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Abstract. We consider new models of dark energy with finite time future singularities, by introducing
the pressure density as a function of the scale factor. This approach gives acceptable phenomenological
models of dark energy, that resemble that of the cosmological constant up to the present, which face future
singularities at finite time and finite scale factor. Exact scalar field model representation was found for
quintessence, Big Rip and type III singularity models. The simple form of the equation of state allows to
establish a relationship between its current value, w0, and the time or redshift at which the singularity
takes place. The effect on the growth of matter perturbations is analyzed.

1 Introduction

The most appealing explanation of the accelerated expansion [1–8], is considering an exotic fluid with negative pressure,
called dark energy (DE), which represents about 70% of the energy content of the universe and is causing an accelerated
expansion that behaves very close to the acceleration given by the cosmological constant. According to astrophysical
observations the dark energy equation of state (DE EoS) w lies in a narrow interval around w = −1, being consistent
with current values slightly below this limit. This opens the possibility to an universe that undergoes three phases
throughout its evolution. The initial matter-dominance phase with decelerated expansion, followed by the transition to
accelerated phase with −1 < w < −1/3, and the probably current or future transition to the so called phantom phase,
characterized by w < −1, the weak energy condition is violated. Several works have been dedicated to the theoretical
possibilities of an expanding universe dominated by phantom dark energy. These models [9] lead to a different types
of singularities [10,11], the most drastic of which is the so called Big Rip singularity [12,13], in which the scale factor,
the density and pressure become infinite at a finite time. The type II or sudden singularities are characterized by finite
a and ρ but divergent p at finite time [14, 15]. In the type III singularities both ρ and p diverge, but the scale factor
remains finite at finite time [16,17]. Finite-time singularities which are softer than the previous, are classified as type
IV singularities in which the scale parameter remains finite and the density and pressure become zero or finite at finite
time, but higher derivatives of the Hubble parameter are divergent [10]. Models known as Little Rip, in which the DE
increases with time as in the Big Rip but without future singularity, have been proposed [18–20].

Most of the studied singularities so far, are obtained by introducing explicit dependence of the scale factor on
time, or considering phenomenological models with generalized EoS in which the pressure density p of dark energy
is given in terms of the energy density as some function p(ρ) [10, 14–17, 20–25]. Inhomogeneous EoS have been
also considered, where the pressure may depend on the Hubble parameter and its derivatives [11, 26], motivated by
symmetry considerations or some generalized gravity theories. Another interesting way to study the phenomenology of
DE could be to define the pressure density through the scale factor. This approach allows to consider singularities that
take place at finite scale factor, where this finite value is reached at finite time. The pressure is proposed as p = f(a)
and the energy density is found after the integration of the continuity equation. From the continuity equation follows
that the state with EoS w = −1 is reached asymptotically as ρ̇ → 0, and the EoS never crosses the phantom divide.
Nevertheless when we add a second fluid with constant EoS, which is the homogeneous solution to the continuity
equation (in fact is a pressureless fluid w = 0), then the resulting EoS can cross the phantom divide for certain types
of future singularities. This allows to introduce a general approach for the construction of dark energy models with
different future scenarios, but that from the past and to the present are consistent with the observational data. In the
present work we investigate new DE cosmologies with finite-time singularities, by introducing the pressure density as
a function of the scale factor. These models present singularities of the type II-IV characterized by finite scale factor
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at finite time. The paper is organized as follows. In sect. 2 we present the background equations and introduce the
DE fluid model describing its relevant properties, and derive the conditions for the future singularities. In sect. 3 we
consider several models with type II-IV singularities with explicit cases describing viable cosmological scenarios. The
scalar field model representation of the DE fluid is given under reasonable approximation and one exact case is given.
Some summary and conclusions are given in the discussion section.

2 The dark energy fluid model

We will consider a fluid in the spatially flat homogeneous and isotropic FRW background

ds2 = −dt2 + a(t)2
3∑

i=1

dx2
i , (1)

the dynamics is determined from the equations

H2 =
κ2

3
ρ, (2)

−3H2 − 2Ḣ = κ2p, (3)

where ρ and p are the energy and pressure densities of the fluid that makes up the universe. From these equations the
continuity equation follows:

ρ̇ + 3H(ρ + p) = 0. (4)

Another way to integrate this equation is by giving the pressure in terms of the scale factor, i.e. p = p(a). As a
result of solving eq. (4) we find the density in terms of the scale factor, and therefore determine the equation of state.
Having the density in terms of the scale factor we can integrate eq. (1), which gives the time dependence of the scale
factor and completes the cosmological description of the model. The advantage of this method is that it conduces to
realistic cosmologies that include in any solution the early time matter dominance with the energy density behaving
as ρ ∝ a−3. Equation (4) may be written in terms of the scale factor as independent variable, as

a
dρ(a)
da

+ 3 [ρ(a) + p(a)] = 0. (5)

Solving this equation gives ρ(a), which defines the equation of state parameter (EoS)

w =
p(a)
ρ(a)

. (6)

The general solution to this differential equation includes the solution to the homogeneous equation (corresponding to
p = 0), which describes the dust type matter. Then, we assume that the non-homogeneous solution describes the dark
energy. The solution to eq. (5) together with the pressure p(a), give parametrically the equation of state of the DE
fluid (or DE plus matter) through the scale factor as the parameter. Considering the non-homogeneous solution to (5),
we can find the scalar field that represents the DE fluid, from the minimally coupled scalar field model as follows:

ρ = ±1
2
φ̇2 + V (φ), (7)

p = ±1
2
φ̇2 − V (φ), (8)

which give
ρ + p = ±φ̇2, (9)

where the minus sign corresponds to the phantom scalar. In terms of the scale factor, this equation can be written as

dφ

da
= ± 1

aH

√
|ρ(a) + p(a)|, (10)

for the scalar field dominated universe, we find (using (2))

φ = φ0 ±
√

3
κ

∫ a

a0

√
|ρ(a) + p(a)|

a
√

ρ
da. (11)
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From eqs. (7) and (8) we find the scalar potential as a function of the scale factor

V =
1
2

[ρ(a) − p(a)] , (12)

where the scalar field density and pressure satisfy the continuity equation (5) which is equivalent to the equation of
motion for the scalar field. In this manner, the scalar field can be reconstructed from the given dark energy density
and pressure in terms of the scale factor. If the integration in (11) can be performed analytically, the scalar field field
model is described parametrically in terms of the scale factor, or in some cases it could be possible to find the explicit
expression for potential as function of the scalar field. In the present work we investigate viable cosmologies with finite
time future singularities characterized by finite a. As will be shown, in some cases it is possible to find the explicit
dependence of the pressure on the energy density p(ρ).

