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Abstract. In the present article, the electromechanical stability analysis of double-nanobeam-systems
(DNBS) under subtangential forces is studied based on Eringen’s nonlocal elasticity theory. The two
cantilever nanobeams are assumed parallel and coupled by an enclosing visco-Pasternak medium. Further-
more, each nanobeam is surrounded by two piezoelectric layers and the system resting on Winkler elastic
medium. The governing equations of motion and associated boundary conditions are derived by the ex-
tended Hamilton’s principle. Applying the extended Galerkin’s approach, the partial differential equations
are transformed to ordinary differential equations. The effects of the nonlocal parameter, piezoelectric
voltage, aspect ratios and surface effects on the vibration and stability characteristics of the DNBS are
explained in detail. It is observed that the critical flutter and divergence loads predicted by the classical
continuum theory have more value than the nonlocal continuum theory. In order to validate the accuracy
and applicability of the proposed model, the numerical results are confirmed by comparing the results with
those obtained in the literature.

1 Introduction

Divergence instability is the only kind of instability that can occur in a conservative system. However, in non-
conservative systems both divergence and flutter instabilities are possible. Beams and columns are slender structural
components that affect these kinds of instabilities, so, a cantilever beam under the action of subtangential forces is a
simple example of non-conservative system, which received a great deal of attention among researchers and is exten-
sively used in many field of study like aerospace structures, tall building and aeronautical engineering applications.
From the above-mentioned statements, Zuo and Schreyer [1] studied the divergence and flutter instabilities of beams
and plates subjected to a subtangential force. Langthjem and Sugiyama [2,3] analysed the optimization problem of
damped and undamped cantilever columns under a subtangential force. A mathematical modeling along with the
integral equation formulation was utilized to investigate the flutter and divergence instability of beams by Elfelsoufi
and Azrar [4]. Şimşek and Cansız [5] focused on the dynamic responses of an elastically connected double-functionally
graded beam systems (DFGBS) with elastically restrained edges subjected to a moving harmonic load with a constant
speed. Mao and Wattanasakulpong [6] employed the Adomian modified decomposition method (AMDM) to investigate
the free vibration and stability analysis of a cantilever double-beam system, which is interconnected by a Winkler-type
elastic layer under a subtangential force. The dynamic responses of a double-beam system under compressive axial
load, which are caused by arbitrarily distributed continuous loads have been discussed by Zhang et al. [7]. Moreover,
the conservative and non-conservative instability of structures can be found in the work of refs. [8–18].

Since the classical continuum theory is not able to describe the dependence of the mechanical behavior of mi-
cro/nanoscale structures on the size effect, the extended methods become essential to predict the nanoscale effects.
According to the nonlocal elasticity theory, the stress state at a reference point is a function of the strain states
of all points in the domain [19–26]. Hence, due to the recent developments in science and technology, nano/micro
structures have held wide applications in nanoelectromechanical systems (NEMS), microelectromechanical systems
(MEMS), mass sensors and nanoactuators. Based on the nonlocal elasticity theory, the bending, buckling and vibra-
tion of various beams have been analyzed by Reddy [27]. Bahaadini and Hosseini [28] described the effects of nonlocal
parameter, structural damping coefficients, Knudsen number and mass ratio on the vibrational frequency and flutter
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boundary of viscoelastic cantilever carbon nanotubes (CNTs)-conveying fluid. In another work, they investigated the
effects of nonlocal parameter, magnetic field, elastic foundation and boundary conditions on the divergence and flutter
boundaries of fluid conveying CNTs [28]. Wang and Liew [29] investigated the vibration and buckling of CNTs based
on Eringen’s nonlocal elasticity theory. Generally, knowing about the dynamic behavior of complex systems might be
useful for the development of technology and engineering science. The double-nanobeam systems (DNBS) are one such
complex-nanobeam systems, which consist of two one-dimensional nanobeams linked by a coupling medium like Van
der Waals forces, elastic medium and so on. It can be noted that one of the most important applications of a DNBS
is nano-optomechanical systems (NOMS). In recent years, using nonlocal continuum mechanics, the instability [30,
31], vibration [32–35], vibration and biaxial buckling [36,37], wave propagation [38], dynamics response [39–42] and
buckling behavior [43,44] of nanostructures systems have been investigated. Ciekot and Kukla [45] employed Green’s
function method to study the transverse vibration of DNBS. Recently, Hosseini et al. [46] investigated the forced
vibration of double piezoelectric micro-pipe conveying fluid under a moving load.

The surface effects are intrinsically size-dependent while the surface-to-volume ratio increases with decreasing
size to the nano-scale. Paying attention to the surface energy and/or surface stresses, the influence of surface effects
on the mechanical behavior of nanoscale components and nanomaterials can be investigated [47,48]. These authors
analyzed the parameters of surface effects including surface elasticity, surface stress and surface density on the natural
frequencies of nano-beams. The influence of surface effect on the vibration behaviors of carbon nanotubes under initial
stress was studied by Chen et al. [50]. Zhang et al. [51] analyzed the vibration of viscoelastic nanobeams to study the
effects of nonlocal parameter, viscoelastic constants, surface elasticity and residual surface tension.

