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Abstract. In this article, we consider the generalized polytropic equation of state with anisotropic matter
distribution in isotropic coordinates. The static spherically symmetric configuration is considered for the
development of mathematical models of compact objects incorporating the radiation factor. We have
examined 12 different stars with the developed models. Analysis of the models shows that they are well-
behaved and physically viable.

1 Introduction

In general relativity, polytropes refer to the solution of the Lane-Emden equation. They are greatly responsible for
the formation and demonstration of the cosmic structure of compact objects and the internal structure of relativistic
stars. By using the laws of thermodynamics, Chandrasekhar [1] developed the theory of polytropes in the Newtonian
framework. Tooper [2] established the fundamental polytropic structure for spherically symmetric compressible fluids.
He also derived the equation of equilibrium for polytropes. Kovetz [3] corrected some irregularities in Chandrasekhar’s
theory of rotating polytropes. Komatsu et al. [4] presented a numerical technique to develop the structure of rapidly
rotating and uniformly rotating polytropes for general relativistic stars. Polytropes can be used to describe compact
objects with stable gravitational fields very effectively. The polytropic equation of state, in which the pressure is
defined as a function of density, Lane [5] was the first to use them in the modeling of the stellar structures of
relativistic objects. Later, Herrera et al. [6] discussed conformally flat spherically symmetric fluid distributions with
the help of the polytropic equation of state.

In order to study the formation of stars, the discussion of the anionotropy factor is of considerable significance. The
anisotropic fluid is used to illustrate the behavior of pressure components of compact objects. Anisotropic spherically
symmetric fluids are widely studied in general relativity. Bower and Liang [7] analyzed different aspects of the local
anisotropic fluid distribution with the help of the generalized hydrostatic equilibrium equation for relativistic objects.
Cosenza et al. [8] constructed a general structure for solving Einstein’s equations by considering anisotropic fluid
inner distribution of compact objects. Herrera and Santos [9] investigated the significance of local anisotropy in a self-
gravitating system, considering Newtonian and general relativistic domains. Herrera et al. [10] conducted a detailed
study on the evolution of spherically symmetric self-gravitating dissipative fluid utilizing anisotropic stresses. Herrera
and Barreto [11] established a general polytropic model with anisotropic pressure for Newtonian stars. Reddy et
al. [12] applied the perturbation technique to examine the effects of anisotropic pressure and heat dissipation on
gravitational collapse of compact objects. Azam et al. [13–15] investigated the stability of charged self-gravitating
compact objects using the local density perturbation by utilizing linear and quadratic equations of state. Maurya et
al. [16] discussed exact solutions of Einstein-Maxwell field equations with the anisotropic configuration of spherically
symmetric relativistic stars.

In the evolution of stars, it has been observed that a large amount of radiations are emitted, through neutri-
nos and quantized energy (photons); these radiations per unit volume are termed as radiation density. Diffusion and
free-streaming approximation are the two categories of radiating density. The diffusion limit can only exist when the
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particles’ mean free path is less then the original length of the object. Here a heat flow type vector defines dissipation.
The free-streaming approximation is related to the discharge of null fluid. Herrera and Santos [10,17] discussed the
shear-free condition for self-gravitating relativistic stars using both the diffusion and the free streaming dissipation.
Kutschera [18] showed that gravitational waves are monopoles for astrophysical sources. Prisco et al. [19] physically
analyzed the gravitational collapse of charged dissipative spherically symmetric compact objects. Dissipation is con-
sidered with both free-streaming and diffusion approximations. According to Herrera et al. [20] with a non-dissipative
fluid, if the system involves zero expansion condition, then the energy density should be inhomogeneous. Herrera et
al. [21–24] then discussed the structure, properties, stability and discovered some features defining the irregularities
in the matter distribution of spherical stars which are self-gravitating. For such objects with different matter config-
urations, Sharif with his coworkers [25–27] unfolded new aspects which are used to describe inhomogeneous radiation
density distribution.