The pressure as a function of the scale factor

Let us consider the following expression for the pressure:

p = −A

[
1 −

(
a

as

)α]β

, (13)

where A and α are positive constants. Replacing in the continuity equation (5) gives the density

ρ = A 2F1

[
3
α

,−β,
α + 3

α
,

(
a

as

)α]
. (14)

Replacing p from (13) into (14) we find the explicit dependence of the density on the pressure

ρ = A 2F1

[
3
α

,−β,
α + 3

α
, 1 −

(
− p

A

)1/β
]

. (15)

In some cases, as will be shown, it is possible to invert this equation and express the pressure p in the standard form,
as a function of the density. From the above expressions the DE EoS follows as

wDE = −
[1 − ( a

as
)α]β

2F1[ 3
α ,−β, α+3

α , ( a
as

)α]
. (16)

This expression allows to establish a relationship between the current value of the EoS, w0 and the scale factor at
which the singularity takes place. By setting a = 1, it follows

w0 = − [1 − (as)−α]β

2F1[ 3
α ,−β, α+3

α , (as)−α]
= − [1 − (1 + zs)α]β

2F1[ 3
α ,−β, α+3

α , (1 + zs)α]
, (17)

where we used the redshift relation a = (1 + z)−1. In some cases this relationship becomes very simple, allowing to
express zs in terms of the observable w0. As we will see below, the general model (13) and (14) can be reduced to
elementary functions in some particular cases, but in its general form allows to analyze the different cosmological
scenarios that could take place at the limit a → as, depending on the range of the parameters α and β. It is worth
highlighting that the EoS (16) does not depend on A (as follows from (13) and (14)), and will only depend on as once we
fix the powers α and β. An important feature of the model is that for any α > 0, the pressure and density have the limit

lim
a→0

p = −A, lim
a→0

ρ = A, (18)

where the second limit follows form the properties of the hypergeometric function for α > 0. This indicates that the
DE EoS tends asymptotically to wDE → −1 at a → 0, and stays all the time below the phantom divide line without
crossing it. This also follows from the continuity equation

ρ̇ = −3H(ρ + p),

from which it follows that ρ̇ → 0 implies p → −ρ, which in the present case is achieved at a → 0. Nevertheless the
situation is different when we add the matter term ρm, which is the solution to the homogeneous equation (4) (i.e.
for p = 0). In this case the effective (or total) EoS w takes the value w = −1 at some point satisfying the condition
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ρ̇m(aph)+ ρ̇(apd) = 0, where p+ρ+ρm = 0. Then, the effective EoS crosses the phantom divide from above at apd (or
tpd), which is reached before the singularity, i.e. apd < as. This case is equivalent to a mixture of two non-interacting
perfect fluids, one of which with constant equation of state wm = pm/ρm = 0.

From (11) we find the scalar field as

φ − φ0 = ±
√

3
κ

∫ a

a0

√
| 2F1[ 3

α ,−β, α+3
α , ( a

as
)α] + [1 − ( a

as
)α]β |

a
√

2F1[ 3
α ,−β, α+3

α , ( a
as

)α]
da, (19)

and the scalar potential as

V =
A

2

[

2F1

[
3
α

,−β,
α + 3

α
,

(
a

as

)α]
+

[
1 −

(
a

as

)α]β
]

. (20)

Exact Big Rip and quintessence solutions

Note that away from the singularity, at a � as (or even at a < as if the power α is positive and large enough) one
can make the following approximations up to (a/as)α order

p = −A

[
1 − β

(
a

as

)α]
, ρ = A

[
1 − 3β

3 + α

(
a

as

)α]
, (21)

where in the density we used the expansion of the hypergeometric function. A very interesting property of the above
power-law expansion is that the obtained pressure and density (21) satisfy the continuity equation, and therefore can
be considered as an independent dark energy fluid. In this case the scalar field and potential give exact solution and
can be found in exact form. Replacing (21) into the integral (11) it is found, assuming β < 0

φ − φ0 =
2Mp√

α
sinh−1

[√
− 3β

3 + α

(
a

as

)α/2
]

, (22)

and the potential

V = A

[
1 +

α + 6
6

sinh2

( √
α

2Mp
(φ − φ0)

)]
. (23)

On the other hand, from (21) it follows that for any α > 0 and β < 0, the Eos is below the phantom divide,
but there is not singularity at as since p and ρ can safely crosse as. In fact, at as the EoS takes the finite value
ws = (α + 3)(β − 1)/(α − 3β + 3), which can be −1 only in the trivial cases α = 0 or β = 0. Since in this case as

does not play any role, we can set as = 1. The fact that w < −1 indicates that there should be some singularity. In
order to find out the type of singularity, we need to establish the time dependence of the scale factor. Integrating the
Friedmann equation (2) for the density (21) gives the following scale factor:

a(t) =
(
−α + 3

3β

)1/α
[
sinh2

(
α
√

A

2
√

3Mp

(tc − t)

)]−1/α

. (24)

