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Abstract. The fractional differential equations (FDEs) are ground-breaking tools to demonstrate the
complex-nature scientific systems in the form of non-linear behavior endorsed by the scientific commu-
nity to develop some new and accurate mathematical methods. The main objective of this paper is the
development of an extended mathematical algorithm based on the Gegenbauer wavelet method for the
fractional-order problem. The Gegenbauer wavelet operational matrix with their derivative is proposed in
our study. Some new operational matrices for the derivative of fractional order with Dirichlet boundary
condition is purposed by introducing the piecewise function. Furthermore, a successful use to analyze the
solution for the set of algebraic equations governed through the extended Gegenbauer wavelets technique
is performed. Analytical solutions of the mentioned problem are effectively obtained, and a comparative
study is presented. The outcomes are obtained via the modified Gegenbauer wavelet method by endorsing
the accuracy and effectiveness of the mentioned technique. The convergence and error bound analysis are
enclosed in our investigation. It is further verified that the algorithm is quite accurate, and an efficient
mathematical tool is used to tackle the nonlinear fractional-order complex-nature problems.

1 Introduction

Fractional Calculus (FC) and fractional differential equations (FDEs) are another ground-breaking tool which have
been recently utilized to demonstrate complex natural biological, physical or industrial systems with long-term mem-
ory and non-linear behavior. This ancient mathematical topic is carried out from a familiar dialogue between two
well-known mathematicians (Leibniz and Hospital). However, the area of FDEs is the more generalized form of arbi-
trary order derivatives [1]. Many famous mathematicians presented a novel definition to evaluate the fractional-ordered
derivatives and a detailed review is available in [2]. The comparison among fractional-order and integer-order differen-
tial equations witnesses that FDEs shows several advantages over the ordinary differential equations (ODEs). Atangana
and Baleanu [3] presented a new fractional derivative with non-local and non-singular kernel. The theory and applica-
tions are purely related to heat transfer modeling. Goufo [4] presented the applications of two-parameter derivative with
non-singular and non-local kernel in chaotic processes. The simulation of the FDEs arising in physics, system biology,
finance, hydrology, chemistry, control theory, and biochemistry is comparatively more efficient and easier as compared
to integer-order DEs. The potential application of FDEs are fractance, viscoelasticity, dynamical systems, capacitor
theory, diffusion, robotics, optimal portfolio, neurology, economics, signal processing, filtering, electro-analytical chem-
istry, viscoelastic materials, bio-engineering, electrical circuits, electronics, fluid, solid, and statistical mechanics [5–11].

Because of the wide range of applications, the role of fractional calculus in engineering, industry, and other sciences
motivates the scientific community towards the complex area of non-integer and its modeling. The FEDs with Dirichlet
boundary conditions (DBCs) are a moderate topic of research and significantly appear in many real-world problems.
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The Dirichlet boundary conditions (DBCs) are perceived as relatively natural in Eulerian structures but are found
difficult to impose by Lagrangian procedures. These conditions impose static concentration values at locations, defined
as a mass (dm) within a specific volume (dV ). In physical-chemistry the appearance of DBCs is due to the local
chemical equilibrium by mass transport fit for solubility concentration from donor phase into acceptor phase. The
worthy applications of FDEs with DBCs are fluid dynamics, biological system, heat generation, neurology, mass
transport, economics, heat transport, chemical reactions, and many other [12]. Ul Hassan [13] developed an algorithm
based on soliton theory to analyze the solution of biological population equation of fractional order. Shah et al. [14]
examined the heat transport in a 2nd-grade fluid over an oscillating perpendicular plate. A fractional Caputo-Fabrizio
derivative was reported and an exact (close form) solution of nonlinear FDE model has been presented. In reviewing
these applications, problems of the following form are studied or analyzed via different methods:

∂αu

∂xα
= F

(
x, y, u,

∂βu

∂xβ
,
∂γu

∂yγ

)
. (1)

The expression (1) is representing a fractional partial differential equation (FPDE), in which α, β and γ are the order
of fractional derivatives. The domains of these fractional orders are: α, γ > 1 and β < 1. The problem (1) is subject
to the Dirichlet boundary conditions, and the mathematical form is stated below:

{
u(x, 0) = α1(x), u(0, y) = α1(y),

u(x, 1) = β1(x), u(1, y) = β2(y),
(2)

where, the functions αi and βi are twice continuously differentiable functions on the interval L2[0, 1]. The problem (1)–
(2) mentioned above was discussed previously by Heydari et al. [15]. The study is reported for a new extension based
on Legendre wavelets and applications to examine the solution of FDEs with DBCs. Later on, the same problem was
analyzed by Rahimkhani and Ordokhani [16] by means of Bernoulli collocation-based wavelet scheme. A worthy and
application-based study of FDEs is available in the literature [17–19] and references therein.

It is obvious from the literature survey that the solutions of physical problems and the attention of the scientific
community towards the area of FDEs is fairly realistic due to its dynamic applications. The development of novel
techniques or extensions in existing methods was focused by many researchers due to the complexity of the kernel
operators of FDEs. Previously, several mathematicians adopted analytical [20–22], numerical [23–25], soliton [26–28]
based techniques to analyze the solutions of FDEs. The focus of scientists towards theoretical investigation over
experimental study is realistic because it saves cost, time and apparatus. The usage of orthogonal-basis polynomials,
wavelet and some extended wavelet algorithms have opened a new research method in various scientific domains [11,15–
19,29]. The wavelets are frequently advents in several field of engineering, biological, physical, and other sciences [15–
17,30–36]. The mainly used orthogonal basis functions are Chebyshev, Haar, Laguerre, Legendre, Laurent, Gegenbauer
polynomials, and few others [11,15–19,29–36]. The Gegenbauer-polynomial–based wavelet techniques can offer better
solution because they reduce the computational cost at a tangible level and provide a better rate of accuracy. Previously,
the usage of the Gegenbauer wavelet method (GWM) was not frequent and not considered by the researchers. Currently,
the Gegenbauer wavelet method and many modifications have been made to analyze the solution of various kinds of
mathematical problems [29, 31–36] and references therein. For some recent advanced work and its applications, the
readers are referred to [37–40] which are published to demonstrate the basic idea about FDEs.