The generalized polytropic equation of state is widely used in the modeling of relativistic stars. Chavanis [28,29],
by merging the linear equation of state (pr = β0ρ0) and the polytropic equation of state (pr = β1ρ

1+ 1
n ), constructed

the generalized polytropic equation of state, pr = β0ρ+β1ρ
1+ 1

n , where ρ is the density, pr denotes the radial pressure,
and n is the polytropic index. Freitas and Goncalves [30] analyzed the evolution of this universe at constant density
using the generalized polytropic equation of state and considered different aspects of the universe. Azam et al. [31,32]
developed general structures of charge compact stars which are spherical and cylindrical in nature under conformally
flat condition having anisotropic matter distributions.

In mathematical modeling, stability analysis of compact objects is significantly important. Bondi [33] established
hydrostatic equilibrium equations for the analysis of the stability of compact objects. In the past, different scholars
have considered Schwarzschild coordinates as well as isotropic coordinates for the development of their models. To
discuss the stability of stellar structures, the range 1 < n < 5 for polytropic index is used. Pandey et al. [34], while
illustrating the structure and properties of compact objects, presented the range 1

2 < n < 3. Herrera et al. [35]
introduced the cracking technique, using local density perturbation for the stability of system. Different values of n
were considered by Takisa and Maharaj [36] to acquire exact solutions for the Einstein Maxwell field equations. To
address the instability problem, Azam et al. [37–39] used the local density perturbation technique by evaluating the
cracking points for numerous compact stars in spherical and cylindrical symmetry. Ngubelanga and Maharaj [40] used
different values of the polytropic index for generating new classes of polytropic models, along with obtaining masses of
several stars. Mardan et al. [41] investigated the gravitational behavior of compact objects by new classes of polytropic
models for n = 1, 1

2 , 1
3 , which are physically well behaved.

A pulsar is a stellar object which emits radiations. They are also termed as highly magnetized neutron stars (stars
composed of highly dense matter). After the discovery of pulsars in 1968 by Hewish et al. [42], many discoveries were
made, related to the physical properties of pulsars. Demorest et al. [43] predicted the mass of PSR J1614-2230 by
using the Shapiro Delay at National Radio Astronomy Observatory. The most stable and brightest millisecond pulsar
PSR J0437-4715 was discovered by Johnston et al. [44] in the Parkes southern radio pulsar survey. Recently, Ozel et
al. [45] predicted its mass and radii. A rapidly spinning neutron star which emits X-rays in a strong magnetic field
is known as an X-ray binary pulsar. Rawls et al. [46] redefined the mass of six eclipsing X-ray binary pulsars, Vela
X-1, 4U 1538-52, SMC X-1, LMC X-4, Cen X-3, and Her X-1, with the help of the numerical Roche lobe geometry.
These are the high-mass X-ray binaries. The low-mass X-ray binaries 4U 1608-52, EXO 1785-248, Sax J1808.4-3658,
4U 1820-30, obtained from spectroscopic phenomena, are discussed in [45,47].

The main theme for this work is to establish mathematical models with anisotropic matter distribution by consid-
ering isotropic coordinates. The models are constructed by using generalized polytropic equation of state. In sect. 2,
we discuss the Einstein field equation with anisotropic fluid in isotropic coordinates and consider the generalized
polytropic equation of state. In sect. 3, the quadratic form of the gravitational potential is used for the purpose of
integration, which leads us to new classes of polytropes. Section 4 is about formulating models for the generalized
polytropic equation of state by applying different polytropic indices. In sect. 5, we discuss the properties of the solution
by polytropic index n = 1, and the analysis of the developed model is presented graphically.