An important property of this solution is its invariance under time reflection, (t − tc) → (tc − t). It can be seen that
at t → tc the scale factor a → ∞ and therefore, from (21), ρ → ∞, p → −∞ and the universe undergoes a Big Rip
singularity. Neglecting the matter contribution, the time to the singularity can be evaluated as

tBR − t0 =
H−1

0√
A

∫ ∞

1

a−1

[
1 − 3β

α + 1
aα

]−1/2

da =
2H−1

0

α
√

A
sinh−1

(√
−α + 3

3β

)
, (25)

where A is measured in units of 3M2
p H2

0 . Assuming for instance, A = 1, α = 3 and β = −1/2, one finds tBR − t0 ∼
0.96H−1

0 .
It can be seen that the potential (30) satisfies the slow-roll conditions for Λ-like DE. The slow-roll parameter

ε = 1/2(V,φ/V )2 takes the value

ε =
α(α + 6)2 sinh[

√
αφ

Mp
]2

2M2
p (6 − α + (α + 6) cosh[

√
αφ

Mp
])2

(26)
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and taking into account that the scalar field (22) varies very slowly with a, for instance taking α = 3, then in the
interval a ∈ (0, 1) the scalar field φ varies between φ = 0 and φ ≈ 0.55, the parameter ε varies between ε = 0 and
ε ≈ 0.56. In fact, in general, for the entire range of the scalar field φ ∈ (0,∞) the slow roll parameter varies between
0 and its maximum value ε = α/2.

Expanding the potential (23) in powers of the scalar field, up to second order one finds the known expression

V ≈ A

[
1 +

α(α + 6)
24M2

p

(φ − φ0)
2

]
, (27)

which appears in many contexts in particle physics and also has been considered as an example of dark energy fluid
with exact solution [25,27]. In [25] it appears as the scalar field potential for a Little Rip solution.

Note that the phantom evolution is not the only possible outcome from the model (19), as follows from its EoS
(setting as = 1)

wDE = − 1 − βaα

1 − 3β
α+3aα

= − 1 − β(1 + z)−α

1 − 3β
α+3 (1 + z)−α

. (28)

If α < −3 and β > 0 or −3 < α < 0 and β < 0, then −1 < wDE < −1− α/3, giving a quintessence model. The scalar
field becomes

φ − φ0 =
2Mp√
−α

arcsin

[√
3β

3 + α
aα/2

]
, (29)

and the potential

V = A

[
1 +

α + 6
6

sin2

(√
−α

2Mp
(φ − φ0)

)]
. (30)

The time dependence of the scale factor is the same given by (24) with α negative, which removes the finite time
singularity at t = tc (in this case we can set tc = 0). It is clear also that the integral (25) does not converge for α < −3
and β > 0 or −3 < α < 0 and β < 0, indicating the absence of finite time singularity.

The slow-roll parameter for the potential (30) is given by the expression

ε = −
α(α + 6)2 sin[

√
−αφ
Mp

]2

2M2
p (18 + α − (α + 6) cos[

√
−αφ
Mp

])2
. (31)

Taking for instance α = −1/2, then for a ∈ (0, 1), the scalar field varies between 0 and φ ≈ 2.5 and ε takes its maximum
value εmax ≈ 0.027 at φ = 2

√
2 arctan(2

√
3/23). Thus, the potential (30) clearly satisfies the slow-roll condition on ε.

The expression for the EoS (28) allows to compare with the known redshift parametrization of the DE EoS, namely
the CPL parametrization [28,29]

w(z) = w0 + w1
z

1 + z
. (32)

Expanding the EoS (28) in powers of z/(1 + z) it is found

wDE =
(α + 3)(β − 1)

α − 3β + 3
− α2(α + 3)β

(α − 3β + 3)2
z

1 + z
+ . . . , (33)

comparing both expressions allows to write α and β in terms of the CPL parameters as

α = −3w2
0 + 6w0 + w1 + 3

w0 + 1
, β =

(w0 + 1)(3w2
0 + 3w0 + 1)

w1
(34)

that can be used as a criteria of consistency of the model with observations at high redshift and are also useful for
linear approximation at low redshift. The above expansion is valid only when there is some fast convergence criterion.
Analyzing higher order terms in the expansion (33), we find that this criterion is fulfilled in the cases when 0 < α ≤ 3
and −1/2 ≤ β < 0 (phantom) or −1 < α < 0 and −1/2 < β < 0 (quintessence). Only in that cases the CPL
parametrization is useful for the models (21). There are also important criteria, as discussed below, useful to evaluate
the departure of the model from the cosmological constant.
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3 Finite a singularities

In this section we consider different types of future singularities with finite scale factor [14, 17, 26], assuming values
for α and β in the appropriate intervals. In all models the DE EoS maintains very close to the cosmological constant
and the total EoS gives acceptable description of the evolution from the early matter dominance to the current time
characterized by predominance of the dark energy, being quite consistent with current observations. Taking the limit
at a → as in (13) and (14) one can distinguish the following singularities:

1) Type II (sudden) singularities. For any α > 0 and −1 < β < 0 one finds the limits

lim
a→as

p = −∞, lim
a→as

ρ = A
Γ (1 + 3

α )Γ (β + 1)
Γ (1 + 3

α + β)
, lim

a→as

w = −∞. (35)

2) Type III singularities. This singularity takes place for β ≤ −1 and any α > 0

lim
a→as

p = −∞, lim
a→as

ρ = ∞, lim
a→as

w = −∞. (36)

3) Type IV singularities. They are obtained for any α > 0 and 0 < β < 1, giving the limits

lim
a→as

p = 0, lim
a→as

ρ = A
Γ (1 + 3

α )Γ (β + 1)
Γ (1 + 3

α + β)
, lim

a→as

∣∣∣∣
dnp

dan

∣∣∣∣ = ∞, n = 1, 2, . . . , lim
a→as

w = 0. (37)

Including the homogeneous solution of (5), which corresponds to dust type matter, the total density (that includes
both, DE and dark matter fluids), takes the form