In reviewing the previous surveys and potential applications of FC and FDEs, herein we are reporting an extension
of the Gegenbauer wavelet method to examine the solution of fractional problems with Dirichlet boundary conditions.
The purpose of the current study is to develop an algorithm to theoretically analyze a class of nonlinear physical
problems. Some new operational matrices for the derivative of fractional order with Dirichlet boundary condition
with the help of piecewise functions has been proposed. The extended Gegenbauer wavelets technique convert the
given problem into set of algebraic equations. Analytical solutions of problem (1), (2) are effectively obtained and
the outcomes are compared with existing results. The outcomes found via Gegenbauer wavelets are validating the
effectiveness and accuracy of the suggested method. The analysis of error bound and convergence is enclosed in our
investigation to prove the reliability and effectiveness of the mathematical formulation of the algorithm. It is observed
that it is an accurate and efficient tool to tackle the non-linear fractional order problems of complex nature and it can
be further extended for the major finding of non-linear problems of fractional order. Moreover, one can extend it to
analyze some physical or complex-nature problems arising in engineering and physics.

2 Preliminaries of fractional calculus

This section devoted to the brief study regarding fractional order derivative. The definition of Riemann-Liouville and
the Caputo’s derivative are used most widely.
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Definition 1. Fractional derivative of order δ(t) in the Riemann-Liouville sense [1–13] is given as follows:

RL
0 D

δ(t)
t f(t) =

1
Γ (γ − δ(t))

dγ

dtγ

∫ t

a

1
(t − s)δ(t)−γ+1

f(s)ds, for γ − 1 ≤ δ(t) < γ ∈ Z+. (3)

Definition 2. The fractional derivative of n − 1 < δ(t) < n in Caputo’s sense [1–13] is given as

C
0 D

δ(t)
t f(t) =

1
Γ (n − δ(t))

∫ t

0+

1
(t − s)δ(t)

f (n)(s)ds, n ∈ N. (4)

The operator C
0 Dt satisfies the following properties:

1. C
0 D

δ(t)
t (λf(t) + γg(t)) = λC

0 D
δ(t)
t f(t) + γC

0 D
δ(t)
t g(t),

2. C
0 D

δ(t)
t tβ =

⎧⎪⎨
⎪⎩

Γ (β + 1)
Γ (β − δ(t) + 1)

tβ−δ(t), otherwise,

0, δ ∈ N0, β < δ(t).

3. C
0 D

δ(t)
t λ = 0, (5)

where γ and λ are the constants.

Definition 3. Caputo fractional-order partial derivatives of order δ(t) > 0 of the function φ(x, t) w.r.t. its variables x
and t are defined as follows [15, 16]:

C
0 Dδ

xφ(x, t) =
1

Γ (n − δ)

∫ x

0

1
(x − s)δ−n+1

∂nφ(s, t)
∂sn

ds, n − 1 < δ ≤ n,

and
C
0 Dδ

t φ(x, t) =
1

Γ (n − δ)

∫ t

0

1
(t − r)δ−n+1

∂nφ(x, r)
∂rn

dr, n − 1 < δ ≤ n.

3 Gegenbauer wavelets and their properties

Nowadays the wavelets methods are frequently used in various scientific fields including engineering, physical and
biological sciences [15–17,30–36]. Basically the wavelets create a set of functions built up from dilation and translation
from an individual function ψ(t), also known as mother wavelet. The set of continuous wavelets are given below when
a and b are the dilation and translation parameters respectively, continuously varying:

ψa,b(t) = |a|−1/2ψ

(
t − b

a

)
; a, b ∈ R, a �= 0.

The subsequent set of discrete wavelets is obtained after restricting a and b such that a = a−k
0 , and b = nb0a

−k
0 , a0−1,

b0 > 0:
ψk,n(t) = |a|k/2ψ(ak

0t − nb0); k, n ∈ Z.

Here the function ψk,n(t) forms the wavelets basis for L2(R). When a0 = 2 and b0 = 1, then ψk,n(t) forms an
orthonormal basis. Gegenbauer wavelets defined [18,29,33,34,36] on (0, 1] are given as follows:

ψp,q(t) =

⎧⎪⎨
⎪⎩

2k/2√
Lν

q

Gν
q (2kt − p̂),

p̂ − 1
2k

≤ t ≤ p̂ + 1
2k

,

0 otherwise.
(6)

where p = 1, 2, 3, . . . , 2k−1, q = 0, 1, 2, . . . ,M − 1, p̂ = 2p − 1, Gν
q (t) signifies the q-th–order Gegenbauer polynomials.

Gegenbauer polynomials [18,29,33,34,36] can be found with the help of an explicit formula given as

Gν
q (t) =

� q
2 �∑

k=0

(−1)kΓ (q − k + ν)
k!Γ (ν)(q − 2k)!

