.
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Now the immunity of χτ to the exposure of the B-field can be understood in the following way. Using the Euler-
Mclaurin kind of relation between the sum of series and the integral of a function [62], it can be shown that

χτ
free − χτ

0 ≤ χτ ≤ χτ
free + χτ

0 , (27)

where χfree is the correlator in the absence of magnetic field [27],

χ̃τ
free = β3χτ

free =
NC

π2
∂τ̃2

[
(1 − 2τ̃)

π

sin (2πτ̃)

]

= 2Nc
cos (2πτ̃)
sin2(2πτ̃)

+ Ncπ(1 − 2τ̃)
(1 + cos2(2πτ̃))

sin3(2πτ̃)
. (28)

We have checked that inequality (27) is satisfied in our case. Thus the change in the spectral function δχ = χ−χfree �
χ0, and it is small. Let us note that the derivation of (27) rests on the assumption that the correlator can be written
as a sum over Landau levels and that it is a smooth function of the quantum number of orbital motion taken as
a continuous variable. These are not overly restrictive assumptions and relations similar to (27) presumably hold in
general.

The transverse plane correlator in the LLL can be written from (5) and (23) as

χxy(�x⊥) = Nc
|qfB|
4π2

∫ ∞

0

dω

ω
tanh

(
βω

4

)∫
d2p⊥
(2π)2

ei�p⊥·�x⊥ e
− p2

⊥
2|qf B| . (29)

The integration over transverse coordinates is a Gaussian one. The frequency integration is logarithmically divergent
and hence needs regularization. This is done by subtracting the zero temperature divergence from (29). Note that
the zero temperature divergence is not identical with vacuum divergence (B = 0, T = 0) in (29) since the quarks are
dressed by the magnetic field. We isolate the divergence by placing a cutoff in the frequency integration,

∫ ∞

0

dω

ω
tanh

βω

4
= log ω tanh

βω

4

∣∣∣∣
Λ

0

− β

4

∫ ∞

0

dω log ω sech2 βω

4
. (30)

The first term on the right of (30) ≈ log Λ for Λ � T , which is subtracted. The integration in the second term is
convergent and hence the upper limit of integration can be set to ∞. It can be shown that

∫ ∞

0

dx log x sech2 ax = −
log(4a

π eγE )
a

, a > 0, (31)

where γE is the Euler-Mascheroni constant. Hence the correlator can be written as

χxy(�x⊥) = Nc log
(

βeγE

π

)
|qfB|2
8π3

exp
(
−1

2
|qfB|x2

⊥

)
. (32)

The correlator decays in the transverse direction with a characteristic range
√

|qfB|. But as alluded, this Gaussian
falloff is not characteristics of the typical screening behavior but rather a manifestation of magnetic confinement.

Using the following identity:

nf (x) =
1
2
− 2

∞∑
l=1

x

(2l − 1)2π2 + x2
, (33)

we obtain the longitudinal correlator from (4) and (23) as

χz(z) = Nc
|qfB|
4πβ

∞∑
l=1

exp
(
−2π

(2l − 1)|z|
β

)
. (34)

At large distance the l = 1 contribution dominates in (34). Thus the longitudinal screening mass mz
scr is 2πT which

coincides with mτ
scr. Let us note, however, that the asymptotic behavior of the correlator is different from free theory.
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5 Outlook

We have derived an analytic expression for the spectral function in the pseudoscalar (scalar) channel in the deconfined
and magnetized phase of QCD and found spatial and temporal screening masses. While the results presented herein are
nontrivial as no approximation has been made regarding the kinematics or strength of the magnetic field, it would be
of import to include QCD corrections. The strong interaction of the quarks will inevitably mix the Landau levels [63],
fuzz the distinction between ‖ and ⊥ spaces and smooth out the threshold singularities.

The present analysis can be straightforwardly extended to other channels. We note that the spectral function in
the vector channel gives the emissivity of the plasma [36, 64]. The calculation presented herein will be useful in the
calculation of a host of transport coefficients [64–66] and suceptibilities [67, 68] in the presence of a homogeneous
magnetic field. Also it would be interesting to develop a framework to take into account a general background of
inhomogeneous and time-dependent electromagnetic field in the calculation. Work along this direction is in progress
and will be reported elsewhere. The interested reader may see [69–71] for a glimpse of closely related problems.

Publisher’s Note The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

Appendix A. Imaginary part of one-loop self-energy

The integration over kz can easily be done with the help of the well known relation

δ(f(x)) =
∑

i

δ(x − xi)

|∂f(x)
∂x |xi

. (A.1)

xi is simple zero of f(x), f(xi) = 0. The imaginary part of Ir,s is given by

�
(
Ir,s

π

)
= − 1

8π

∫
dkz

ωr(k)ωs(q)

[(
1 − nf (ωr(k)) − nf (ωs(q))

){
δ(ω − ωr(k) − ωs(q)) − δ(ω + ωr(k) + ωs(q))

}

+
(
nf (ωr(k)) − nf (ωs(q))

){
δ(ω − ωr(k) + ωs(q)) − δ(ω + ωr(k) − ωs(q))

}]
, (A.2)

where, ωr(k) =
√

k2
z + ε2r and ωs(q) =

√
q2
z + ε2s. εr is transverse mass in the r-th Landau level, ε2r = m2 + 2r|qfB|.