ρ =
ρm0

a3
+ A 2F1

[
3
α

,−β,
α + 3

α
,

(
a

as

)α]
, (38)

where ρm0 is the integration constant, associated with the density of dark matter. Replacing a from (13) into the
above expression for ρ, it is found ρ(p) as

ρ =
ρm0

a3
s

[
1 −

(
− p

A

)1/β
]−3/α

+ A 2F1

[
3
α

,−β,
α + 3

α
, 1 −

(
− p

A

)1/β
]

. (39)

Note that the addition of the matter term does not change the character of the singularities. Replacing the density (38)
into the Friedmann equation (2) we find the time remaining to the singularities as

ts − t0 = H−1
0

∫ as

1

a−1

[
ρm0

a3
+ A 2F1

[
3
α

,−β,
α + 3

α
,

(
a

as

)α]]−1/2

da, (40)

where ρm0 and A are measured in units of 3M2
p H2

0 (H0 is the current value of the Hubble parameter). Note that the
last limit in eq. (37) leads to

lim
t→ts

∣∣∣∣
dnH

dtn

∣∣∣∣ = ∞, n = 2, 3, . . . , (41)

Below we consider explicit cases of these singularities, for specific values of α and β in the intervals considered above.

Sudden singularities

The sudden singularity is a finite time singularity that occurs when the scale factor a(t), its time derivative and the
energy density remain finite, while the pressure p → −∞, and therefore, the EoS also suffers the singularity, w → −∞.
To illustrate this type of singularities we consider the following two cases of the model (13).

1) α = 3, β = −1/2

The model (13) gives

p = −A

[
1 −

(
a

as

)3
]−1/2

, ρ = 2A
(as

a

)3

⎛

⎝1 −

√

1 −
(

a

as

)3
⎞

⎠ , (42)
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Fig. 1. The deviation Δw of the effective EoS for the model (46) with respect to the ΛCDM model, for the cosmological
scenarios with as = 50, as = 10 and as = 5. The values of the deviation Δw show that the models can consistently describe the
current observations. The negative value of Δw indicates the future singular outcome of the model.

combining these two equations one finds

p =
Aρ

ρ − 2A
(43)

and the equation of state takes the simple form

wDE =
A

ρ − 2A
=

1

2
[
(as

a )3
(
1 −

√
1 − ( a

as
)3
)
− 1

] . (44)

The sudden singularity takes place when ρ → 2A as follows from (42) (at a → as) or (43) at ρ → 2A. Note that away
form the singularity, when a � as, one can approximate ρ as

ρ � 2A
(as

a

)3
[
1 −

(
1 − 1

2

(
a

as

)3
)]

= A. (45)

Then the fluid (42), under the condition a � as, gives an EoS very close to −1 with p � −A(1 + 1
2 (a/as)3) ∼ −A

and ρ � A (w ∼ −1), and the further the singularity is, the closer the behavior to the cosmological constant. In fact,
taking the limit as → ∞ in (44) one finds w = −1.

By adding the homogeneous solution to the density in (42), we find the total density as

ρt =
ρm0

a3
+ 2A

(as

a

)3

⎛

⎝1 −

√

1 −
(

a

as

)3
⎞

⎠ , (46)

combining this result with eq. (42) for the pressure, one finds

p = − A2

ρc − ρt

(
1 −

√
1 − ρt

A2
(ρc − ρt)

)
, (47)

where ρc = 2A + ρm0
a3

s
. The sudden singularity takes place when ρ → ρc (at a → as) as follows from (46) or (47).

From the Friedmann equation for the density (46), and applying the flatness condition (at a = 1), writing ρm0 and
A in units of (3M2

p H2
0 ), we can determine the constant A, provided ρm0 = 0.3 and given as. Then we can compose

the equation of state for each case in terms of the redshift using a = (1 + z)−1. Note that due to the high power of
a/as for the above case, it is not necessary to maintain the condition as � 1, and it is enough with as > 1. Taking
for instance as = 50 (assumed for as � 1) and as = 10 or even as = 5 (that satisfy as > 1), give the effective EoS
which is consistent with the current observations and close to the behavior of ΛCDM (up to the present) as shown in
fig. 1, where we plot the deviation of the effective EoS with respect to ΛCDM model. Applying the flatness condition,
at a = 1, to the density (46) gives A ≈ 0.7 for all the cases.
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Fig. 2. The deviation Δw of the effective EoS for the model (50) with respect to the ΛCDM, for as = 50, as = 10 and as = 5.
Despite the dynamic nature of the models, the behavior up to the present as ΛCDM-like model is remarkable for the case
as = 50. For the case as = 10 the deviation remains in the order of 10−7, at least up to the present.

Table 1. The time remaining to the type III singularity. The numbers in parenthesis correspond to the values (α, β) for each
model.

Time to the sudden singularity in units of H−1
0

as (3,−1/2) (6,−1/2)

50 4.54 4.58

10 2.61 2.65

5 1.79 1.85

2) α = 6, β = −1/2

From (13) it follows that

p = −A

[
1 −

(
a

as

)6
]−1/2

, ρ = A
(as

a

)3

arcsin

[(
a

as

)3
]

, (48)

combining these equations gives ρ in terms of p as

ρ =
1√

1 − (A
p )2

⎛

⎝A arcsin

⎡

⎣
√

1 −
(

A

p

)2
⎤

⎦

⎞

⎠ . (49)

Taking the limit a → as, we find p → −∞, ρ → Aπ/2 and w → −∞, corresponding to sudden singularity. If
p/A � −1 then from (49) follows that ρ � A and w � −1, and away from the singularity the model is very close to
the cosmological constant. By adding solution of the homogeneous equation (5) to the density (48), the total density
becomes

ρt =
ρm0

a3
+ A

(as

a

)3

arcsin

[(
a

as

)3
]

, (50)

or combining with the equation for p in (48)

ρt =
1√

1 − (A
p )2

⎛

⎝ρm0

a3
s

+ A arcsin

⎡

⎣
√

1 −
(

A

p

)2
⎤

⎦

⎞

⎠ . (51)

In fig. 2 we show the deviation of the effective EoS with respect to ΛCDM for the cosmological scenarios with as = 50,
as = 10 and as = 5, for the model (50). The flatness condition gives A � 0.7 for all the cases

The numerical results expressed in the previous figures show that, to high accuracy, the models behave in a way
very consistent with current observations up to the present, except that in the future they begin to diverge from
ΛCDM and face a sudden singularity at different times in the future. How far is this future, depends on the value of
the scale factor at which the singularity takes place, as. The time to the singularity for the considered cases is shown
in table 1. Here we used the flatness condition at a = 1 with A and ρm0 measured in units of 3H2

0M2
p , and ρm0 = 0.3.