2 Einstein field equations

To generate a model for generalized polytropic equation of state, a general static spherically symmetric line element
in isotropic coordinates (xa) = (t, r, θ, φ) is considered as

ds2 = −A2(r)dt2 + B2(r)[dr2 + r2(dθ2 + sin2 θ dφ2)], (1)

with A(r) and B(r) being the metric quantities, also known as gravitational potentials. Considering the anisotropic
fluid, we have the energy momentum tensor of the form [35]

Tαβ = (ρ + p⊥)vαvβ + p⊥gαβ + (pr − p⊥)χαχβ + qαvβ + vαqβ + ε�α�β . (2)
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The quantities used in the above equation are defined as

vα = A−1δα
0 , qα = qB−1δα

1 , lα = A−1δα
0 + B−1δα

1 , χα = B−1δα
1 . (3)

In eq. (2), ρ is the energy density, p⊥ is the tangential pressure, pr is the radial pressure, ε is the radiation density,
qα is the heat flux, vα is the four-velocity of the fluid, χα is the unit four-vector along the radial direction, �α is the
radial null four-vector, q is a function of r, and qα = qχα. The Einstein field equations, from eq. (1) to eq. (2), take
the form

8π(ρ + ε) = − 1
B2

[
2
B′′

B
− B′

B

(
B′

B
− 4

r

)]
, (4)

8π(pr + ε) = 2
A′

A

(
B′

B3
+

1
r

1
B2

)
+

B′

B3

(
B′

B
+

2
r

)
, (5)

8πp⊥ = 2
1

B2

[
B′′

B
− B′

B

(
B′

B
− 1

r

)]
+

1
B2

(
A′′

A
+

1
r

A′

A

)
. (6)

It is worthwhile to mention here that matter configuration is anisotropic together with the contribution of heat flux
and radiation density. However the onset of field equations clearly shows that heat flux has no or negligible impact on
static gravitational source.

In the above system of eqs. (4)–(6) we have six variables (ρ, pr, p⊥, ε, A(r), B(r)) with three independent equations.
For convenience, we use the following transformation [41]:

x ≡ r2, M ≡ B−1, F ≡ MA. (7)

By using eq. (7), the Einstein field equations (4)–(6) transform to the following set of equation:

8π(ρ + ε) = 4[2xMMxx − 3(xMx − M)Mx], (8)

8π(pr + ε) = 4M(M − 2xMx)
Fx

F
− 4(2M − 3xMx)Mx, (9)

8πp⊥ = 4xM2 Fxx

F
+ 4M(M − 2xMx)

Fx

F
− 4(2M − 3xMx)Mx − 8xMMxx. (10)

The subscript x represents derivative w.r.t. the x-coordinate. Here, the Newton gravitational constant and speed of
light are assumed to be unity. Now, we consider the generalized polytropic equation of state [31]

pr = β0ρ + β1ρ
(1+ 1

n ), (11)

with polytropic index n. Now using eq. (11), in the system eq. (8)–(10) we get

8πρ = 4[2xMMxx − 3(xMx − M)Mx] − 8πε, (12)

pr = β0ρ + β1ρ
1+ 1

n , (13)

Δ = 4xM2 Fxx

F
+ 4M(M − 2xMx)

Fx

F
− 4(2M − 3xMx)Mx

− 8xMMxx − 4β0(2xMMxx − 3(xMxx − M)Mx − 2πε)

− 8πβ1

(
2xMMxx − 3(xMx − M)Mx − 2πε

2π

)1+ 1
n

, (14)

Fx

F
=

β0

M(M − 2xMx)
(2xMMxx − 3(xMx − M)Mx − 2πε)

+
2πβ1

M(M − 2xMx)

(
2xMMxx − 3(xMx − M)Mx − 2πε

2π

)1+ 1
n

+
2πε

M(M − 2xMx)
+

(2M − 3xMx)Mx

M(M − 2xMx)
, (15)

where Δ = 8π(p⊥ − pr) is the measure of anisotropy, which is attractive in nature if Δ < 0, repulsive if Δ > 0, and
vanishes if Δ = 0. Equations (12)–(15) are nonlinear for M and F . We write the gravitational mass function as [36]

m(x) = 2π
∫ x

0

1√
z

[
zρ(z)

]
dz, (16)

where z is an integration variable.
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3 Integration

The system of eqs. (12)–(15) has five unknown variables (ρ,Δ, ε,M,F ) with four equations so, to make the system
viable, we need another equation. Thus the gravitational potential M is introduced as