Let us introduce, χr,s = 1
2 (1 + ε2r−ε2s

s‖
), λrs = λsr = 1

2Λ1/2(1,
ε2r
s‖

,
ε2s
s‖

) where, Λ(x, y, z) = x2 + y2 + z2 − 2xy − 2yz − 2zx

is the triangle function. We also take ω±
rs = χrsω ± λrspz, ω̃±

rs = χrsω ± λrs|pz|. The imaginary part can be written as

�
(
Ir,s

π

)
= −θ

(
s‖ − (εr + εs)

2
) 1

8πs‖λrs

(
2 − nf

(
ω+

rs

)
− nf

(
ω−

rs

)
− nf

(
ω+

sr

)
− nf

(
ω−

sr

))

+
(
θ
(
s‖

)
− θ

(
s‖ − (εr − εs)

2
)) 1

4πs‖λrs

(
2 − nf

(
ω+

rs

)
− nf

(
ω−

rs

)
− nf

(
ω+

sr

)
− nf

(
ω−

sr

))

− θ� (εr − εs) θ
(
−s‖

) 1
8πs‖λrs

(
nf

(
ω̃+

rs

)
− nf

(
−ω̃−

sr

))

− θ� (εs − εr) θ
(
−s‖

) 1
8πs‖λrs

(
nf

(
ω̃+

sr

)
− nf

(
−ω̃−

rs

))

− δεr,εs
θ
(
−s‖

) 1
4πs‖λrs

(
nf

(
ω̃+

rr

)
− nf

(
−ω̃−

rr

))
, (A.3)

where θ ∗ (x) is Heaviside theta function with the condition that θ∗(0) = 0.

Appendix B. Evaluation of T integrals

The T integrals in the main text have following structure:

T α,β,γ
m,n = (−1)m+n

∫
d2k⊥
(2π)2

e−(ρk+ρq)Lα
m(2ρk)Lβ

n(2ρq)(�k · �q )γ . (B.1)
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Let us scale momentum variables as x = 2k2
⊥

|qf B| and ξ = 2p2
⊥

|qf B| in (B.1). We can write

T α,β,γ
m,n = (−1)m+n |qfB|

16π2

(
|qfB|

2

)γ

e−
ξ
2 χα,β,γ

m,n , (B.2)

where

χα,β,γ
m,n =

∫ ∞

0

dx

∫ 2π

0

dφ e−(x−
√

xξ cos φ)Lα
m(x)Lβ

n

(
x + ξ − 2

√
xξ cos φ

)(
x −

√
xξ cos φ

)γ

. (B.3)

Equation (B.3) is defined for arbitrary positive values of α, β or γ. For our purpose, we need to evaluate a small
subset of this where α = β = γ ∈ {0, 1}. When ξ = 0, χα

m,n = χα,α,α
m,n express the orthogonality relation for Laguerre

polynomials,

χα,α,α
m,n = 2π

Γ (α + n + 1)
Γ (n + 1)

δm,n. (B.4)

For nonzero value of ξ deterministic numerical integrator perform fairly well to evaluate diagonal elements χα
mm for

moderate value of ξ. For extreme values of ξ or when |m − n| is large, the success of cubature routines are uncertain
due to the oscillatory nature of the integrand in (B.3). We can, however, circumvent this problem by expanding χ in
a polynomial basis. Since χ is an analytic function of ξ, such an expansion is always possible and it provides a fast,
stable and accurate method for the numerical evaluation of (B.3). In addition to this, analytic expressions for χ may
prove to be useful to test the accuracy of the results obtained from approximate forms of propagators.

We assume a Laguerre-Fourier expansion of χ,

χ(ξ) =
∞∑

l=0

cδ
l L

δ
l (ξ), (B.5)

and our task boils down to finding out the coefficients cδ
l which we will do in a heuristic way.

Let us first consider χ0
mn. The strategy here is to exponentiate the angular dependence in one of the Laguerre

polynomial in (B.3) using a nice addition formula due to Bateman [72],

e
√

xξeiφ

Ln

(
x + ξ − 2

√
xξ cos φ

)
=

∞∑
k=0

(√
xξeiφ

)k−n n!
k!