Eur. Phys. J. Plus (2019) 134: 397 Page 9 of 17

Type III singularities

The following cases lead to the limit at a → as: p → −∞, ρ → ∞ and w → −∞.

1) α = 3, β = −1

p = − A

1 − a3

a3
s

, ρ = −A
a3

s

a3
ln

(
1 − a3

a3
s

)
, (52)

eliminating a we find

ρ = −A

(
1 +

A

p

)−1

ln
(
−A

p

)
. (53)

Proceeding as in the previous cases, and adding the matter term to the density (52) we find for the total density

ρt =
ρm0

a2
− A

a3
s

a3
ln

(
1 − a3

a3
s

)
, (54)

or in terms of the pressure

ρt =
(

1 +
A

p

)−1 [
ρm0

a3
s

− A ln
(
−A

p

)]
. (55)

2) α = 3, β = −2

p = − A

(1 − a3

a3
s
)2

, ρ =
A

1 − a3

a3
s

, (56)

eliminating a gives the pressure explicitly in terms of the density as

p = −ρ2

A
, (57)

and the DE equation of state is given by

wDE = − ρ

A
= − 1

1 − a3

a3
s

. (58)

From (56) it follows that ρ/A > 1, and therefore w < −1. The EoS depends only on as and can be kept in a very narrow
region below the cosmological constant, as will be illustrated below. This simple form of the EoS gives a relationship
between the current EoS and the singular value as. If w0 is the value of wDE at a = 1, then

as =
(

w0

w0 + 1

)1/3

(59)

thus for instance, if w0 ≈ −1.05, then as ≈ 2.76. The time to the singularity, evaluating the integral (40) for this case
with as = 2.76 and setting ρm0 = 0, gives ts − t0 ≈ 0.84H−1

0 (the contribution of matter increases a little this value).
The DE fluid (56) allows the integration in (11) and we can find the exact form of the scalar field and the potential

that produce the EoS (58). After integration in (11) with de density and pressure given by (56) we find the scalar field

φ =
2√
3
Mp arcsin

(
a

as

)3/2

, (60)

and the potential

V =
A

2

cos2(
√

3
2

φ
Mp

) + 1

cos4(
√

3
2

φ
Mp

)
, (61)
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where the maximum value of φ is φs = πMp/
√

3, and at φs the type III singularity takes place. As in the previous
cases, by adding the matter content to the density in (56) one can write the total density as

ρt =
ρm0

a3
+

A

1 − a3

a3
s

. (62)

By eliminating a between the pressure p given in (56) and the density ρ in (62) we can express the pressure as a
function of the density as follows:

p = − 1
2A

⎡

⎣ρ2
c + ρ2

t − 2
ρm0

a3
s

ρt +

√(
ρ2

c + ρ2
t − 2

ρm0

a3
s

ρt

)2

− 4A2ρ2
t

⎤

⎦ , (63)

where ρc = A − ρm0
a3

s
. It can be checked in this expression that if A = 0, then ρt = ρm0/a3 and p = 0.

The slow-roll parameter for the potential (61) is given by the expression

ε =
3(cos[

√
3φ] + 5)2 tan[

√
3φ/2]2

2(cos[
√

3φ] + 3)2
. (64)

Assuming as = 5, then for a ∈ (0, 1), the scalar field varies between φ = 0 and φ = 2√
3

arcsin[ 1
5
√

5
] ≈ 0.1, and the

slow-roll parameter varies between ε = 0 and ε ≈ 0.025. This small value of ε guarantees the quasi-Λ behavior of the
DE.

3) α = 6, β = −1

p = −A

[
1 − a6

a6
s

]−1

, ρ = A
a3

s

a3
tanh−1

[
a3

a3
s

]
(65)

or

ρ =
A√

1 + A
p

(
tanh−1

[√

1 +
A

p

])
. (66)

The total density is obtained by adding the homogeneous solution to the density (65), giving

ρt =
ρm0

a3
+ A

a3
s

a3
tanh−1

[
a3

a3
s

]
=

1√
1 + A

p

(
ρm0

a3
s

+ A tanh−1

[√

1 +
A

p

])
, (67)

which allows to follow the evolution of the effective EoS.

4) α = 1, β = −4

p = − A

(1 − a
as

)4
, ρ =

A

(1 − a
as

)3
, (68)

giving the relationship

p = − 1
A1/3

ρ4/3. (69)

Here the equation of state takes the simple form

wDE = −
( ρ

A

)1/3

= − 1
1 − a

as

= − 1
1 − 1+zs

1+z

. (70)

The integral (19) is exact in this case and gives the scalar field as

φ − φ0 = 2
√

3Mp arctan
[ √

a√
as − a

]
, (71)
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Fig. 3. The deviation of DE EoS for the model (68) with respect to the EoS of the cosmological constant (wΛ = −1) for
three scenarios that differ in the scale factor at which the singularity takes place, as = 50 (dashed), as = 10 (dotted), as = 5
(dot-dashed).

which gives for the scale factor

a = as sin2

(
φ

2
√

3Mp

)
,

leading to the potential

V =
A

2
[
(sec φ)6 + (sec φ)8

]
. (72)

The EoS (70) gives a simple relationship between its current value and the critical value of the scale factor. If
wDE(z = 0) = w0, then

w0 =
1
zs

. (73)

Thus, if the DE EoS has the current value w0 ≈ −1.05, then zs ≈ −0.95 (as ≈ 20). The integral (40) can be evaluated
in exact form in the DE dominant case (setting ρmo = 0) giving the following expression for the remaining time to the
singularity:

ts − t0 =
6a

3/2
c arctan

[√
as−1

as

]
+ 2(1 − 4as)

√
as − 1

3
√

A(as)3/2
H−1

0 . (74)

Assuming (as = 20), it is found ts − t0 ≈ 1.93H−1
0 (A is evaluated using the flatness condition, giving A ≈ 0.86).

