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Abstract. Graphene is one of the thinnest and hardest elastic nanoscale materials and has opened new
horizons in the field of material science for its versatile applications. The thermophoretic motion system
is under investigation which describes the propagation of solitons in substrate-supported graphene sheets.
A test function of the extended three-soliton method is used to construct the new soliton solutions. The
one-order and mixed-order solutions involving solitons and lump waves are constructed. The dynamical
behaviour of solitons under reflection, periodic distribution and interaction is depicted. Moreover, the
bright and mixed type lump wave soliton propagation and interaction are discussed.

1 Introduction

Graphene conatins a layered structure consisting of a two-dimensional honeycomb lattice. It is considered to be the
best nanoscale material possessing very promising mechanical, thermal, magnetic, optical, and electronic properties.
Graphene has opened new horizons in the field of material science and has been reported for versatile industrial
applications [1–3]. Keeping in view its tremendous applications, it is believed that new features on graphene materials
will be developed by theoretical considerations and experimentation.

Thermophoresis is an important phenomenon, in which a body immersed in a fluid experiencing a force, indepen-
dent of convection, drifts from hot to cold [4]. This phenomenon is being reported as a novel technique for manipulation
of nano particles. Materials such as graphene with good thermal conductivity and low surface friction are the best can-
didates for solid-solid transportations or manipulations. In this study, we employ nonequilibrium molecular dynamics
simulations to explore the feasibility of utilizing a thermal gradient on a large graphene substrate to control the motion
of a small graphene nanoflake on it. Recently, a lot of interests has been observed for methods to control nanoscale
transport and manipulation [5]. Wrinkle-like waves may be formed by inductivities of many ripples, chemical functional
groups, defects, or mechanical strains. In contrast to the ripples, wrinkle-like waves are directional, self-similar and
hyperboloidal strips which go through the whole single-layered graphene sheets [6,7]. To the best of our knowledge,
up to now little attention has been paid to the research of wrinkle-like soliton interactions in graphene sheets. Most
of previous works have focused on the numerical analysis of wrinkle-like soliton dynamics by molecule dynamics sim-
ulation. Hence, in this article, the exact soliton and lump wave solutions are discussed analytically. For this, a test
function of extended three soliton method is used to construct the new solitons. The one order and mixed order lump
wave solutions are also constructed. The dynamical behaviour of solitons under reflection, periodic distribution and
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interaction is discussed. The system [8] with a variable heat transmission for a greaphene thermophoretic motion reads

(ut + uux + uxxx) + [α(t) + b − Cw]ux = 0, (1)

where u is a thermophoretic moving variable, x and t are the independent variable stand for displacement and time,
respectively, whereas α and b are system thermal conductive coefficients, and Cw is a system parameter adjusted to
u. In the growing scientific world the study of soliton and lump waves has received great attention of researchers in
the field [9–16]. In recent years, many forms of lump waves and new exact solutions have been studied. The study
of linear and nonlinear partial differential equations with lump wave and new exact solutions is a very hot topic of
research [17–21]. Further, this technique leads to obtaining some new exact wave solutions. The transformation, where
u0 is an arbitrary constant and F (x, t) is a real valued function

u = u0 + 12[ lnF (x, t) ]xx, (2)

connected with the following bilinear operator [22,23],

Dm
x Dn

t

(
f(x, t) · g(x, t)

)
=

(
∂

∂x
− ∂

∂x′

)m(
∂

∂t
− ∂

∂t′

)n

f(x, t) · g(x′, t′)|t=t′,x=x′ , (3)

is given by (
DxDt + D4

x + [uo + α(t) + b − Cw]D2
x

)
F · F = 0. (4)

After simplification and using the billinear derivative operators defined by eq. (3), eq. (4) is written as

FxtF − FxFt + FxxxxF − 4FxxxFx + 3F 2
xx + [uo + α(t) + b − Cw]FxxF − [uo + α(t) + b − Cw]F 2

x = 0. (5)

In the following section, the exact soliton solutions are discussed.