(2t)q−2k. (7)
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The relations of the Gegenbauer polynomials [18,29,33,34,36] with other polynomials are given as:

Gν
0 = 1 = L0 = T0 = U∗

0 ,

Lq = G1/2
q , Tq =

q

2
lim
ν→0

G
1/2
q

ν
, U∗

q = G1
q, Gν

q =
Γ (2ν)q

(ν + 1/2)q
P

(ν− 1
2 ,ν− 1

2 )
q ,

where Tq(t), U∗
q (t), Pq(t) and Lq(t) are the first kind of Chebyshev, second kind of Chebyshev, Jacobi and Legendre

polynomials, respectively. The Gegenbauer polynomials Gν
q (t) are orthogonal [18,29,33,34,36] w.r.t. L2 on the interval

[−1, 1]: ∫ 1

−1

Gν
p(t)Gν

q (t)ϑν(t)dt =

{
0, for p �= q,

Lν
q , for p = q,

(8)

where ϑν(t) and Lν
q are the weight function and normalizing factor, respectively, and are given as

ϑν(t) = (1 − t2)ν−1/2,

Lν
q =

21−2νπΓ (m + 2ν)
(m + ν)Γ (m + 1)[Γ (ν)]2

.

The weight function defined in above for the Gegenbauer wavelets [18,29,33,34,36] is given below after being dilated
and translated:

ϑν
p(t) = (1 − (2kt − p̂)2)ν−1/2. (9)

Theorem 1. A function f(t) defined in [0, 1) from the L2(R)-space can be expanded with the help of the truncated
Gegenbauer wavelets ψp,q(t) [15–17,30–36] as

f(t) =
2k−1∑
p=1

M−1∑
q=0

τp,qψp,q(t), (10)

where τp,q =
∫ 1

−1
f(t)ψp,q(t)ϑν

p(t)dt. The matrix form of eq. (10) is given as

f(t) =
m̂∑

k=1

τkψk(t) = CT Ψ(t), (11)

where m̂ = 2k−1M , k can be obtained with the help of the relation k = M(p − 1) + q + 1. Moreover, C and Ψ(t) are
the matrices of order m̂ × 1 given as

C = [τ1, τ2, τ3, . . . , τm̂]T ,

Ψ(t) = [ψ1, ψ2, ψ3, . . . , ψm̂]T . (12)

4 Operational matrices of the derivatives

The detailed study about the derivation of the operational matrices for the derivative of positive integer and fractional
order is presented in this section.

Theorem 2. Suppose that the Gegenbauer polynomials is defined in [−1, 1], then the Gegenbauer polynomials must fulfill
the following relation:

d
dt

[Gν
q (t)] =

q−1∑
k=0

q+k odd

2(k + ν)Gν
k(t). (13)

Proof. Assume a function, say g(t), which is approximated by the Gegenbauer polynomials as

g(t) =
∞∑

k=0

g̃kGν
k(t). (14)
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Expression (14) takes the following form, after differentiating the above expression on both sides w.r.t. t:

g′(t) =
∞∑

k=0

g̃
(1)
k Gν

k(t). (15)

In eq. (15), g̃
(1)
k is given as

g̃
(1)
k = 2(k + ν)

∞∑
p=q+1

p+k odd

ĝp.

Now, considering that g(t) = Gν
q (t) in eq. (14), we attained ĝi = 0 for i �= q and ĝq = 1, subsequently we have,

g̃
(1)
k =

{
2(k + ν), for q + k is odd, k ≤ q − 1,

0, otherwise.

By means of the value of g̃
(1)
k in eq. (15), we get the following required expression:

d
dt

[Gν
q (t)] =

q−1∑
k=0

q+k odd

2(k + ν)Gν
k(t).

Theorem 3. The derivative of vector Ψ(t) defined in eq. (12) w.r.t. t must satisfy the following relation:

d
dt

[Ψ(t)] = DΨ(t). (16)

In eq. (16) the matrix D is the operational matrix of the derivative of m̂ × m̂ order and is given below:

D =

⎡
⎢⎢⎢⎢⎢⎢⎣

Φ 0 0 . . . 0
0 Φ 0 . . . 0
0 0 Φ . . . 0
...

...
...

. . .
...

0 0 0 . . . Φ

⎤
⎥⎥⎥⎥⎥⎥⎦

. (17)

In the above Φ is a matrix of order M × M having the (i, j)-th elements given as

Φi,j =

⎧⎪⎨
⎪⎩

2k+1(j + ν − 1)
√

(i − 1 + ν)Γ (i)Γ (j − 1 + 2ν)√
(j − 1 + ν)Γ (j)Γ (i − 1 + 2ν)

, i = 2, 3, . . . ,M, j = 1, 2, . . . , i − 1 and (i + j) odd,

0, otherwise.

Proof. First we consider the i-th element of the Gegenbauer wavelets vector Ψ(t) given as follows:

ψi(t) = ψp,q(t) =
2k/2√

Lν
q

Gν
q (2kt − p̂)χ[ p̂−1

2k , p̂+1
2k ], for i = 1, 2, . . . , m̂. (18)

In eq. (18), χ[ p̂−1
2k , p̂+1

2k ] denotes the characteristic function which is given as

χ[ p̂−1
2k , p̂+1

2k ] =

⎧⎪⎨
⎪⎩

1, t ∈
[
p̂ − 1
2k

,
p̂ + 1
2k

]
,

0, otherwise.

Now eq. (18) takes the following form, after differentiating w.r.t. t:

d
dt

[ψi(t)] =
2k/2√

Lν
q

[Gν
q (2kt − p̂)]′χ[ p̂−1

2k , p̂+1
2k ]. (19)
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The characteristic function is zero outside the interval [ p̂−1
2k , p̂+1

2k ], therefore the Gegenbauer wavelets expansion includes
such elements of Ψ(t), which are not zero in [ p̂−1

2k , p̂+1
2k ] that are ψr(t); r = M(p−1)+1,M(p−1)+2, . . . ,M(p−1)+M .