Unlike the previous cases, the DE EoS (70) may differ appreciably from the cosmological constant at low redshift. In
fig. 3 we show some cases.

The slow-roll parameter for the potential (72) has the following form:

ε =
2(4 sec[φ]2 + 3)2 tan[φ]2

(sec[φ]2 + 1)2
. (75)

In this case, the evolution of the scalar field depends strongly on the singular value of the scale factor as, and the
closer the singularity is (smaller as), the faster the scalar field evolves. Thus, if one assumes as = 10, then in the
interval a ∈ (0, 1) the scalar field takes values in the interval (0, 1.1) and the slow-roll parameter varies between ε = 0
and ε ≈ 122, and assuming for instance as = 103, then in the interval a ∈ (0, 1) the scalar field evolves in the interval
(0, 0.11) and ε varies between 0 and 0.3. This indicates that the rapid evolution of the scalar field causes a rapid
departure from the cosmological constant. Note however, that, even for small as according to fig. 3, the departure
from the cosmological constant is slow and not as rapid as the slow-roll parameter suggests.

By adding the mater content, the total density becomes

ρt =
ρm0

a3
+

A

(1 − a
as

)3
=

ρm0

a3
s

(
1 − (−A

p )1/4
)3 + A

(
− p

A

)3/4

. (76)
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Table 2. The time remaining to the type III singularity. The numbers in parenthesis correspond to the values (α, β) for each
model.

Time to the type III singularity in units of H−1
0

as (3,−1) (3,−2) (6,−1) (1,−4)

50 4.47 4.35 4.55 3.21

10 2.55 2.43 2.63 1.58

5 1.72 1.61 1.8 0.99

The numerical analysis shows that the behavior of the effective EoS for the first three cases is exactly the same as
the obtained for the two cases of the sudden singularity. Apart from the character of the singularity, they differ in
the time at which the singularity takes place, which are also similar. The special case is the model (68) which has
an appreciable difference (in the range of current observations) at low redshift with the cosmological constant. This
model has exact representation in terms of the phantom scalar field with potential given by (72). In table 2 we show
the time to the singularity for the considered cases

The q and j parameters

From the above results, reflected in figs. 1 and 2, for sudden and type III singularities it follows that it is hard to
distinguish between the above models and the ΛCDM (from early times up to the present).

As a possible way to break this degeneracy, we can consider other cosmological parameters like the deceleration
parameter q, or quantities with higher derivatives of the Hubble parameter like the jerk parameter j, that could be
more sensitive to the model parameters and thus reveal differences with ΛCDM. The deceleration and jerk parameters
are defined as

q = − 1
aH2

d2a

dt2
=

1
H2

[
1
2
(1 + z)

dH2

dz
− H2

]
, (77)

j =
1

aH3

d3a

dt3
=

1
2H2

[
(1 + z)2

d2H2

dz2
− 2(1 + z)

dH2

dz
+ 2H2

]
. (78)

The current values of these parameters for the ΛCDM model are

q0 =
3
2
ρm0 − 1, j0 = 1 (79)

where ρm0 is measured in units of 3M2
p H2

0 . In fact j = 1 for the ΛCDM model all the time since the matter dominated
epoch and at the future. These will be the reference values to compare with the models (46), (50), (54), (62) and (67).
Specially the simplicity of j for the ΛCDM allows to measure the deviation from ΛCDM, if by other means is not
possible. Nevertheless, it is true that the determination of j imply measurements at larger redshifts than needed for
H, which is an observational challenge harder than the determination of H(z) [30,31]. The analysis performed for all
the previous cases shows that the redshift evolution of the deceleration parameter q still very close to the cosmological
constant (the difference is much smaller than the accuracy of current observations). However assuming that as = 3,
then there is only one case, (α = 3, β = −2) corresponding to the EoS p = −ρ2/A, where the current value of q is
q0 ≈ −0.6 while qΛCDM

0 ≈ −0.55. In all cases the difference with ΛCDM increases towards the future. Considering the
jerk parameter, the difference with ΛCDM is a little bit more marked. In fig. 4 we show j for the model (α = 3, β = −2),
where the difference with ΛCDM is more appreciable, j0 − jΛCDM ≈ 0.25.

According to this behavior for j, the difference with ΛCDM increases at low redshift, being larger at the present.
The current value for as = 3 is j0 ≈ 1.25, which falls between the range of current observational studies [31, 32]. The
time to the singularity for as = 3 is t − t0 ≈ H−1

0 . An important feature of the model (56) is that the expressions for
the scalar field and potential, for the DE component, are exact and valid for any a/as < 1.

Type IV singularities

In type IV singularities the density becomes finite at as, which leads to non-singular EoS at as, but becomes singular
at as for Ḧ and higher derivatives. Under appropriate choice of the parameters that respect the flatness condition and
assuming an appropriate value for as, all these models lead to viable cosmological evolution and give a current value
of the DE EoS in the range obtained from observations. The following examples lead to type IV singularities, where
the limits at a → as are given in eq. (37), and will be shown in each case. We consider the following cases:
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Fig. 4. The jerk parameter for the model (56), assuming as = 5 (dashed) and as = 3 (dotted). The constant j = 1 corresponds
to the ΛCDM model.