M = kx2 + gx + h, (17)

which is quadratic in nature, where k, g and h are constants. If we consider M to be linear, then it will result in
elimination of variables, so we choose the quadratic form as in [41]. Using the above relation equation (17) in eq. (12),
we get energy density as

8πρ = −8k2x3 + 4kgx2 + 40khx + 12gh − 8πε, (18)

and the radial pressure from eq. (13) as

pr = β0

[
−8k2x3 + 4kgx2 + 40khx + 12gh − 8πε

8π

]
+ β1

[
−8k2x3 + 4kgx2 + 40khx + 12gh − 8πε

8π

]1+ 1
n

. (19)

Hence eq. (15) becomes

Fx

F
=

β0

(kx2 + gx + h)(−3kx2 − gx + h)
(
− 2k2x3 + kgx2 + 10khx + 3gh − 2πε

)

+
2πβ1

(kx2 + gx + h)(−3kx2 − gx + h)

(
−2k2x3 + kgx2 + 10khx + 3gh − 2πε

2π

)1+ 1
n

+
2πε

(kx2 + gx + h)(−3kx2 − gx + h)
+

(−4kx2 − gx + 2h)(2kx + g)
(kx2 + gx + h)(−3kx2 − gx + h)

. (20)

The above equation cannot be easily integrated due to the presence of the polytropic index n. Hence to get exact
models we assign specific different values to n.

4 Polytropic models

In this section, we introduce constant values for the polytropic index n from [41], as n = 1, n = 1
2 , n = 1

3 to integrate
eq. (20) and obtain exact polytropic models w.r.t. coordinate r, since it is difficult to integrate F for the polytropic
index n.

4.1 Polytropic index n = 1

We take n = 1, in eq. (20), and get

F (r) = C(kr4 + gr2 + h)I(−3kr4 − gr2 + h)J [Y (r)]L[Z(r)]W eN(r), (21)

where C is a constant of integration and we consider

I = − 1
8πhk(−g2 + 4hk)

[
2πk(6g2h − g3h − 24h2k + 4gh2k + 2πgε) − 4πk(−3g2h + 12h2k + gπε)β0

− (9g5h − 72g3h2k − 24g2hkπε + 96h2k2πε + 4gk(36h3k + π2ε2))β1

]
, (22)

J =
1

648πhk(−g2 + 4hk)
[
54πk(2g2h − 3g3h − 8h2k + 6g(2h2k + πε)) − 108πk(−7g2h + 28h2k + 3gπε)β0

+ (25g5h + 824g3h2k − 1512g2hkπε + 6048h2k2πε + 12gk(−308h3k + 27π2ε2))β1

]
, (23)

Y =

[
g +

√
−g2 + 4hk + 2kr2

−g +
√

−g2 + 4hk − 2kr2

]
, (24)
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L = − 1

8πhk
√
−g2 + 4hk

[
2kπ(2gh + g2h − 2πε) + 4kπ2εβ0 + (9g4h − 72g2h2k + 144h3k2 − 4kπ2ε2)β1

]
, (25)

Z =

[
g +

√
−g2 − 12hk + 6kr2

−g +
√

−g2 − 12hk − 6kr2

]
, (26)

W =
1

648hkπ
√

−g2 − 12hk(−g2 + 4hk)

[
− 54kπ(−10g3h + 3g4h + 40h2gk + 72hkπε − 6g2(2h2k + πε))

+ 108kπ(2g3h − 8gh2k − 3g2πε + 36hkπε)β0 + (−25g6h + 484g4h2k − 432g3hkπε + 1728gh2k2πε

− 144hk2(196h3k + 27π2ε2) + 12g2k(460h3k + 27π2ε2))β1

]
, (27)

N = −r2(109g2 − 42gkr2 + 12k(−32h + kr4))β1

54π
. (28)

The degree of anisotropy becomes

Δ =
4J(−g − 6kr2)(kr4 + gr2 + h)

(−3kr4 − gr2 + h)2

[
2I(g + 2kr2)(−3kr4 − gr2 + h) + (J − 1)(−g − 6kr2)