Lk−n
n (x)Lk−n

n (ξ). (B.6)

We multiply both sides of (B.6) by e−i
√

xξ sin φ and substitute it in (B.3). The innermost angular integration can be
performed using Sommerfeld’s representation of the Bessel function,

Jν(u) =
1
2π

∫ 2π

0

dφ eiu sin φ−iνφ, ν is an integer. (B.7)

The x integration then can be done with the following identity [73]:
∫ ∞

0

dx e−x(
√

x)γ+λJγ+λ(b
√

x)Lγ
m(x)Lλ

n(x) = (−1)m+n

(
b

2

)γ+λ

e−
b2
4 Lγ+m−n

m

(
b2

4

)
Lλ+n−m

n

(
b2

4

)
. (B.8)

So we have

χ0
m,n = (−1)m+n2πΓ (n + 1)

(
ξ

2

)−n

e−
ξ
4 Lm−n

n

(
ξ

4

) n∑
k=0

1
k!

(
ξ

2

)k

Lk−n
n (ξ)Lm−n

m

(
ξ

4

)
. (B.9)

We can further simplify (B.9) by using the following identity [74]:

∞∑
k=0

L(k+α)
m (x)L(k+β)

n (y)
zk

k!
= ez

min(m,n)∑
k=0

L
(k+α)
m−k (x − z)L(k+β)

n−k (y − z)
zk

k!
, (B.10)

together with the fact that L−ν
ν (x) = (−x)ν/ν!. The upshot is an amazingly simple expression for χ0

m,n,

χ0
m,n = (−1)m 2πe

ξ
4

Γ (m + 1)
U

(
−m,−m + n + 1,

ξ

4

)
Lm−n

n

(
ξ

4

)
, (B.11)

where U(a, b, z) is Tricomi’s confluent hypergeometric function.
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The expression for χ1
m,n is somewhat complicated. To evaluate it, we start with the following generalization

of (B.6) [75],

e
√

xξeiφ

Lβ
n(x + ξ − 2

√
xξ cos φ) =

∞∑
k=0

n∑
s=0

Cβ
nks(

√
xξ)k+sLβ+k+s

n−s (x)Lβ+k+s
n−s (ξ)eiφ(k−s), (B.12)

where

Cβ
nks =

(β + k + s)Γ (β + s)Γ (β + k)Γ (n − s + 1)
Γ (β)Γ (s + 1)Γ (k + 1)Γ (β + n + k + 1)

, β �= 0. (B.13)

As in the earlier case, (B.12) allows to perform the angular integration. The x integration is likewise recast in the form
of a Hankel transform, a convenient closed-form expression for which can be derived as

Hμ,ν,α,β
m,n =

∫ ∞

0

dx e−xxμ+ ν
2 Lα

m(x)Lβ
n(x)Jν(

√
xξ)

= (−1)m+nΓ (μ + 1)
(√

ξ

2

)ν

e−
ξ
4

μ∑
r=0

γ∑
l=0

(−1)r

r!

(
μ + ν

μ − r

)(
γ

l

)

× Lα+m+l−n
n

(
ξ

4

)
Lβ+n+γ−l−m

m+l−γ

(
ξ

4

)
, (B.14)

where γ = μ + ν − α − β + r and μ + ν > −1. For γ < 0, the upper limit of l summation in (B.14) has to be replaced
by ∞. For μ = 0, ν = α + β (B.14) reduces to (B.8).

After a short algebra χ1
m,n can be expressed as

χ1
m,n = aχ1

m,n − bχ1
m,n,

aχ1
m,n = 2π

∞∑
k=0

n∑
s=0

Cβ
nks

(√
ξ

k+s
)
Hs+1,k−s,1,k+s+1

m,n−s ,

bχ1
m,n = 2π

∞∑
k=0

n∑
s=0

Cβ
nks

(√
ξ

k+s
)

(k − s)Hs,k−s,1,k+s+1
m,n−s . (B.15)

Appendix C. On the gauge dependence of mesonic correlation functions

Let us recall that the Schwinger representation of a fermion propagator in background electromagnetic field is given
by

S̃f (x, x′) = eλf (x,x′) ×FT [Sf (k)].

The holonomy factor is given by

λf (x, x′) = iqf

∫ x

x′
dξμ

[
Aμ(ξ) +

1
2
Fμν(ξ − x′)ν

]
. (C.1)

qf is the charge of the fermion and Fμν is assumed constant. A general correlator has the form

χAB(x, x′) ∼ S̃f (x, x′)ΓAS̃f ′(x′, x)ΓB (C.2)

We note that the holonomy factors from the propagators do not cancel in the correlator if f �= f ′. Thus charged-meson
correlators are gauge variant and break translation invariance. This problem is not specific to QED but have been
discussed in QCD [76,77].

Now Green’s function are gauge-dependent objects and one has to identify and isolate the gauge-independent infor-
mation from the gauge-dependent objects. We note that the gauge-dependent phase factor in Schwinger propagators
does not alter the the pole positions. The poles of the exact meson propagator are also gauge invariant as the prop-
agator and the polarization function share the same holonomy factor. Hence the spectrum of collective excitations is
gauge invariant. The screening masses are likewise gauge independent. We note that the spectral function for charged
mesons correspond to the gauge- and translation-invariant part of the correlator. For the two-vertex fermion loop, the
translation-invariant part can be isolated by gauging away the holonomy factor by a suitable transformation [78].
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