1) α = 3, β = 1/2

p = −A

(
1 − a3

a3
s

)1/2

, ρ =
2
3
A

√

1 − a3

a3
s

+
2
3
A

a3
s

a3

(
1 −

√

1 − a3

a3
s

)
. (80)

In this case it is possible to find explicit dependence of the pressure in terms of the density as follows:

p = −1
4

(
3ρ − 2A +

√
9ρ2 + 12Aρ − 12A2

)
. (81)

At a → as we find for ρ

lim
a→as

ρ =
2A

3
. (82)

The DE EoS is given by

wDE = −1
4

(
3 − 2

A

ρ
+

√

9 + 12
A

ρ
− 12

A2

ρ2

)
. (83)

2) α = 6, β = 1/2

p = −A

(
1 − a6

a6
s

)1/2

, ρ =
A

2

[√

1 − a6

a6
s

+
a3

s

a3
arcsin

(
a3

a3
s

)]
. (84)

The explicit dependence of the density in terms of the pressure is given by

ρ = −1
2
p +

A

2
arcsin(

√
1 − ( p

A )2)
√

1 − ( p
A )2

. (85)

The energy density tends to the limit at a → as,

lim
a→as

ρ =
Aπ

4
. (86)

These models follow the same behavior as the previous models, except for the character of the singularity. In fact, the
real singularity takes place for higher derivatives of H, (|Ḧ|, |

...
H|, . . . → ∞) at t → ts. It is clear that the jerk parameter

j faces future singularity. The difference with the ΛCDM can be set only by this parameter. In fig. 5 we show the jerk
parameter for the model (80) where the difference is more marked.
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Fig. 5. The jerk parameter for the model (80), assuming as = 5 (dashed), as = 3 (dotted) and as = 2 (dot-dashed). The
remaining times to the singularity are 1.9H−1

0 , 1.3H−1
0 and 0.8H−1

0 respectively.

4 Growth of matter perturbations

With the improvement of the observational accuracy, more cosmological effects can be incorporated to the arsenal
of tests, that have the potential to discriminate between the jungle of dark energy models, allowing to constraint
or rule them out. One of these effects has to do with the growth of matter perturbations in the universe, which
depends on the expansion rate of the universe [33–38]. The dark energy acts against the growth of structure, and
the greater the acceleration, the more suppressed the growth of structure, giving an important prove of DE effects
with direct observations. For all the above considered models, the DE EoS varies very slowly with time, staying in
an enough narrow interval around −1 through its evolution from matter dominance up to the present. This allows to
apply the formalism of growth of matter density contrast δ = δρm/ρm which, up to first order, satisfies the following
equation [35]:

δ̈ + 2Hδ̇ − 4πGρmδ = 0, (87)

where ρm is the background matter density and δρm is its first-order perturbation. The influence of the DE is encoded
in the “friction term” proportional to H in (87). This equation was derived under the assumption that the scale of
the perturbations is smaller than the Hubble horizon, where the decoupling of dark matter and DE perturbations is a
good approximation [33–35]. Defining the growth variable g = δ/a and using the e-folding variable x = ln a, eq. (87)
takes the form [34–36]

d2g

dx2
+

[
5
2
− 3

2
w(a)(1 − Ωm(a))

]
dg

dx
+

3
2

(1 − w(a)) (1 − Ωm(a)) g = 0, (88)

where Ωm(a) = H2
0Ωm0a

−3/H2 (Ωm0 is the current matter density parameter) and w(a) is the DE EoS. A good
approximation to the exact solution of this equation has the following analytical from:

g(a) = exp
(∫ a

0

da

a
[Ωm(a)γ − 1]

)
, (89)

where the parameter γ is called the growth index, which with high accuracy can be considered as constant for ΛCDM
and for a wide variety of DE models with slowly varying EoS [35–37]. Thus, for quintessence and phantom models the
following expressions were found:

γ = 0.55 + 0.05 [1 + w(z = 1)] , w > −1,

γ = 0.55 + 0.02 [1 + w(z = 1)] , w < −1. (90)

So, even though eq. (88) can be integrated numerically, the growth index γ brings us closer to a way of parametrizing
the effect of the DE in the evolution of structures in the universe. All the models presented here give slowly varying
EoS, even up to the near future before the (sudden or type III) singularity. In fig. 6 we show the growth function for
the quintessence and Big Rip models derived from (21).

On large scales (larger than about 100Mpc [37, 39]) the above approximation loses rigor and scale-dependent
correction is necessary, but this effect is more accentuated for modified gravity [38, 40]. Thus, we assumed here that
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Fig. 6. The growth function g(a) for the quintessence and phantom model with Big Rip singularity derived from (21). The
(dotted) quintessence model corresponds to α = −1/2 and β = −1/2, the phantom model (dashed) to α = 3, β = −1/2 and
the solid line corresponds to ΛCDM.
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Fig. 7. The growth factor f(a) for the quintessence and phantom model with Big Rip singularity derived from (21). The
(dotted) quintessence model corresponds to α = −1/2 and β = −1/2, the phantom model (dashed) to α = 3, β = −1/2 and
the solid line corresponds to ΛCDM.

the growth index is quasi-constant for ΛCDM and so for models with smoothly varying EoS [35, 36]. Note that in all
DE models and specially in models with future finite time singularity the matter component becomes increasingly
subdominant towards the future, making the matter perturbations more and more imperceptible. For the sudden and
type III singularities the behavior of the growth function is very similar to the phantom case of figs. 1, 2. Another
indicator of the effect of DE in the growth of density perturbations is the derivative of the logarithm of the density
contrast δ with respect to logarithm of the cosmic scale

f =
d ln δ

dx
(91)

which, as follows from (87) or (88) satisfies the equation

df

dx
+

(
2 +

1
2

d ln H2

dx

)
f − 3

2
Ωm(a) = 0, (92)

which has an approximate solution of the form [33,40]

f(a) = Ωm(a)γ , (93)

with γ ≈ 6/11 for the cosmological constant, this solution is also valid for slowly varying EoS in a narrow interval
around −1. Applying this solution to the models of fig. 6 we find f(a) as depicted in fig. 7.