+ r2(−3kr4 − gr2 + h)(kr4 + gr2 + h) − −6
J(−g − 6kr2)

]
+ 8r2I(g + 2kr2)(kr4 + gr2 + h)

[
L

Y ′

Y
+ W

Z ′

Z

]

×
(

N ′2L
Y ′

Y
+ 2W

Z ′

Z

)
+ 4r2(kr4 + gr2 + h)

[
L

Y ′′

Y
+ W

Z ′′

Z

]

+ 4r2(kr4 + gr2 + h)2
[
L(L − 1)

(
Y ′

Y

)2

+ W (W − 1)
(

Z ′

Z

)2]

+ 4r2(−3kr4 − gr2 + h)
[
L

Y ′

Y
+ W

Z ′

Z

]
+ 4r2(kr4 + gr2 + h)

×
[
N ′′ + 2LW (kr4 + gr2 + h)

Y ′Z ′

Y Z
+

(
I(g + 2kr2) + L(kr4 + gr2 + h)

Y ′

Y

+ W (kr4 + gr2 + h)
Z ′

Z
+ (kr4 + gr2 + h)N ′

)
N ′

]
+ 4I(2kr2 + g)

×
[
r2(I − 1)(2kr2 + g) + (−3kr4 − gr2 + h)

]
+ 4(kr4 + gr2 + h)

[
2kr2I + J(−g − 6kr2)

]
+ 4(kr4 + gr2 + h)(−3kr4 − gr2 + h)N ′ − 4(2kr2 + g)(−4kr4 − gr2 + h) − 16kr2(kr4 + gr2 + h)

− 4β0

[
4kr2(kr4 + gr2 + h) − 3(2kr2 + g)(kr4 − h) − 2πε

]
− 2β1

π

[
4kr2(kr4 + gr2 + h) − 3(2kr2 + g)(kr4 − h) − 2πε

]2
. (29)

The line element in eq. (1), for n = 1, takes the form

ds2 = −C(kr4 + br2 + h)2I(−3kr4 − br2 + h)2(J−1)
[
Y (r)

]2L[
Z(r)

]2W
e2N(r)dt2

+ (−3kr4 − br2 + h)−2
[
dr2 + r2(dθ2 + sin2 θ dφ2)

]
. (30)

This solution is categorized as pr = β0ρ + β1ρ
2.

4.2 Polytropic index n = 1
2

We take n = 1
2 , in eq. (20), and get

F (r) = C(kr4 + gr2 + h)I(−3kr4 − gr2 + h)J [Y (r)]L[Z(r)]W eN(r), (31)

where C is a constant of integration and we consider

I =
1

16hk2(−g2 + 4hk)π2

[
4k2π2(−6g2h + g3h + 24h2k − 2g(2h2k + πε)) + 8k2π2(−3g2h + 12h2k + gπε)β0

+ (−27g8h + 378g6h2k − 1944g4h3k2 + 54g5hkπε − 432g3h2k2πε + 72g2hk2(60h3k − π2ε2)

+ 288h2k3(−12h3k + π2ε2) + 8gk2πε(108h3k + π2ε2))β1

]
, (32)
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J =− 1
34992hk2(−g2+4hk)π2

[
2916k2π2(2g2h−3g3h−8h2k+6g(2h2k+πε))−5832k2π2(−7g2h+28h2k+3gπε)β0

+ (125g8h + 1150g6h2k + 41784g4h3k2 − 4050g5hkπε − 133488g3h2k2πε + 1944gk2πε(308h3k − 9π2ε2)

+ 1512g2hk2(68h3k + 81π2ε2) − 6048h2k3(196h3k + 81π2ε2))β1

]
, (33)

Y =

[
g +

√
−g2 + 4hk + 2kr2

−g +
√

−g2 + 4hk − 2kr2

]
, (34)