The applications of new structures including complex- nanobeam systems, which are bonded with piezoelectric
actuators, have been widely considered by many researchers in different fields of science and engineering [52]. The
piezoelectric materials, as a major group of smart structures, produce an electric field if a deformation is applied to
them, and undergo deformation by applying an electric field. So, due to their superior properties, they have received
tremendous attention from the research community [53]. In this regard, based on the Timoshenko beam model and
the piezoelectricity theory, Zhi and Liying [54] investigated the influence of the flexoelectric effect on the static
bending and free vibration of a simply supported nanobeam. Hosseini et al. [55] performed a nonlocal piezoelectric
carbon-nanotube–conveying fluid to investigate the nonlocal parameter, piezoelectric voltage and surface effects
on the divergence and flutter boundaries of the system. Fereidoon et al. [56] examined the nonlinear vibration of
viscoelastic embedded-DWCNTs integrated with piezoelectric layers conveying viscous fluid by considering surface
effects. In the context of the nonlocal piezoelectricity theory, the influences of nonlocal parameter, visco-Pasternak
constants, voltage, Kelvin-Voigt and Maxwell coefficients on the vibration behavior of double viscoelastic piezoelectric
nanobeam systems was examined by Ghorbanpour-Arani et al. [57].

According to the best of our knowledge, no studies have been accomplished on the divergence and flutter boundaries
of cantilever smart coupled DNBS embedded in an elastic medium subjected to a subtangential force. The governing
equations of motion based on Eringen’s nonlocal and Gurtin-Murdoch continuum elasticity theories have been derived.
Using the extended Galerkin’s approach, the governing equations are changed into a class of eigenvalue equations and
solved numerically. The main objective of this study is to predict the influences of nonlocal and non-conservative
parameters, piezoelectric voltage, different values of subtangential forces, and surface effects on the critical flutter and
divergence loads and the natural frequencies of DNBS.

2 Governing equations

Consider the free vibration of smart DNBS subjected to a subtangential force, as shown in fig. 1. The DNBS resting
on the visco-Pasternak foundation, which is simulated by the spring constant of Winkler-type (kw), the shear constant
of Pasternak-type (kG) and damping coefficient (c). Both nanobeams have the same length L, width b, thickness hb,
density ρb and Young’s modulus Eb. Here, hp, ρp and Ep are the thickness, density and Young’s modulus of the
piezoelectric layers, respectively. Also, the surface properties of two inner and outer surface layers are considered to
have Lamé surface constants λs and μs, mass density ρs and surface residual tension τs.

2.1 Theoretical formulation

With respect to the classical elasticity theory, the nonlocal elasticity theory incorporates the small-scale effect to
consider the influence of the strains of distant points on the reference points x. As a result, the nonlocal elastic-
ity theory assumes that the stress at a reference point is related to the strains at the all points of the domain.
The differential form of the nonlocal elasticity theory is indicated by Eringen and Edelen [58] as

(
1 − μ2∇2

)
σkl = τkl, (1)

where μ stands for a parameter that represents small-size effects, ∇2 is the Laplacian operator, σkl is the nonlocal stress
tensor and τkl stands for the classical stress tensor. Also, the extended form of nonlocal equations for a piezoelectric
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Fig. 1. Non-conservative DNBS actuated by piezoelectric layers and subject to subtangential forces considering the surface
effect.

material can be written in differential forms as [59]
(
1 − μ2∇2

)
σkl = �klmnεmn − emklEm, (2)

(
1 − μ2∇2

)
Di = eiklεkl + εikEk, (3)

where Di is the electric displacement, Ei is the electric field, �klmn, emkl and εik denote elastic constants, piezoelectric
constants and dielectric constants, respectively.

Based on the Euler-Bernoulli beam theory, the displacement field and strain relation can be considered as follows
when the deformation of mid-plane is negligible:

u1 = −z
∂wi(x, t)

∂x
, u2 = 0, u3 = wi(x, t), (4)

εxx = −z
∂2wi(x, t)

∂x2
, (5a)

εp
xx = −z

∂2wi(x, t)
∂x2

, (5b)

where the transverse displacement of the i-th nano-beam (i = 1, 2) is denoted as wi(x, t) and εxx is the only nonzero
strain of the Euler-Bernoulli beam theory. Of particular interest is the fact that nanostructure materials have higher
surface-to-volume ratio than the conventional ones. Therefore, surface properties can have significant influence on
the structural mechanic behavior. Based on Gurtin-Murdoch theory, the stress-strain relations for the surface of i-th
nanobeams are given as follows [60,20]:

σs
xx = (λs + 2μs) εxx + τ s, (6)

σs
xz = τ s ∂wi

∂x
. (7)
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In these relations the superscript s is utilized to denote the relevant quantities of surface. It is noted that the stress
component σb

zz is the smallest stress among σb
xx and σb

xz in the classical beam theories. Thus, in order to simplify,
σb

zz can be neglected (σb
zz = 0). But this assumption is not effective to satisfy the surface conditions considered in the

Gurtin-Murdoch theory. To tackle this problem, it is assumed that the stress component σb
zz varies linearly through

the beam thickness and satisfies the balance conditions on the surfaces [61]. So, σb
zz can be written as follows:

σb
zz =

(∂σs
xz

∂x − ρs
∂2wi

∂t2 )|at top − (∂σs
xz

∂x − ρs
∂2wi

∂t2 )|at bottom

2
+

(∂σs
xz

∂x − ρs
∂2wi

∂t2 )|at top + (∂σs
xz

∂x − ρs
∂2wi

∂t2 )|at bottom

hb
z. (8)