The Gegenbauer wavelets expansion takes the following form:

d
dt

[ψi(t)] =
Mp∑

r=M(p−1)+1

arψr(t).

The operational matrix D present in (17) is obtained with the help of the above expression. Moreover, [Gν
0(t)]′ = 0

yields [ψi(t)]′ = 0, for i = 1,M + 1, 2M + 1, . . ., (2k−1 − 1)M + 1. Hence the first row of matrix Φ is zero. By means
of expression (13) into (19), we get the following relation:

d
dt

[ψi(t)] =
2k/2√

Lν
q

2k+1

q−1∑
l=0

l+q odd

(l + ν)Gν
l (2kt − p̂)χ[ p̂−1

2k , p̂+1
2k ]. (20)

The required result is achieved as follows, after expanding the expression (20) into the Gegenbauer wavelets basis ψ(t):

d
dt

[ψi(t)] = 2k+1
i−1∑
j=0

i+j odd

(j + ν − 1)

√
(i − 1 + ν)Γ (i)Γ (j − 1 + 2ν)√
(j − 1 + ν)Γ (j)Γ (i − 1 + 2ν)

ψM(p−1)+j(t).

Consider Φi,j such that

Φi,j =

⎧⎪⎨
⎪⎩

2k+1(j + ν − 1)
√

(i − 1 + ν)Γ (i)Γ (j − 1 + 2ν)√
(j − 1 + ν)Γ (j)Γ (i − 1 + 2ν)

, i = 2, 3, . . . ,M, j = 1, 2, . . . , i − 1 and (i + j) odd,

0, otherwise.

For particular the values k = 2 and M = 3, we obtain the following operational matrix D:

D = 4
√

2(ν + 1)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
1 0 0 0 0 0

0 2
√

ν + 2
2ν + 1

0 0 0 0

0 0 0 0 0 0
0 0 0 1 0 0

0 0 0 0 2
√

ν + 2
2ν + 1

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Corollary.. The operational matrix D for the n-th–order derivative of vector Ψ(t), can be defined as follows with the
help of eq. (16):

dn

dtn
[Ψ(t)] = DnΨ(t).

Now to find the derivative operational matrix of fractional order we are going to introduce the following family of
piecewise functions defined on [0, 1]:

ωp,q =

⎧⎪⎨
⎪⎩

tq t ∈
[
p̂ − 1
2k

,
p̂ + 1
2k

]
,

0 otherwise.
(21)

Here in the above q = 0, 1, 2, . . . ,M − 1, p = 1, 2, 3, . . . , 2k−1. The piecewise functions given in expression (21) are not
normalized, the m-th piecewise functions can be stated as

Θ = [ω1, ω2, ω3, . . . , ωm̂]. (22)

In the above ωi = ωp,q and the index i can be obtained with the help of the relation i = M(p − 1) + q + 1.
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Theorem 4. Consider Θ(t) to be a vector present in eq. (22) and

Θ(t) = ΔΨ(t), (23)

where Δ is a matrix having order m̂ × m̂ which is stated as

Δ =

⎡
⎢⎢⎢⎢⎢⎢⎣

Δ1 0 0 . . . 0
0 Δ2 0 . . . 0
0 0 Δ3 . . . 0
...

...
...

. . .
...

0 0 0 . . . Δ2k−1

⎤
⎥⎥⎥⎥⎥⎥⎦

, (24)

and

Δp =

⎡
⎢⎢⎢⎢⎢⎢⎣

ξ(0, 0) ξ(0, 1) ξ(0, 2) . . . ξ(0,M − 1)
ξ(1, 0) ξ(1, 1) ξ(1, 2) . . . ξ(1,M − 1)
ξ(2, 0) ξ(2, 1) ξ(2, 2) . . . ξ(2,M − 1)

...
...

...
. . .

...
ξ(M − 1, 0) ξ(M − 1, 1) ξ(M − 1, 2) . . . ξ(M − 1,M − 1)

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Then the following relation must satisfied:

ξ(q, j) =
2

k
2

2(q+1)k

√
(j + ν)[Γ (ν)]2Γ (j + 1)

21−2νπ Γ (j + 2ν)

� j
2 �∑

k=0

(−1)k2j−2kΓ (j − k + ν)
Γ (ν)k!(j − 2k)!

×
q∑

l=0

(
q

l

)
p̂q−l

2
(1 − (−1)j−2k+l)Γ ( j

2 − k + l
2 + 1

2 )Γ (ν + 1
2 )

Γ (ν + j
2 − k + l

2 + 1)
. (25)

Proof. Since

Θ(t) = ΔΨ(t),

by means of theorem 1, we obtain the following relation:

ξ(q, j) =
∫ 1

−1

ωp,q(t)ψq,j(t)ϑν
p(t)dt = 2

k
2

√
(j + ν)[Γ (ν)]2Γ (j + 1)

21−2νπΓ (j + 2ν)

×
� j

2 �∑
k=0

(−1)k2j−2kΓ (j − k + ν)
Γ (ν)k!(j − 2k)!