2 Exact soliton solutions

For the analytical study of eq. (1), the novel test function for extended three soliton method is used in this case. Thus,
we have

F (x, t) = β1 cos ξ1 + β2 cosh ξ2 + exp(−ξ3) + β3 exp(ξ3), (6)

where ξi = kix+wit for i = 1, 2, 3 and for the amplitude of the soliton of the ith position, ki is the real parameter, the
wave speed is represented by wi and βi are taken as arbitrary constants. From eqs. (5) and (6), one can get a system
of equations after comparing the different coefficients of all the power of sin ξ1 exp(±ξ3), sin ξ1 sinh ξ2, cos ξ1 exp(±ξ3),
cos ξ1 cosh ξ2, sinh ξ2 exp(±ξ3), cosh ξ2 exp(±ξ3) and exp(0). This system of different algebraic equations is obtained
for βi, ki, wi, for (i = 1, 2, 3). After solving this system, we have the following different exact soliton solutions.

Case I. For β1 = 0, β2 = 0, ω3 = −4k3
3 − k3[uo + α(t) + b − Cw] and β3, k3 are free parameters. We put eq. (6) into

eq. (5) with eq. (2), then the bright soliton solution of eq. (1) can be obtained as

u1 = uo + 12k2
3 sech2(k3x − (4k3

3 + k3[uo + α(t) + b − Cw])t + ln
√

β3),

where ξ3 = k3x − (4k2
3 + k3[uo + α(t) + b − Cw])t, β3, k3 are arbitrary constants; K3 is the wave number of the

x-direction and the wave speed is represented as w3 = −(4k4
3 + k3[uo +α(t)+ b−Cw])t. Figures 1(a) and (b) show the

propagation of the soliton with periodic distribution against the (x, t)-axes, where the soliton waves are controlled by
coefficient α(t) using the value α(t) = cos(t). In figs. 1(c) and (d), instead, the soliton propagation under reflection
is illustrated. In this case, soliton waves are controlled by the coefficient α(t) with value α(t) = sn(t, 0.5) + 5 tanh(t).
Moreover, after reflection, solitons change their directions at t = 0.

Case II. The coefficients β2, k1, k2, k3, w1 are free parameters which are associated with the amplitudes and wave
speed of the soliton. When β1 = 0, β3 = 1

4
β2
2k2

2
k2
3

, w2 = −3k2k
2
3 − k2[uo + α(t) + b−Cw]− k3

2 and w3 = −k3(k2
3 + [uo +

α(t) + b − Cw] + 3k2
2), by putting eq. (6) into eq. (5) with eq. (2), we obtain the solution of eq. (1) as follows:

u2 = uo +
12β2 cosh(ξ2)[B(k2

2 + k2
3) + β3(k2

2 + k2
3)

2A] + 4β3k
2
3

[β2 cosh(ξ2x) + B + β3A]2
+

β2
2k2

2 + 2β2 sinh(ξ2)k2k3[B − β3A]
[β2 cosh(ξ2) + B + β3A]2

,

where A = cosh(ξ3) + sinh(ξ3) and B = cosh(ξ3) − sinh(ξ3).
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Fig. 1. 3D plots and contourplots for soliton propagation of u1(x, t) along the t-axis. Panels (a) and (b): β3 = 1.2, b = 2, k3 = 0.2,
u0 = 1, Cw = 0.5, and α(t) = cos(t). Panels (c) and (d): the same as in (a) and (b), except for α(t) = sn(t, 0.5) + 5 tanh(t).

Case III. The coefficients β1, k1, k2, k3, w2 are free parameters and β2 = 0. We also have the following values of β3,
w1 and w3:

β3 =
−1
4

β2
1k2

1(3k4
3 + 3k4

1 + 2[uo + α(t) + b − Cw][k2k3 − k2
3] + 6k2

1k
2
3)

k3(−2k2
1k2[uo + α(t) + b − Cw] + 2[uo + α(t) + b − Cw]k2

1k3 + 3k5
3 + 6k2

1k
2
3 + 3k4

1k3)
,

w1 =
−k1(2k2

1k
2
3 − k4

1 + 3k4
3 − [uo + α(t) + b − Cw][k2

3 − k2
1 − 2k2k3])

k2
3 + k2

1

,

w3 =
−(−2k2

1K
3
3 − 3k4

1k3 + k5
3 + [uo + α(t) + b − Cw][2k2

1k2 + k3
3 − k2

1k3])
k2
3 + k2

1

.