Using the strain-displacement relations, we can express the nonzero components of stress for the bulk of the i-th
nanobeams in terms of displacement as follows:

σb
xx = Eεxx + vσb

zz = −zE
∂2wi

∂x2
+

2νzτs

h

(
τ s ∂2wi

∂x2
− ρs ∂2wi

∂t2

)
, (9a)

σp
xx = c11ε

p
xx − e31Ez, (9b)

Dz = e31ε
p
xx + ε33Ez, (9c)

where v is the Poisson ratio. The internal strain energy of the i-th nano-beam (U) and the strain energy stored in the
piezoelectric layers (Ua), because of the axial stress generated by the applied voltage V are expressed as

U = Ub + Up =
1
2

[∫ l

0

∫

Ab

σb
ijεijdAbdx +

(∫

S+
σs

ijεijdS+ +
∫

S−
σs

ijεijdS−
)

+
∫ l

0

∫

Ap

(σp
ijεij − DzEz)dApdx

]

,

(10a)

Ua =
1
2

∫ l

0

pz

(
∂wi

∂x

)2

dx, (10b)

where, Ub is the strain energy in a deflected nanobeam incorporating surface effects based on the continuum surface
elasticity theory, and Up is the strain energy in a deflected piezoelectric layer. Also Ez and pz are defined as

Ez =
V

hp
and pz = −2be31V. (11)

Here pz is the axial force resulted by the applied piezoelectric voltage [62]. Also, σb
ij and σp

ij are the stresses in the
nanobeams and piezoelectric layers, respectively. The electric displacement and electric field in the piezoelectric layers
are denoted as Dz and Ez, respectively. Furthermore, V denotes the value of applied voltage to the piezoelectric layers.

The variations of strain energy are obtained by replacing eq. (5) into eq. (10), as follows:

δU =
∫ l

0

[
−

(
M b

x + Mp
x + Ms

x

) ∂2δwi

∂x2
+ Qs

x

∂δwi

∂x

]
dx, (12)

where, Qs
x is resultant axial force in the x-axis direction due to the existence of surface effects. M b

x, Mp
x and Ms

x are
the resultant bending moments which are defined as

M b
x =

∫

Ab

σb
xxz dAb, Mp

x =
∫

Ap

σp
xxz dAp, Ms

x =
∫

S

σS
xxz ds, Qs

x =
∫

S

σS
xzds. (13)

Using eqs. (2), (3), (6), (7), and (9) along with eqs. (5) and (13) we have

M b
x − μ2 ∂2M b

x

∂x2
= (−EIb + A11)

∂2wi

∂x2
− A22

∂2wi

∂t2
, where A11 =

2νIb

hb
τs, A22 =

2νIb

hb
ρs, (14a)

Mp
x − μ2 ∂2Mp

x

∂x2
= −C11Ip

∂2wi

∂x2
− e31QEz, (14b)

Ms
x − μ2 ∂2Ms

x

∂x2
= −D11

∂2wi

∂x2
, where D11 = (λs + 2μs)

(
Abhb

2
+

h3
b

6

)
, (14c)

Qs
x − μ2 ∂2Qs

x

∂x2
= 2bτs ∂wi

∂x
, (14d)

Dz − μ2 ∂2Dz

∂x2
= e31ε

p
xx + ε33Ez. (14e)
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In the relation (14), Q =
∫

Ap
z dAp and Ip = hphbb(hb

2 +hp) are defined as the first and second moment of cross-sectional
area of piezoelectric layers with respect to the neutral axis of the nano-beam, respectively. Also Ib =

∫
Ab

z2dAb is the
second moment of cross-sectional area of the nano-beam. Moreover, the variation form of the kinetic energy of the i-th
nanobeam incorporating the surface effects and piezoelectric layers can be written as

δT = −
∫ l

0

(ρbAb + 2bρs + ρpAp)
(

∂2wi

∂t2

)
δwidx. (15)

In addition, the potential energy Ec which includes the work done by the conservative component of the subtangential
force and the virtual work δWnc done by the non-conservative component of the force acting at the free end of the
i-th nano-beam are considered as follows:

Ec = −1
2

∫ l

0

pi

(
∂wi

∂x

)2

dx, (16a)

δWnc = −piη
∂wi(l)

∂x
δwi(l). (16b)

The parameter η is characterized as a non-conservative parameter. Different values of η can describe different instability
behavior. Here η = 0 is termed as the pure compressive axial load, whereas the pure follower load is applied when η = 1,
and both conservative axial and non-conservative follower loads act for the values 0 < η < 1. Also, the variational
form of the external work of the Winkler foundation between two nanobeams and the surrounding elastic medium of
the i-th nanobeam can be written as

δV = −
∫ l

0

qδwidx, (17a)

q = kw (2wi − wj) − kG

(
∂2wi

∂x2
− ∂2wj

∂x2

)
+ cd

(
∂wi

∂t
− ∂wj

∂t

)
, (i, j = 1, 2, j �= i). (17b)

Using the extended Hamilton’s variational principle, the equations of motion of coupled DNBS tunable with piezo-
electric layers and under the action of a subtangential force which is surrounded by means of an elastic medium can
be expressed by substituting eqs. (12), (15), (16) and (17) into the following relation:

∫ t2

t1

(δT − δU − δUa − δEc + δV + δWnc) dt = 0. (18)