∫ p̂+1
2k

p̂−1
2k

(2(2kt − p̂))j−2ktq(1 − (2kt − p̂)2)ν− 1
2 dt. (26)

Now, let us consider that η = 2kt − p̂ which implies that dt = 2−kdη. Therefore, consider the integrating part of
eq. (26) as

∫ p̂+1
2k

p̂−1
2k

(2(2kt − p̂))j−2ktq(1 − (2kt − p̂)2)ν− 1
2 dt =

2j−3k

2kq

∫ 1

−1

ηj−2k(η + p̂)q(1 − η2)ν− 1
2 dη

=
1

2(q+1)k

q∑
l=0

(
q

l

)
p̂q−l

2
(1 − (−1)j−2k+l)Γ ( j

2 − k + l
2 + 1

2 )Γ (ν + 1
2 )

Γ (ν + j
2 − k + l

2 + 1)
, p = 1, 2, . . . , 2k−1. (27)
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Using the expression (27) into (26), we get the required results (25). The matrix Δ for k = 2, M = 3 takes the
following form:

Δ =

√
Γ (ν + 1

2 ) 4
√

π

2
√

Γ (ν + 1)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0

1
4

√
2

8
√

1 + ν
0 0 0 0

2ν + 3
32(ν + 1)

√
2

16
√

1 + ν

√
2ν + 1

32(ν + 1)
√

2 + ν
0 0 0

0 0 0 1 0 0

0 0 0
1
4

√
2

8
√

1 + ν
0

0 0 0
18ν + 19
32(ν + 1)

3
√

2
16
√

1 + ν

√
2ν + 1

32(ν + 1)
√

2 + ν

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Lemma 1. The fractional differentiation of order δ of expression (21) is defined as follows, where (γ − 1) < δ < γ is a
positive function:

C
0 Dδ

t ωp,q(t) =

⎧⎪⎨
⎪⎩

q!
Γ (q − δ + 1)

tq−δ, q = γ, γ + 1, . . . , M − 1, t ∈
[
p̂ − 1
2k

,
p̂ + 1
2k

]
,

0, otherwise.

Proof. The proof is very simple by using eq. (5).

Lemma 2. The fractional differentiation of order δ of expression (22) in the Caputo sense is defined as follows, where
(γ − 1) < δ < γ is a positive function:

C
0 Dδ

t [Θ(t)] = PδΩ(t).

Here Pδ is a matrix of order m̂ × m̂ that is given as

Pδ = t−δ

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Qδ 0 0 . . . 0
0 Qδ 0 . . . 0
0 0 Qδ . . . 0
...

...
...

. . .
...

0 0 0 . . . Qδ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (28)

and the matrix Qδ is square having order M × M defined as

Qδ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 . . . 0 0 0 . . . 0
...

...
...

...
...

...
...

...
0 0 0 0 0 0 0 0

0 . . . 0
γ!

Γ (γ − δ + 1)
0 0 . . . 0

0 . . . . . . 0
γ!

Γ (γ − δ + 2)
0 0 0

...
...

...
...

...
. . .

...
...

0 0 . . . 0 0 0
γ!

Γ (γ − δ − 1)
0

0 0 . . . 0 0 0 0
γ!

Γ (γ − δ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Proof. The proof is very simple by means of lemma 1.



Eur. Phys. J. Plus (2019) 134: 279 Page 9 of 15

Theorem 5. The fractional differentiation of order δ of expression (12) in the Caputo sense is defined as follows, where
(γ − 1) < δ < γ is a positive function:

C
0 Dδ

t [Ψ(t)] = KδΨ(t) = (Δ−1PδΔ)Ψ(t),

where Δ and Pδ are the matrices present in expressions (24) and (28), respectively, and Kδ(t) is known as the fractional
operational matrix of order δ for the Gegenbauer wavelets.

Proof. By means of the relation (23), we obtain the following form:

Ψ(t) = Δ−1Θ(t).

Differentiating both sides of the above expression w.r.t. t of order δ and using lemma 2, we obtain the following form:

C
0 Dδ

t [Ψ(t)] = Δ−1C
0 Dδ

t Θ(t) = (Δ−1PδΔ)Ψ(t),

which completes the proof. For ν = 1, k = 2, M = 3 the matrix Kδ is given as below:

Kδ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
2

Γ (2 − δ)
1

Γ (2 − δ)
0 0 0 0

8
Γ (2−δ)

+
10

Γ (3−δ)
− 2

Γ (2−δ)
+

8
Γ (3−δ)

2
Γ (3 − δ)

0 0 0

0 0 0 0 0 0

0 0 0
6

Γ (2 − δ)
2 − δ

Γ (3 − δ)
0

0 0 0 − 72
Γ (2 − δ)

+
74

Γ (3−δ)
− 12

Γ (2−δ)
+

24
Γ (3−δ)

2
Γ (3−δ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

5 Error bound and convergence analysis

In this section, the error bound and convergence analysis of the modified Gegenbauer wavelets method are discussed
comprehensively.

Theorem 6. Consider a real-valued function g(t) ∈ CM [0, 1), such that

g(t) =
2k−1∑
p=1

gp(t).

Also suppose that Υp = span{ψp,0, ψp,1, ψp,2, . . . , ψp,M−1}, p = 1, 2, 3, . . . 2k−1. If CT
p Ψp(t) is the best approximation of

gp(t) and from Υp, here the vectors Cp and Ψp(t) are define as

Cp = [τp,0, τp,1, τp,2, . . . , τp,M−1], Ψp(t) = [ψp,0, ψp,1, ψp,2, . . . , ψp,M−1].

Then gN,M (t) = f(t) = CT Ψ(t) is the approximation of g(t), which has the error bound as given below:

‖g(t) − fN,M (t)‖ ≤
(

β

M !

) √
2

2M(k−1)
√

2M + 1
,

where β = maxt∈[0,1) |gM (t)|.