Then by putting eq. (6) into eq. (5) with eq. (2), we obtain the lump wave solution of soliton as follows:

u3 = uo + 12
(−β1 cos(ξ1)k2

1 + k2
3B + β3k

2
3A) − (−β1 sin(ξ1)k1 − k3B + β3k3A)2

β1 cos(ξ1) + B + β3A
,

where A = cosh(ξ3) + sinh(ξ3) and B = cosh(ξ3) − sinh(ξ3). Figures 2(a) and (b) show the propagation of lump wave
solitons with periodic distribution against the (x, t)-axes; in this case soliton waves are controlled by the coefficient
α(t) using the value cos(t).

Case IV. Another solution is also obtained for β2, k1, k2, k3, w1, w2, w3 as free parameters and β1 = 0 along with

β3 = −β2
2(k2w2 + 4k4

2 + [uo + α(t) + b − Cw]k2
2)

4(k3w3 + 4k4
3 + [uo + α(t) + b − Cw]k2

3)
.

Thus, the substitution of eq. (6) into eq. (5) yields another solution of eq. (2) as follows:

u4 = uo + 12

(
β2

2k2
2 + 4β3k

2
3 + 4β2β3 cosh(ξ2)(k2

2 + k2
3) cosh2(ξ3 + ln

√
β3)

[β2 cosh(ξ2) + 4β3 cosh2(ξ3 + ln
√

β3)]2

+
48β2β3k2k3 sinh(ξ2)(2 cosh2(ξ3 + ln

√
β3) − exp(ξ3))

[β2 cosh(ξ2) + 4β3 cosh2(ξ3 + ln
√

β3)]2

)
.
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Fig. 2. 3D plot and contourplot for the lump soliton solution of u3(x, t) for parameters k1 = 0.5, k2 = 0.4, k3 = 0.1, β1 = −0.2,
b = 0.2, u0 = 0.1, Cw = −4, and α(t) = cos(t).

Fig. 3. 3D plot and contourplot for the lump soliton solution of u5(x, t) for parameters w1 = 0.8, w2 = 0.7, w3 = 0.4, k1 = 0.5,
k2 = 0.1, k3 = 0.75, β1 = 0.7, b = 4, u0 = 2, Cw = −4, and α(t) = cos(t).

Case V. Another solution is obtained after substituting eq. (6) into eq. (4), which yields the solution of eq. (2). Thus,
we have

u5 = uo + 12
−β2

1k2
1 + β2

2k2
2 − β1 cos(ξ1)M

(β1 cos ξ1 + β2 cosh ξ2 + exp(−ξ3))2

+ 12
β2 cosh ξ2 exp(−ξ3)(k2

2 + k2
3) + 2β1β2k1k2 sin ξ1 sinh ξ2 − 2k3 exp(−ξ3)N

(β1 cos ξ1 + β2 cosh ξ2 + exp(−ξ3))2
,

where we suppose M = β2 cosh ξ2(k2
1 − k2

2) + exp(−ξ3)(k2
1 − k2

3), N = β1k1 sin ξ1 − β2k2 sinh ξ2 and β1, k1, k2, k3, w1,
w2, w3 are free parameters. The values of coefficients β3 = 0, and

β2 = β1

√
k1w1 − 4k4

1 + [uo + α(t) + b − Cw]k2
1

k2w2 + 4k4
2 + [uo + α(t) + b − Cw]k2

2

.

Figures 3(a) and (b) show the dynamical behaviour of the interaction of bright solitons and lump solitons. Also, they
show that interactions are not completely elastic (or inelastic) and almost show a fusion.

3 Mixed lump solutions

In this section, the one-order and mixed-order lump wave solutions are constructed. To construct the one-order lump
wave solution, we apply the following transformation to eq. (5):

F = ho + ξ2
1 + ξ2

2 + ξ2
3 , where ξi = kix + wit, for i = 1, 2, 3. (7)
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Fig. 4. 3D plot and contourplot for the solution u(x, t) of eq. (8) for parameters k2 = 0.3, k3 = 0.4, h1 = 0.9, h2 = 0.8, b = 0.5,
u0 = 2, Cw = 0.1 and α(t) = cos(t).