Therefore, the governing equation of the i-th nanobeam is obtained as

(ρA)eq

∂2wi

∂t2
− ∂2Meq

∂x2
+ (pi − pz − 2bτs)

∂2wi

∂x2
+ q = 0. (19a)

Also, the boundary conditions extracted from the extended Hamilton’s principle for the i-th cantilevered nanobeam
by considering surface effects and piezoelectric layers subjected to a subtangential force is written as

− Meq
∂δwi

∂x

∣
∣
∣
∣

l

0

= 0, (19b)

(
∂Meq

∂x
+ (pz + 2bτs − pi(1 − η))

∂wi

∂x

)
δwi

∣
∣
∣
∣

l

0

= 0, (19c)

where (ρA)eq = ρbAb + 2bρs + ρpAp is the effective inertia of DNBS. Also, the effective moment of the system, Meq,
can be defined as

Meq = μ2

[
(ρA)eq

∂2wi

∂t2
+ (pi − pz − 2bτs)

∂2wi

∂x2
+ kw(2wi − wj) − kG

(
∂2wi

∂x2
− ∂2wj

∂x2

)

+cd

(
∂wi

∂t
− ∂wj

∂t

)]
− (cI)eq

∂2wi

∂x2
− A22

∂2wi

∂t2
, (20)

where
(cI)eq = EIb − A11 + D11 + c11Ip. (21)
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Substituting eq. (20) into eqs. (19), the final form of the governing equation of motion and the associated boundary
conditions of the i-th nanobeam can be obtained. Hereafter, to simplify the analysis, the following non-dimensional
quantities are defined:

X =
x

L
, Wi =

wi

L
, T =

t

L2

(
EIb

ρbAb

)1/2

, β =
μ

L
, Deq =

(cI)eqL
3

EIb
,

Aeq =
(ρA)eq

ρbAb

, A33 =
2bτsL2

EIb
, a22 =

A22

ρbAbL
2

, Pi =
piL

2

EIb
,

Pz =
pzL

2

EIb
, Kw =

kwL4

EIb
, KG =

kGL2

EIb
, Cd =

cdL
2

(EIbρbAb)1/2
. (22)

Substituting the above parameters in the governing equations and the corresponding boundary conditions leads to
their non-dimensional forms as below:

{
Deq

∂4Wi

∂X4
+ (Pi − Pz − A33)

∂2Wi

∂X2
+ Aeq

∂2Wi

∂T 2
+ a22

∂4Wi

∂X2∂T 2
+ Kw(2Wi − Wj) − KG

(
∂2Wi

∂X2
− ∂2Wj

∂X2

)

+ Cd

(
∂Wi

∂T
− ∂Wj

∂T

)
− β2

[
Aeq

∂4Wi

∂X2∂T 2
+ (Pi − Pz − A33)

∂4Wi

∂X4
+ Kw

(
2
∂2Wi

∂X2
− ∂2Wj

∂X2

)

−KG

(
∂4Wi

∂X4
− ∂4Wj

∂X4

)
+Cd

(
∂3Wi

∂X2∂T
− ∂3Wj

∂X2∂T

)]}
δWi = 0, (23)

and the non-dimensional boundary conditions come as follows:
{

Deq
∂2Wi

∂X2
− a22

∂2Wi

∂T 2
− β2

[
Aeq

∂2Wi

∂T 2
+ (Pi − Pz − A33)

∂2Wi

∂X2
+ Kw(2Wi − Wj) − KG

(
∂2Wi

∂X2
− ∂2Wj

∂X2

)

+Cd

(
∂Wi

∂T
− ∂Wj

∂T

)}
∂δWi

∂X

∣
∣
∣
∣

1

0

= 0, (24a)
{
−Deq

∂3Wi

∂X3
+ a22

∂3Wi

∂X∂T 2
+ β2

[
Aeq

∂3Wi

∂X∂T 2
+ (Pi − Pz − A33)

∂3Wi

∂X3
+ Kw

(
2
∂Wi

∂X
− ∂Wj

∂X

)

−KG

(
∂3Wi

∂X3
− ∂3Wj

∂X3

)
+ Cd

(
∂2Wi

∂X∂T
− ∂2Wj

∂X∂T

)]
+ (Pz + A33 − Pi(1 − η))

∂Wi

∂X

}
δWi

∣
∣
∣
∣

1

0

= 0. (24b)

3 Solution procedures

3.1 Galerkin approach

The extended Galerkin method is employed to solve the nonlocal governing equations and boundary conditions, and to
obtain the eigenvalues of coupled DNBS. The Galerkin method is applied to replace the partial differential equations
of motion and related boundary conditions by a finite set of coupled ordinary differential equations. This method
considers unknown displacements to the form of the linear combination of trial functions that satisfy convenient
boundary conditions. According to this method, the function Wi(X,T ) is expressed as follows for the first and second
nanobeam:

Wi(X,T ) =
Nri∑

ri=1

ϕri
(X)qri

(T ), (25)

where ϕri
is the orthogonal spatial mode functions satisfying the boundary conditions and, qri

is the generalized
coordinates, Nri

denotes the number of modes. Considering a cantilever DNBS, one can use the following family of
the orthogonal functions:

ϕri
(X) = cosh (λri

X) − cos (λri
X) − σri

(sinh (λri
X) − sin (λri

X)) ,

σri
=

sinh(λri
) − sin(λri

)
cosh(λri

) + cos(λri
)

. (26)



Eur. Phys. J. Plus (2019) 134: 320 Page 7 of 15

Inserting the displacement fields, eqs. (25), into the governing equations and boundary conditions, eqs. (23) and (24),
then taking advantage of the orthogonal properties in the required integrations, the following results are obtained:

[
M11 0
0 M22

]
q̈(T ) +

[
C11 C12

C21 C22

]
q̇(T ) +

[
K11 K12

K21 K22

]
q(T ) = 0. (27)

Also, eq. (27) can be written in compact form as

M q̈(T ) + C q̇(T ) + Kq(T ) = 0, (28)

where q(T ) denotes the overall vector of the generalized coordinates and the dot notation refers to the derivative with
respect to time. Also, M , C and K are the mass, damping and stiffness matrices, respectively.