Proof. Taylor’s series of gp(t) is given as follows for p̂−1
2k ≤ t ≤ p̂+1

2k ;

ḡp(t) = gp

(
p̂ − 1
2k

)
+ g′p

(
p̂ − 1
2k

)(
t − p̂ − 1

2k

)
+ . . . + g(M−1)

p

(
p̂ − 1
2k

)
(t − p̂−1

2k )M−1

(M − 1)!
.

We know that

|gp(t) − ḡp(t)| ≤ |gM (t)|
(t − p̂−1

2k )M

M !
, t ∈

[
p̂ − 1
2k

,
p̂ + 1
2k

)
, p = 1, 2, 3, . . . , 2k−1. (29)
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Since the best approximation of gp(t) is CpΨp(t) and ḡp(t) ∈ Υ , by means of the relation (29) we get

‖gp(t) − CpΨp(t)‖ ≤ ‖gp(t) − ḡp(t)‖2
2 ≤
∫ p̂+1

2k

p̂−1
2k

|gp(t) − ḡp(t)|2dt,

≤
∫ p̂+1

2k

p̂−1
2k

⎡
⎢⎣gM (t)

(
t − p̂−1

2k

)M

M !

⎤
⎥⎦

2

dt ≤
(

β

M !

)2 ∫ p̂+1
2k

p̂−1
2k

(
t − p̂ − 1

2k

)2M

dt =
(

β

M !

)2 22M+1

22kM (2M + 1)
.

Now

‖g(t) − CT Ψ(t)‖2
2 ≤

2k−1∑
p=1

‖gp(t) − CT
p Ψp(t)‖2

2 ≤
(

β

M !

)2 22M+1

22kM (2M + 1)
. (30)

The required result is obtain after taking the square root of eq. (30). Moreover, we conclude that as k,M → ∞,
CT Ψ(t) → g(t).

Theorem 7. The approximate solution f̃(t) =
∑2k−1

p=1

∑M−1
q=0 τp,qψp,q(t) tends to the exact solution f(t) as M,k → ∞.

Proof. The inner product of f(t) and ψp,q(t) w.r.t. the ϑν
p(t) is given as

τp,q = 〈f(t), ψp,q(t)〉 =
∫ 1

0

f(t)ψp,q(t)ϑν
p(t)dt.

Assume that r̂ = 2k−1, r1 = 2d−1, ŝ = M and s1 = N . M and N denote the order of the Gegenbauer polynomials,
respectively the resolution level represented by k and d. Consider that Sν

r̂,ŝ is the partial sum of τp,qψp,q(t). Now, we
need to show that the Sν

r̂,ŝ is a Cauchy sequence in L2[0, 1). Then, we have to prove that Sν
r̂,ŝ converges to f(t) as

r̂, ŝ → ∞.

First, we consider any sum Sν
r,s of τp,qψp,q(t) with r̂ > r and ŝ > s, to show that Sν

r̂,ŝ is a Cauchy sequence:

‖Sν
r̂,ŝ − Sν

r,s‖2 =

∥∥∥∥∥
r̂∑

p=r+1

ŝ−1∑
q=s

τp,qψp,q(t)

∥∥∥∥∥
2

=

〈
r̂∑

p=r+1

ŝ−1∑
q=s

τp,qψp,q(t),
r̂∑

n=r+1

ŝ−1∑
m=s

τn,mψn,m(t)

〉
,

=
r̂∑

p=r+1

ŝ−1∑
q=s

r̂∑
n=r+1

ŝ−1∑
m=s

τp,q τ̄n,m〈ψp,q(t), ψn,m(t)〉 =
r̂∑

p=r+1

ŝ−1∑
q=s

|τp,q|2.

By means of the well-known Bessel’s inequality, we found that the above relation is convergent and therefore,

‖Sν
r̂,ŝ − Sν

r,s‖2 → 0, as ŝ, r̂, s, r → ∞,

which means that Sν
r̂,ŝ is a Cauchy sequence and Sν

r̂,ŝ converges to a function say g(t) ∈ L2[0, 1). Now we need to prove
that g(t) = f(t), for this

〈g(t) − f(t), ψp,q(t)〉 = 〈g(t), ψp,q(t)〉 − 〈f(t), ψp,q(t)〉,
= lim

r̂,ŝ→∞
〈Sν

r̂,ŝ, ψp,q(t)〉 − τp,q = τp,q − τp,q = 0.

So,
∑r̂

p=1

∑ŝ−1
q=0 τp,qψp,q(t) converges to f(t) as r̂, ŝ → ∞.

6 Proposed methodology

An operation matrix-based algorithm is designed in this section to investigate the approximate solutions of the partial
differential equations associated with Dirichlet boundary conditions. The proposed method has the following steps.