Putting all values in and collecting the terms with the same power of ξ2
1 , ξ2

2 , ξ2
3 , ξ1ξ2, ξ1ξ3, ξ2ξ3 and ξ0

1ξ0
2 and letting

their coefficients be zero, we get a set of algebraic equations. After solving the set of algebraic equations using the
computation for k1, k2, w1, w2, ho, one can get the following values of constants for lump wave solution:

[uo + α(t) + b − Cw] =
−w3

k3
,

ho =
6k3(k2

1 + k2
2 + k2

3)
w3(k2

3 − 1 + k2
1 + k2

2)
,

k1 = k1, k2 = k2,

w1 =
k1w3

k3
, w2 =

k2w3

k3
,

where k3, h1, h2, h3, w3, h3 �= 0, w3 �= 0 are constants. Thus the one-order lump wave solution is obtained:

u(x, t) = uo +
G1

H2
1

, (8)

where

G1 = 24
{

(k2
1 + k2

2 + k2
3)hok

2
3 + [k2

2 + k2
3 − k2

1][k1k3x + k1w3t]2

+ [k2
1 + k2

3 − k2
2][k2k3x + k2w3t]2 + k2

3[k
2
1 + k2

2 − k2
3][k3x + w3t]2

− 4k1k2[k1k3x + k1w3t][k2k3x + k2w3t] − 4k1k
2
3[k1k3x + k1w3t][k3x + w3t]

− 4k1k
2
3[k2k3x + k2w3t][k3x + w3t]

}

and
H1 = [hok

2
3 + (k1k3x + k1w3t)2 + (k3k2x + k2w3t)2 + k2

3(k3x + w3t)2].

The dynamical behaviour of this solution has been depicted in fig. 4. Figures 4(a) and (b) illustrate the propagation
of the lump soliton. This figure shows that the lump soliton wave is periodic along the t-axis but with gaps.

In order to find the mixed-order lump wave solution, we choose F in following manner:

F = λo + ξ2
1 + ξ2

2 + eξ3 , (9)

where ξi = kix+wit for i = 1, 2, 3. Moreover, constants ki and wi are to be determined later. We put this transformation
in eq. (5) and after computation work, we get the set of algebraic equations. After simplification we get different values
of the constants as follows:

λo =
4k2

1

k2
3

,

k1 = k2,

w1 = w2 = −k1(3k2
3 + [uo + α(t) + b − Cw]),

w3 = −k3(k2
3 + [uo + α(t) + b − Cw]).
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Fig. 5. 3D plot and contourplot for the mixed soliton solution of u(x, t) of eq. (10) for parameters u0 = 0.2, k1 = 1.2, k2 = 0.1,
k2 = 0.8, h3 = 0.1, w1 = 0.8, w1 = 0.7, w1 = 0.2 and α(t) = sin(t).

Thus the mixed-order lump wave solution is obtained:

u(x, t) = uo +
G2

H2
2

, (10)

where

G2 = 24(k2
1 + k2

2)(λo + eξ3) + 12k2
3e

ξ3(λo + ξ2
1 + ξ2

2) + 24(k2
2 − k2

1)(ξ
2
1 − ξ2

2) − 96k1k2ξ1ξ2 − 48k3e
ξ3(k1ξ1 + k2ξ2),

H2 = λo + ξ2
1 + ξ2

2 + eξ3 .

The dynamical behaviour of this solution is shown in fig. 5. From figs. 5(a) and (b), it can be observed that the
interaction between lump soliton and bright soliton occurs at t = 0. Also, figs. 4 and 5 show the mixed-type lump waves
propagations. This research could contribute to a deeper understanding of the nonlinear structure and propagation
behaviour for the system, and has potential applications in graphene materials.

4 Conclusion

The article studied the dynamical behaviour of a thermophoretic motion system which describes the propagation
of solitons in substrate-supported graphene sheets. The system is considered with a variable heat transmission and
thermal conductive coefficients. A test function of the extended three-soliton method was used. The results show the
dynamical behaviour of solitons under reflection, periodic distribution and interaction. Furthermore, the bright and
mixed-type lump wave soliton propagation and interaction are discussed. The study of soliton and lump wave solutions
has received great attention of the researchers in this field, due to the potential applications in graphene materials.
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