3.2 Stability analysis

For the stability analysis, eq. (28) is defined in the first order state-space form

Ż(T ) = DZ(T ), (29)

where the state vector Z(T ) is define as

Z(T ) =
{

q(T )
q̇(T )

}
(30)

and the state matrix [D] has the form as below:

D =
[

0 I

−M−1K −M−1C

]
, (31)

where [I] is the unitary matrix. The solution of eq. (29) has an exponential form that can be written as

Z = Z exp(Ωt). (32)

Substituting eqs. (32) into (29) describes a standard eigenvalue problem in the form

(D − ΩI)Z = 0, (33)

in which Ω is the eigenvalue and Z presents its corresponding eigenvector. It is obvious from the results that the
eigenvalues are generally complex quantities, i.e., Ω = Re(Ω) + i Im(Ω). As an essential point, it can be noted that
the system decaying rate is corresponding to the real part of the eigenvalue while the imaginary part predicts the
frequency of the system. To have a nontrivial solution for eq. (33), the determinant of the coefficient matrix vanishes,
namely

det(D − ΩI) = 0. (34)

The expansion of the determinant of above equation provides the system characteristic equation. Due to the sign of
the real and imaginary parts of complex eigenvalues, the stability and type of instability regions are known [63,64].

4 Results and discussion

In the following section, some numerical results are presented to examine the effects of nonlocal parameter, applied
various piezoelectric voltage, surface effects, aspect ratios of length to thickness and the different values of subtangential
forces on the vibration and stability behavior of two coupled clamped-free DNBS. The solution of this non-conservative
problem via the extended Galerkin approach is considered by eight modes. The geometry, bulk and surface elastic
material properties of the system are given in table 1 [65]. Furthermore, the geometric and material constant of PZT-4
piezoelectric actuators are shown in table 1. Moreover, the results are plotted for DNBS with a surrounding elastic
medium which is simulated by visco-Pasternak foundation with the following dimensionless properties: Kw = 20,
KG = 1 and Cd = 0.5.
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Table 1. The geometric parameters and material surface properties of DNBS integrated with piezoelectric layers [65].

E (GPa) ρ (kg/m3) L (nm) b (nm) h (nm) ε33 (N/m2K) e31 (C/m2)

Nanobeam 1 68.5 2700 200 20 20 – –

Nanobeam 2 68.5 2700 200 20 20 – –

Piezoelectric (PZT-4) 78.6 7500 200 20 0.4 1.3 × 10−8 −9.29

Surface properties (Al)

λs (N/m) μs (N/m), ρs (kg/m2) τs (N/m)

6.842 −0.376 5.46 × 10−7 0.910

Fig. 2. The validation of divergence and flutter boundaries of DNBS without considering piezoelectric layers and surface effects.

4.1 Validation of the model

In order to justify the validity and applicability of the aforementioned model, the flutter and divergence instabil-
ity boundaries of cantilever beams are obtained in the absence of the piezoelectric layers, nonlocal parameter and
surface effects. The accuracy and applicability of this model is compared with the available results by Mao and
Wattanasakulpong [6] in fig. 2. As shown, the current model provides an excellent agreement between the obtained
results and the previous result, so the suggested formulation provides a reliable explanation to predict the flutter
and divergence instabilities of DNBS. Figure 2 shows the critical instability loads of flutter and divergence versus
the non-conservative parameter which is considered in the range 0 ≤ η ≤ 1. As can be seen, by increasing the non-
conservative parameter, two types of instability can be observed. The first one is the divergence instability, which is
found to occur in the range 0 ≤ η < 0.5, while the second one, called the flutter instability, is found in the range
0.5 < η ≤ 1. Also, a change in the instability type is observable around η = 0.5 by means of a sudden jump in
the critical load. Furthermore, for both instability types, critical loads increase as the non-conservative parameter, η,
increases.

Figures 3(a) and (b) depict the variations of the imaginary and real parts of the two lowest eigenfrequencies with
respect to the follower force, respectively. To validate the suggested model, the numerical results of single nanobeam
system are presented in fig. 3. It can be demonstrated that the results agree well with those of Kazemi-Lari et
al. [66] in classical state (β = 0). However, by increasing the nonlocal parameter β, there is a difference between the
results of the present model and those that have been reported by Kazemi-Lari et al. [66]. This difference is due to
considering the non-classical boundary conditions in the present method, so the predicted values of frequency and
critical coupled mode flutter load by this method are higher than those of ref. [66] which considers classical boundary
conditions.
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Fig. 3. The validation of two lowest eigenfrequencies of the single nanobeam without considering piezoelectric layers and surface
effects: (a) imaginary part, and (b) real part.