Step 1) Consider the partial differential equation as [16,17]

∂αu

∂xα
+ μ1

∂βu

∂xβ
+ μ2

∂γu

∂yγ
+ μ3u(x, y) = F (x, y), 1 < α, 0 < β, γ ≤ 1, (31)
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associated with the following Dirichlet boundary conditions:

u(x, 0) = α1(x), u(0, y) = α2(y),
u(x, 1) = β1(x), u(1, y) = β2(y). (32)

Step 2) For the solution of problem (31), (32) via the proposed method, we consider the following trial solution:

ũ(x, y) = Ψ(x)T CΨ(y). (33)

Here, C = [ap,q], is a matrix having order m̂ × m̂, which essential to be determined and Ψ is a vector present in
eq. (12). We approximate each term present in eq. (31) with the help of the operational matrices defined in sect. 4:

∂αu

∂xα
= Ψ(x)T [Kα]T CΨ(y),

∂βu

∂xβ
= Ψ(x)T [Kβ ]T CΨ(y),

∂γu

∂yγ
= Ψ(x)T CKγΨ(y). (34)

Step 3) After incorporating the expressions obtained in the last step into eq. (31), (32), we get the following matrix
equations:

Ψ(x)T
(
[Kα]T C + μ1[Kβ ]T C + μ2CKγ + μ3C

)
Ψ(y) − F (x, y) � Λ(x, y) � 0, (35)

and the Dirichlet boundary conditions take the following form:

Φ1(x) = Ψ(x)T CΨ(0) − α1(x) � 0, Φ2(y) = Ψ(0)T CΨ(y) − α2(y) � 0,

Φ3(x) = Ψ(x)T CΨ(1) − β1(x) � 0, Φ4(y) = Ψ(1)T CΨ(y) − β2(y) � 0. (36)

Step 4) To find the matrix C, we need m̂2 algebraic equations. Therefore, we collocate the matrix equations (35)–(36)
as

Λ(xi, yj) = 0, for i = j = 2, 3, 4, . . . m̂ − 1, (37)

where xi = i
m̂−1 , yj = j

m̂−1 , used as collocation points and expression (37) gives (m̂ − 2)2 algebraic equations. The
remaining 4(m̂ − 1) algebraic equations can be attained by setting expressions (36) as

Φ1(xi) = Φ3(xi) = 0, for i = 2, 3, 4, . . . , m̂ − 1,

Φ2(yi) = Φ4(yi) = 0, for i = 1, 2, 3, . . . , m̂, (38)

where xi = i
m̂ , and yj = j

m̂ .

Step 5) Finally, the required unknown matrix C is achieved after solving the m̂2 system of algebraic equations with
the aid of Maple 2015. The approximate solution of problem (1), (2) is obtained after inserting the matrix C into the
trial solution.

7 Test problems

In this section some numerical problems are taken to expose the efficiency of the Gegenbauer wavelets method. For the
numeric computation we used Maple 2015. The absolute-error, root mean square-error L2 and maximum absolute-error
L∞ of the proposed technique are stated as

|E(xi, yj)| = |u(xi, yj) − ũ(xi, yj)|,

L2 =

√√√√ 1
m̂

m̂∑
i=1

|u(xi, yi) − ũ(xi, yi)|2,

L∞ = max
1≤i≤m̂

|u(xi, yi) − ũ(xi, yi)|. (39)

Problem 1. Consider the following linear partial differential equation (31) for μ1 = μ2 = μ3 = 1 as [15, 16]

∂3/2u

∂x3/2
+

∂3/4u

∂x3/4
+

∂4/3u

∂y4/3
+ u(x, y) = F (x, y), (40)

the Dirichlet boundary conditions associated with the above problem is given as

u(x, 0) = x2, u(0, y) = y,

u(x, 1) = 1 + x2, u(1, y) = 1 + y. (41)

where F (x, y) = x2 + y + 4
√

x/π + 16x5/4Γ (3/4)
√

2/5π. The analytic solution of this problem is u(x, y) = x2 + y.
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Step 1) According to the proposed methodology, we assume the following trial solution for k = 1, M = 3 to find the
solution of the problem (40), (41):

ũ(x, y) = Ψ(x)T CΨ(y), (42)

where C = [ap,q], is a square matrix of order 3 × 3 which is essential to be determined.

Step 2) After incorporating the expressions obtained in last step into eq. (40), (41), we get the following matrix
equations:

Ψ(x)T
(
[K3/2]T C + [K3/4]T C + CK4/3 + C

)
Ψ(y) − F (x, y) � Λ(x, y) � 0, (43)

and the Dirichlet boundary conditions takes the following form:

Φ1(x) = Ψ(x)T CΨ(0) − x2 � 0, Φ2(y) = Ψ(0)T CΨ(y) − y � 0,

Φ3(x) = Ψ(x)T CΨ(1) − 1 − x2 � 0, Φ4(y) = Ψ(1)T CΨ(y) − 1 − y � 0, (44)

where K3/2, K3/4, K4/3, C, Ψ(x) and Ψ(y) are given as

K
3
2 =

4x− 3
2

√
π

⎡
⎣

0 0 0
0 0 0
5 4 1

⎤
⎦ , K

3
4 =

2
√

2x− 3
4 Γ (3/4)

5π

⎡
⎣

0 0 0
10 5 0
0 12 8

⎤
⎦ , K

4
3 =

3t−
4
3

Γ (2/3)

⎡
⎣

0 0 0
0 0 0
5 4 1

⎤
⎦ ,

C =

⎡
⎣

a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

⎤
⎦ , Ψ(x) =

2√
π

⎡
⎢⎣

1
2(2x − 1)

16x2 − 16x + 3

⎤
⎥⎦ , Ψ(y) =

2√
π

⎡
⎢⎣

1
2(2y − 1)

16y2 − 16y + 3

⎤
⎥⎦ .

Step 3) To find C, set the matrices equations (43), (44) as follows to construct a system of algebraic equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Λ

(
i

m̂ − 1
,

j

m̂ − 1

)
= 0, for i = j = 2,

Φ1

(
i

m̂

)
= Φ3

(
i

m̂

)
= 0, for i = 2,

Φ2

(
j

m̂

)
= Φ4

(
j

m̂

)
= 0, for j = 1, 2, 3.