L = − 1

16π2hk2
√

−g2 + 4hk

[
4k2π2(2gh + g2h − 2πε) + 8k2π3εβ0

+ (27g7h − 324g5h2k + 1296g3h3k2 − 1728gh4k3 − (54g4hk − 432g2h2k2 + 864h3k3)πε + 8k2π3ε3)β1

]
, (35)

Z =

[
g +

√
−g2 − 12hk + 6kr2

−g +
√

−g2 − 12hk − 6kr2

]
, (36)

W =
−1

34992hk2π2
√

−g2 − 12hk(−g2 + 4hk)

[
2916k2π2(−10g3h + 3g4h

+ 40h2gk + 72hkπε − 6g2(2h2k + πε)) − 5832k2π2(2g3h − 8gh2k − 3g2πε

+ 36hkπε)β0 + (125g9h + 1900g7h2k − 71664g5h3k2 − 4050g6hkπε

+ 78408g4h2k2πε − 23328hk3πε(196h3k + 9π2ε2) + 1944g2k2πε(460h3k

+ 9π2ε2) + 1728gh2k3(1960h3k + 81π2ε2) − 44g3hk2(4156h3k + 243π2ε2))β1

]
, (37)

N =
1

29160kπ2

[
r2(−97790g5 + 48270g4kr2 + 30g3k(29737h − 1031kr4)

+ 135g2k(−2966hkr2 + 151k2r6 + 1308πε) − 72gk2(35100h2 − 2995hkr4

+ 153k2r8 + 945r2πε) + 540k2(1544h2kr2 + 6kr4(k2r6 + 6πε) − 3h(47k2r6 + 384πε)))β1

]
. (38)

The degree of anisotropy becomes

Δ =
4J(−g − 6kr2)(kr4 + gr2 + h)

(−3kr4 − gr2 + h)2

[
2I(g + 2kr2)(−3kr4 − gr2 + h) + (J − 1)(−g − 6kr2)

+ r2(−3kr4 − gr2 + h)(kr4 + gr2 + h) − −6
J(−g − 6kr2)

]
+ 8r2I(g + 2kr2)(kr4 + gr2 + h)

[
L

Y ′

Y
+ W

Z ′

Z

]

×
(

N ′2L
Y ′

Y
+ 2W

Z ′

Z

)
+ 4r2(kr4 + gr2 + h)

[
L

Y ′′

Y
+ W

Z ′′

Z

]
+ 4r2(kr4 + gr2 + h)2

×
[
L(L − 1)

(
Y ′

Y

)2

+ W (W − 1)
(

Z ′

Z

)2]
+ 4r2(−3kr4 − gr2 + h)

[
L

Y ′

Y
+ W

Z ′

Z

]
+ 4r2(kr4 + gr2 + h)

×
[
N ′′ + 2LW (kr4 + gr2 + h)

Y ′Z ′

Y Z
+

(
I(g + 2kr2) + L(kr4 + gr2 + h)

Y ′

Y
+ W (kr4 + gr2 + h)

Z ′

Z

+ (kr4 + gr2 + h)N ′
)

N ′
]

+ 4I(2kr2 + g)
[
r2(I − 1)(2kr2 + g) + (−3kr4 − gr2 + h)

]
+ 4(kr4 + gr2 + h)

×
[
2kr2I + J(−g − 6kr2)

]
+ 4(kr4 + gr2 + h)(−3kr4 − gr2 + h)N ′ − 4(2kr2 + g)(−4kr4 − gr2 + h)

− 16kr2(kr4 + gr2 + h) − 4β0

[
4kr2(kr4 + gr2 + h) − 3(2kr2 + g)(kr4 − h) − 2πε

]
− 2β1

π

[
4kr2(kr4 + gr2 + h) − 3(2kr2 + g)(kr4 − h) − 2πε

]3
. (39)

The line element in eq. (1) for n = 1
2 takes the form

ds2 = −C(kr4 + br2 + h)2I(−3kr4 − br2 + h)2(J−1)
[
Y (r)

]2L[
Z(r)

]2W
e2N(r)dt2

+ (−3kr4 − br2 + h)−2
[
dr2 + r2(dθ2 + sin2 θ dφ2)