Fig. 4. The effect of the nonlocal parameter on the flutter and divergence boundaries of DNBS without considering piezoelectric
layers and surface effects.

4.2 Divergence and flutter analysis

A cantilever DNBS subjected to subtangential forces can undergo different types of instability which strongly depend
on the non-conservative parameter. Flutter instability can arise if the non-conservative parameter is considered as
η = 1, however, for purely conservative systems (η = 0) the instability can only occur by divergence.

4.2.1 The effect of nonlocal parameter

As the small-scale effects play an outstanding role in nanostructures, the classical local continuum theory has not suf-
ficient capacity to describe the mechanical behavior of nanosized materials. Hence, the nonlocal continuum mechanics
theory contains information about size dependence and small-scale effects in the elastic solutions of nanostructures, and
considers long-range inter-atomic interaction and internal length scale in the construction of constitutive equations.
In order to investigate the small-scale effect, fig. 4 is plotted for critical instability forces versus the non-conservative
parameter with P2

P1
= 1, by considering visco-Pasternak foundation and different nonlocal parameters β = 0, 0.05, 0.1.

Also, the surface effects parameters and piezoelectric voltage are set to zero. In this figure, solid lines are employed
to characterize the critical values forces for flutter instability of DNBS, whereas dashed lines are used to indicate
those for divergence instability. It is observed that the results of nonlocal elasticity theory predict less flutter and
divergence critical loads than the classical continuum theory (β = 0). Thus, for flutter and divergence instabilities, the
critical instability loads decrease when the nonlocal parameter increases. This states that the interaction force between
nano-beams atoms reduces along with the increment of the nonlocal parameter, and makes DNBS more flexible than
the classical one and consequently, the stability of the system decreases. However, this reduction of the critical flutter
instability is much greater than that of the critical divergence instability. Moreover, it can be determined that the
small-scale effects cannot be ignored especially for higher nonlocal parameter where the difference between local and
nonlocal results is more important. In addition, it can be seen from fig. 4 that depending on the nonlocal parameter,
an abrupt jump occurs around 0.33 < η < 0.35 from divergence to flutter instability.
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Fig. 5. The effect of applied voltage on the flutter and divergence boundaries of DNBS for β = 0.1 and without considering
surface effects.

Fig. 6. (a) The effect of the surface elastic constant on the flutter and divergence boundaries of DNBS for β = 0.1, V = 0.1 V
and τs = ρs = 0. (b) The effect of the surface residual stress on the flutter and divergence boundaries of DNBS for β = 0.1,
V = 0.1 V and λs + 2μs = ρs = 0.

4.2.2 The effect of different piezoelectric voltage

Figure 5 illustrates the critical load as a function of non-conservative parameter for L/hb = 10, β = 0.1, P2
P1

= 1 and
different values of applied voltage without considering surface effects. It is evident that by increasing the piezoelectric
voltage from negative to positive, both the divergence and flutter loads increase. Hence, the positive piezoelectric
voltage tends to make the DNBS stiffer. For the case of positive piezoelectric voltage, a tensile axial force is induced
in the double nanobeams which results in an enhancement in the bending stiffness of the structure. In contrast, when
a negative piezoelectric voltage is applied in the direction of the double-nanobeams thickness, a compressive axial
force is induced in the DNBS. This reduces the nano-beam bending stiffness. Furthermore, it can be observed that
applying the different values of voltage has an important influence on the transition point of divergence to flutter
boundaries, in which at higher applied voltages, the critical load jump occurs at lower non-conservative parameter
with a decrease in value of jump height between critical divergence and flutter loads. For instance, at a negative applied
voltage V = −0.1V, a jump in critical load is observed from P cr

1 = 8.99 to 13.39 near η = 0.4 while for V = 0.1V
jumping occurs at η = 0.31 from P cr

1 = 14.71 to 16.42.

4.2.3 The effect of surface layers constant

The effects of surface elastic constants, λs+2μs, on the critical loads of DNBS are illustrated in fig. 6(a) with considering
ρs = τs = 0, β = 0.1, V = 0.1V and P2

P1
= 1. It is observed that unlike the negative surface elastic constant, which

makes the system softer, the positive one predicts more critical flutter and divergence loads. Therefore, the system may
be stiffer or softer depending on the sign of the surface elastic constant. Also, it can be seen that the surface elastic
constants have considerable influence on the flutter boundary, but not on the divergence boundary. It is evident that
the abrupt jump from divergence to flutter boundary takes place at the same value of the non-conservative parameter



Eur. Phys. J. Plus (2019) 134: 320 Page 11 of 15

Fig. 7. The effect of the aspect ratio on the flutter and divergence boundaries of DNBS considering surface effects for β = 0.1
and V = 0.1 V.

Fig. 8. The effects of subtangential force changes on the flutter and divergence boundaries of DNBS considering surface effects
for β = 0.1 and V = 0.1 V.

(η = 0.3) for different surface elastic constants. Figure 6(b) indicates the influence of surface residual stress on the
critical instability loads for variations of the non-conservative parameter. The values of λs +2μs and ρs are set to zero,
and β = 0.1, V = 0.1V and P2

P1
= 1 are considered. From fig. 6(b), it can be seen that a positive residual surface stress

(τs > 0) results in a positive distributed force or the existence of tensile stress in the structure, which increases the
critical load of the DNBS (vice versa for τs < 0). So that, it is found that the change of values of the surface residual
stress from negative to positive, increases the flutter and divergence loads and makes the system more stable. Also, it can
be noted that the critical instability loads are strongly affected by the surface residual stress. As can be seen, the abrupt
jump from divergence to flutter boundary takes place at different values of the non-conservative parameter. Although
it is not shown here, the surface density does not have significant influence on the divergence and flutter boundaries.