(45)

Step 4) Finally, after solving the system of equations (45) we obtained C and the exact solution is achieved after
inserting C into trial solution as

ũ(x, y) =
4π

π

[
1 2(2x − 1) 16x2 − 16x + 3

]

⎡
⎢⎢⎢⎢⎢⎢⎣

13
64

1
16

0

1
16

0 0

1
64

0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎣

1
2(2y − 1)

16y2 − 16y + 3

⎤
⎥⎦ = x2 + y.

Table 1 is constructed for comparison purpose: L2 and L∞ errors of the modified Gegenbauer wavelets method
are zero while L2 and L∞ errors of the Legendre wavelets method [15] are non-zero. This table witnesses that the
proposed algorithm is very simple but highly effective.

Problem 2. Consider the following Laplace equation (31) for μ2 = 1, μ1 = μ3 = 0, as [15]

∂αu

∂xα
+

∂γu

∂yγ
= 0, (46)

the Dirichlet boundary conditions associated with the above problem is given as

u(x, 0) = 0, u(0, y) = 0,
u(x, 1) = 0, u(1, y) = sinh(2π) sin(2πy). (47)
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Table 1. Comparison of L2 and L∞ errors of the obtained method with the Legendre wavelets method [15] for different values
of y.

y
L2 L∞

LWM [15] Our method LWM [15] Our method

0.1 8.64 × 10−7 0 4.90 × 10−7 0

0.3 8.06 × 10−6 0 1.47 × 10−6 0

0.5 1.38 × 10−6 0 2.28 × 10−6 0

0.7 7.50 × 10−7 0 1.17 × 10−6 0

0.9 8.60 × 10−8 0 6.45 × 10−6 0

1.0 0 0 0 0

Fig. 1. Flow chart of the proposed method.

Fig. 2. (a) Approximate solutions for problem 2 for α = γ = 2. (b) Absolute error analysis for α = γ = 2.

The exact solution of problem (46), (47) is u(x, y) = sinh(2πx) sin(2πy) for α = γ = 2. Consider the trial solution
ũ(x, t) = Ψ(x)T CΨ(t) for solving the problem (46), (47). Figure 1 is constructed for k = 2, M = 5. It is observed that
our proposed method is highly effective and the graphical behavior of the absolute error shows that the suggested
algorithm converges rapidly. Figure 2 depicts the approximate solution for various values of γ when α = 2, x = 1. As γ
approaches to 2 our obtained solution matches the graph of the exact solution. Figures 3(a), (b) show the approximate
solution and absolute error for different values of γ. In short the proposed modified Gegenbauer wavelets method
well-matches the solution of such type of physical problems.
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Fig. 3. (a) Approximate solution for different values of γ. (b) Absolute error analysis for different values where the green line
shows the exact solution of γ.

Table 2. Comparison of L2 and L∞ errors of the obtained method with the Legendre wavelets method [15] for different values
of y.

y
L2 L∞

LWM [15] Our method LWM [15] Our method

0.1 5.50 × 10−4 1.54 × 10−6 8.64 × 10−7 7.65 × 10−6

0.3 9.61 × 10−5 3.58 × 10−7 1.47 × 10−6 9.65 × 10−7

0.5 9.43 × 10−6 2.14 × 10−7 2.28 × 10−6 6.35 × 10−8

0.7 5.41 × 10−6 8.56 × 10−8 1.17 × 10−6 4.10 × 10−8

0.9 6.53 × 10−7 7.65 × 10−9 6.45 × 10−6 1.11 × 10−9

1.0 0 0 0 0

Fig. 4. (a) Approximate solution for α = β = 2, γ = 1. (b) Absolute error for different values of α.

Problem 3. Consider the following non-linear fractional partial differential equation (31) for 2μ1 = −μ2 = 2μ3 = 2 [15]:

∂αu

∂xα
+

∂βu

∂xβ
− 2

∂γu

∂yγ
+ ln(u(x, y)) = F (x, y). (48)

The Dirichlet boundary conditions subject to (48) are given as

u(x, 0) = ex, u(0, y) = e−y,

u(x, 1) = ex−1, u(1, y) = e1−y. (49)

In the above F (x, y) = x − y. The analytic solution of this problem when α = γ = 2, β = 1 is u(x, y) = ex−y.
Suppose the trial solution ũ(x, t) = Ψ(x)T CΨ(t) for k = 2, M = 3. Table 2 represents the comparison of L2 and L∞
errors with the Legendre wavelets method [15]. This table evidences that the suggested method is very efficient and
compatible. Figure 4(a) represents the surface plot of the approximate solution via the proposed method. Figure 4(b)
is plotted to exhibit the absolute error for different values of α. Our obtained results are in excellent agreement with
published work and exact solution.
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8 Conclusion

The article deals with a new mathematical algorithm based on the Gegenbauer wavelet method for the fractional-
ordered problems. The major motivation of the current study is to develop a Gegenbauer wavelet operational matrix of
the derivative. Some new operational matrices for the derivative of fractional order with Dirichlet boundary condition
has been developed with the help of piecewise functions. The extended Gegenbauer wavelets technique converts the
given problem into a set of algebraic equations. Analytical solutions of the problem mentioned below are effectively
obtained and the outcomes are compared with existing results. The outcomes found via Gegenbauer wavelets are
endorsing the accuracy and effectiveness of the suggested technique. The convergence and error bound analysis is
enclosed in our investigation as an evidence for the consistency and it also supports the mathematical formulation of
the algorithm. It is observed that an accurate and efficient mathematical tool is used to tackle the non-linear fractional-
order problems of complex nature and this method can further be extended to finding the non-linear dynamical
problems.

Publisher’s Note The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional
affiliations.
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