The difference between the models is more noticeable in the redshift region z ∼ 0.5 − z ∼ 1.5, but it’s still a
subtle difference which needs more accurate observational data. So the future increment of observations in the redshift
interval (0.5, 1) could play an important role in establishing a difference between ΛCDM and dynamical ΛCDM-like
models, using the growth factor f .
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5 Discussion

Assuming the probable fact that the dark energy is due to the negative pressure of an unknown type of matter, it seems
appropriate to introduce models of DE by considering the pressure as function of the scale factor. This is specially
interesting when studying cosmological scenarios with finite scale factor singularities and also to study exact solutions
with Big Rip singularities and quintessence solutions. Besides that, this approach allows to directly follow the evolution
of the main cosmological quantities in the observable redshift variable z. The model (21), leads to two different families
of DE models, depending on the parameters α and β. The first family is obtained for α > 0, β < 0 and is equivalent
to the scalar field model (22)-(23), which describes phantom DE with EoS given by (28). In these models the universe
evolves towards a Big Rip singularity at the time given by (25). As the scale factor (a → ∞), the EoS tends to
w → −1 − α/3. The second family of solutions, corresponding to the restrictions α < −3, β > 0 or −3 < α < 0,
β < 0, are free of singularities and are reproduced by the quintessence scalar field model (29) and (30). An interesting
feature of the potentials (23) and (30) is that retaining the first power in the scalar field give V ∼ const. + φ2 which
contains an exact Little Rip solution for a pressure of the form p = −ρ− const. [25]. The general model with pressure
and density given by (13) and (14) gives different finite a future singularities, depending on the chosen intervals for α
and β. Thus, the sudden singularity takes place for α > 0 and −1 < β < 0.

The restrictions α > 0, β ≤ −1 lead to type III singularities where two cases can be highlighted. The case α = 3,
β = −2 gives the pressure p = −ρ2/A and allows the integration of the equations for the equivalent scalar field
model with potential (61). The case α = 1, β = −4 gives the relationship p = −ρ4/3/A1/3 and is described by the
scalar field (71) with potential (72). This model gives a simple connection between the current value of the EoS and
the redshift at the singularity, w0 = 1/zs, which unambiguously allows to determine the time to the singularity by
observational data on w0. Note that the model (α = 1, β = −4) may differ appreciably from the cosmological constant
at low redshift, but it remains consistent with the observational data which is interesting from the observational point
of view.

The same behavior, resembling that of the ΛCDM, is observed for the examples of type IV singularities. This
multiplicity of models that present very similar behavior can be reduced by using cosmological parameters that depend
on higher order derivatives of the Hubble parameter, and can make a difference with the cosmological constant. The
simplest of them is the jerk parameter which is constant for the ΛCDM model, j = 1. In fig. 4 we show the jerk
parameter for the model (α = 3, β = −2) where the difference with the ΛCDM is more accentuated, except for the
model (α = 1, β = −4) which may differ from the cosmological constant at the level of the EoS, as shown in fig. 3. In
fig. 5 we plot the jerk parameter for the type IV singularity model (α = 3, β = 1/2). Unfortunately with the available
observational data is still difficult to bound the jerk parameter with sufficient reliability. It’s worth noting that in all
models we can move the singularity to the near future, and thus make the difference with the ΛCDM more significant.
On the other hand, the growth of matter density perturbations also provides a useful tool to test theoretical models of
DE, thereby giving an insight on the fundamental physics. An interesting criteria to catch the effect of the DE on the
growth of structure is given by the growth functions g(a) and f(a), which are characterized by the, phenomenologically
obtained, growth index γ. Figures 6 and 7 show the behavior of g and f for the models derived from (21), compared
to ΛCDM. It can be seen that for the function g, the difference with ΛCDM is more noticeable in the redshift interval
(z ∼ 0, z ∼ 1), while for f the difference is more noticeable in the interval (z ∼ 0.5, z ∼ 1.5). Thus, with the increase
of observational data in the redshift interval (z ∼ 0, z ∼ 1.5) these indicators will become more important.

Even though the behavior of the EoS for the above considered models resembles that of the ΛCDM model, at least
up to the present, however the dynamical nature of these models make a substantial difference with the cosmological
constant, even more considering that, contrary to the cosmological constant, the future outcome of these models are
singularities of the types that we have considered. It is worth mentioning that the existence of finite time singularities
in general is not a desirable feature of any cosmological model since generally it comes with various problems, including
ghosts and gradient instabilities among others. The fact that these models allow the study of these singularities is good,
but in the perspective of constructing cosmological models in which such singularities are avoided, maybe dynamically.
Taking into account quantum effects, for instance, it is possible that quantum effects in strong gravitational fields can
act against the formation of singularities.

The approach proposed in this paper uses the scale factor as the main variable to analyze the cosmological evolution
of the universe, allowing to connect directly the measurable cosmological magnitudes with the observable redshift.
Starting from the expression (13) for the pressure and using the continuity equation, there were obtained, under
appropriate restrictions on the constants α and β, several physically different models that behave like the ΛCDM
through all the evolution from the past to the present, but that make different predictions in the distant future (de
Sitter, Big Rip, sudden, type III, type IV singularities). We first considered the expansion of (13) and (14) up to the
power ( a

as
)α, but it turned out that the resulting pressure and density satisfy the continuity equation, leading to an

exact model that gives quintessence and phantom (with Big Rip) solutions. Then the finite scale factor singularities
were obtained from (13) by the appropriate restrictions on α and β. This degeneracy, in the sense that physically
different models are compatible with current observations, could be reduced as soon as the improvements in the
observations allow to measure the cosmological parameters with higher accuracy.
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