4.2.4 The effect of the aspect ratio

To illustrate the effect of the aspect ratio, L/hb, the stability map of the DNBS in the η-P cr
1 plane is plotted in fig. 7.

The critical loads are calculated for the three different values of the aspect ratio, L/hb = 10, 15 and 20 with considering
surface effects, visco-Pasternak foundation, β = 0.1 and V = 0.1V. It can be observed that the divergence and flutter
loads increase as the aspect ratio increases. So that, a large value of the aspect ratio predicts more critical loads and
consequently, increases the stability of the system. In addition, the results show that increasing the aspect ratio does
not have a significant influence on the transition point position, in other words, the jump point is approximately in
the range 0.34 < η < 0.36.

4.2.5 The effect of the variation of the subtangential force

Taking the surface effects into consideration, the effect of the subtangential force on the critical load of DNBS with
respect to the non-conservative parameter is shown in fig. 8. In this case, the nonlocal parameter and piezoelectric
voltage are assumed as β = 0.1 and V = 0.1V, respectively. It is obvious that by increasing the subtangential force
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Table 2. The effect of the nonlocal parameter on the two lowest eigenfrequencies of DNBS without considering surface effects,
P2 = P1 = 5 and V = 0 V.

β
η = 0 η = 0.3 η = 0.6 η = 1

Ω1 Ω2 Ω1 Ω2 Ω1 Ω2 Ω1 Ω2

0 0.0000+ −0.4945+ 0.0000+ −0.4945+ 0.0000+ −0.4945+ 0.0000+ −0.4945+

2.2039i 6.3292i 4.1237i 7.2575i 5.1905i 7.9449i 6.1258i 8.6257i

0.05 0.0000+ −0.4981+ 0.0000+ −0.4963+ 0.0000+ −0.4946+ 0.0000+ −0.4927+

2.1330i 6.3039i 4.1115i 7.2456i 5.1882i 7.9325i 6.1222i 8.6037i

0.1 0.0000+ −0.5116+ 0.0000+ −0.5048+ 0.0000+ −0.4984+ 0.0000+ −0.4911+

1.8915i 6.2218i 4.0775i 7.2137i 5.1851i 7.9041i 6.1132i 8.5506i

Table 3. The effect of the piezoelectric voltage on the two lowest eigenfrequencies of DNBS considering surface effects, β = 0.1
P2 = P1 = 2 and L/hb = 10.

V (V )
η = 0 η = 0.3 η = 0.6 η = 1

Ω1 Ω2 Ω1 Ω2 Ω1 Ω2 Ω1 Ω2

−0.2 0.0000+ −0.50206+ 0.0000+ −0.49938+ 0.0000+ −0.4968+ 0.0000+ −0.4935+

3.5814i 6.9646i 4.1664i 7.2909i 4.6382i 7.5766i 5.1505i 7.9066i

−0.1 0.0000+ −0.50208+ 0.0000+ −0.4995+ 0.0000+ −0.4970+ 0.0000+ −0.4939+

4.6917i 7.6764i 5.0778i 7.9238i 5.4104i 8.1448i 5.7903i 8.4052i

0 0.0000+ −0.5017+ 0.0000+ −0.49934+ 0.0000+ −0.4970+ 0.0000+ −0.4940+

5.4862i 8.2516i 5.7726i 8.4475i 6.0272i 8.6252i 6.3265i 8.8376i

0.1 0.0000+ −0.5013+ 0.0000+ −0.4990+ 0.0000+ −0.4968+ 0.0000+ −0.4941+

6.1192i 8.7387i 6.3451i 8.8989i 6.5499i 9.0458i 6.7952i 9.2235i

0.2 0.0000+ −0.5008+ 0.0000+ −0.4987+ 0.0000+ −0.4966+ 0.0000+ −0.49414+

6.6539i 9.1651i 6.8393i 9.2994i 7.0097i 9.4235i 7.2165i 9.5753i

ratio, P2
P1

, from 0.5 to 2, the critical divergence and flutter loads decrease. Generally, the stability region of the system
reduces as P2

P1
increases. In other words, increasing P2

P1
causes to apply more loads to the DNBS and results in reducing

the stiffness of the system and the stable area. Depending on the values of the non-conservative parameters, flutter can
be caused by the coalescence of different structural modes. For instance, when P2

P1
= 0.5, in the range 0.25 < η < 0.52,

the flutter instability of the cantilevered DNBS will occur when the imaginary parts of the first and second eigenvalue
modes coalesce. Increasing the non-conservative parameter η, flutter instability occurs due to the coalescence of the
second and third eigenvalue modes. Therefore, a jump is observed around η = 0.52.

4.3 Frequency analysis

The vibrational frequencies of DNBS under the action of subtangential forces are investigated in this subsection.
Here, the influences of non-conservative and nonlocal parameters, piezoelectric layer’s voltage, surface parameters and
aspect ratio on the two lowest frequencies Ω1 and Ω2 are examined in detail. The effect of different nonlocal parameters
without considering the piezoelectric voltage and surface effects, and P1 = P2 = 5 on the real and imaginary parts
of the first two eigenfrequencies is presented in table 2. It can be seen that by increasing the value of the nonlocal
parameter, both the first and second natural frequencies decrease for each value of the non-conservative parameter.

The results in table 3 are reported in terms of the first two lowest eigenfrequencies for the various values of the
applied voltage and non-conservative parameter for β = 0.1, P1 = P2 = 2 and L/hb = 10 with considering surface
effects. It is shown that increasing the piezoelectric layers voltage from V = −0.2V to 0.2V (same as η increased)
leads to an increase in the first and second modes of the frequencies. It can be concluded from table 3, that the positive
voltage increases the stiffness of the system.
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Table 4. The effect of the surface residual stress on the two lowest eigenfrequencies of DNBS considering β = 0.1, V = 0.1 V,
ρs = μs = λs = 0, P2 = P1 = 2 and L/hb = 10.

τs

η = 0 η = 0.5 η = 1

Ω1 Ω2 Ω1 Ω2 Ω1 Ω2

−0.6 0.0000+ −0.5123+ 0.0000+ −0.5079+ 0.0000+ −0.5039+

5.0312i 7.9614i 5.5865i 8.3300i 6.0334i 8.6390i

0 0.0000+ −0.5121+ 0.0000+ −0.5079+ 0.0000+ −0.5040+

5.5248i 8.3249i 5.9885i 8.6433i 6.3720i 8.9141i

0.6 0.0000+ −0.5118+ 0.0000+ −0.5077+ 0.0000+ −0.5040+

5.9512i 8.6510i 6.3478i 8.9297i 6.6826i 9.1696i

Table 5. The effect of surface elastic constant on the two lowest eigenfrequencies of DNBS considering β = 0.1, V = 0.1 V,
ρs = τs = 0, P2 = P1 = 2 and L/hb = 10.

λs + 2μs

η = 0 η = 0.5 η = 1

Ω1 Ω2 Ω1 Ω2 Ω1 Ω2

−5 0.0000+ −0.5124+ 0.0000+ −0.5081+ 0.0000+ −0.5041+

5.4950i 8.3060i 5.9609i 8.6251i 6.3447i 8.8956i

0 0.0000+ −0.5121+ 0.0000+ −0.5079+ 0.0000+ −0.5040+

5.5248i 8.3249i 5.9885i 8.6433i 6.3720i 8.9141i

5 0.0000+ −0.5118+ 0.0000+ −0.5077+ 0.0000+ −0.5039+

5.5545i 8.3439i 6.0160i 8.6615i 6.3991i 8.9326i

Table 6. The effect of the aspect ratio on the two lowest eigenfrequencies of DNBS considering surface effects, β = 0.1,
V = 0.1 V and P2 = P1 = 2.

L
hb

η = 0 η = 0.5 η = 1

Ω1 Ω2 Ω1 Ω2 Ω1 Ω2

10 0.0000+ −0.5013+ 0.0000+ −0.4975+ 0.0000+ −0.4941+

6.1192i 8.7387i 6.4838i 8.9982i 6.7952i 9.2235i

20 0.0000+ −0.4984+ 0.0000+ −0.4958+ 0.0000+ −0.4934+

8.5985i 10.7911i 8.7539i 10.9060i 8.8967i 11.0115i

50 0.0000+ −0.4931+ 0.0000+ −0.4923+ 0.0000+ −0.4916+

16.7687i 18.2434i 6.7983i 18.2603i 16.8273i 18.2769i

The non-dimensional natural frequencies corresponding to the two lowest eigenfrequencies of DNBS are presented
in tables 4 and 5 with respect to surface residual stress and surface elastic constants, respectively. Here, β = 0.1,
V = 0.1V and L/hb = 10 are assumed. The data would seem to suggest that applying negative/positive surface
residual stress decreases/increases the natural eigenfrequencies. The results of table 5 show that the eigenfrequencies
of the DNBS increase, as λs + 2μs increases. The influence of the value of the aspect ratio on the vibrational behavior
of DNBS is indicated in table 6 with considering surface effects. Here the results are obtained for the value β = 0.1,
V = 0.1V. As can be seen from table 6, by increasing the value of the aspect ratio, the first two natural frequencies
of the system increase.
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5 Conclusion

On the basis of Eringen’s nonlocal and Gurtin-Murdoch continuum elasticity theories, the general equations for
free vibration of the cantilever DNBS subjected to subtangential forces in conjunction with a surrounding elastic
medium were computed. Using the extended Hamilton’s principle, the nonlocal governing equations of motion and
corresponding boundary conditions were derived. The extended Galerkin method is employed to obtain the numerical
solutions and the eigenvalues of the model. The vibration characteristics of coupled DNBS were explained and the
effects of nonlocal and non-conservative parameters, piezoelectric layer’s voltage, surface effects and aspect ratio on the
divergence and flutter boundaries of the system are comprehensively described. According to the obtained results, the
stability of system decreases as the nonlocal parameter increases. Additionally, the results indicated that by increasing
the applied voltage and surface effects from negative to positive values, the critical divergence and flutter loads increase.
Also, the increasing of the aspect ratio and force factor ratio resulted in the increment and decrement of the critical
loads, respectively. Hence, a set of physical and design parameters are important factors in affecting the eigenvalues
and instability boundaries of the DNBS.

Publisher’s Note The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional
affiliations.
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