]
. (40)

This solution is categorized as pr = β0ρ + β1ρ
3
2 .
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4.3 Polytropic index n = 1
3

We have taken n = 1
3 , in eq. (20), and get

F (r) = C(kr4 + gr2 + h)I(−3kr4 − gr2 + h)J [Y (r)]L[Z(r)]W eN(r), (41)

where C is a constant of integration and we consider

I = − 1
32hk3(−g2 + 4hk)π3

[
8k3π3(−6g2h − g3h − 24h2k + 2g(2h2k + πε))

− 16k3π3(−3g2h + 12h2k + gπε)β0 + (−81g11h − 1539g9h2k + 11664g7h3k2

− 216g8hkπε + 3024g6h2k2πε − 15552g4h3k3πε + 1728g3h2k3(48h3k − π2ε2)

+ 192g2hk3πε(180h3k − π2ε2) − 216g5hk2(204h3k − π2ε2) + 768h2k4πε(36h3k

− π2ε2) + 16gk3(−3888h6k2 + 216h3kπ2ε2 + π4ε4))β1

]
, (42)

J =
1

1889568hk3(−g2 + 4hk)π3

[
157464k3π3(2g2h − 3g3h − 8h2k + 6g(2h2k

+ πε)) − 314928k3π3(−7g2h + 28h2k + 3gπε)β0 + (625g11h + 9125g9h2k

− 92400g7h3k2 − 27000g8hkπε − 248400g6h2k2πε − 9025344g4h3k3πε

− 326592g2hk3πε(68h3k + 27π2ε2) + 1306368h2k4πε(196h3k + 27π2ε2)

+ 216g5hk2(18644h3k + 2025π2ε2) + 1728g3h2k3(20944h3k + 8343π2ε2)

− 1296gk3(159152h6k2 + 49896h3kπ2ε2 − 729π4ε4))β1

]
, (43)

Y =

[
g +

√
−g2 + 4hk + 2kr2

−g +
√

−g2 + 4hk − 2kr2

]
, (44)

L = − 1

32π3hk3
√

−g2 + 4hk

[
8k3π3(2gh + g2h − 2πε) + 16k3π4εβ0 + (81g10h

− 1377g8h2k + 9072g6h3k2 + πε(−216g7hk + 2592g5h2k2 − 10368g3h3k3

+ 13824gh4k4) + 1728g2h2k3(24h3k − π2ε2) − 216g4hk2(132h3k − π2ε2)

− 16k3(1296h6k2 − 216h3kπ2ε2 + π4ε4))β1

]
, (45)

Z =

[
g +

√
−g2 − 12hk + 6kr2

−g +
√

−g2 − 12hk − 6kr2

]
, (46)

W =
1

1889568hk3π3
√

g2 − 4hk(−g2 + 4hk)

[
157464k3π3(−10g3h + 3g4h

+ 40h2gk + 72hkπε − 6g2(2h2k + πε)) − 314928k3π3(2g3h − 8gh2k

− 3g2πε + 36hkπε)β0 + (625g12h + 12875g10h2k − 48900g8h3k2

− 27000g9hkπε − 410400g7h2k2πε + 15479424g5h3k3πε

− 72g6hk2(85972h3k − 6075π2ε2) − 373248gh2k4πε(1960h3k + 27π2ε2)

+ 31104g3hk3πε(4156h3k + 81π2ε2) − 864g4h2k3(56836h3k + 9801π2ε2)

+ 1296g2k3(112112h6k2 − 74520h3kπ2ε2 − 729π4ε4)

+ 15552hk4(38416h6k2 + 31752h3kπ2ε2 + 729π4ε4))β1

]
, (47)
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N = − 1
5511240k2π3

[
r2(−3kr2(4644640g7 − 3089135g6kr2 − 315g5k(192128h

− 7303kr4) + 21g4k(1776470hkr2 − 85761k2r6 − 579240πε) + 1260g3k2(218351h2

− 20427hkr4 + 1113k2r8 + 6186r2πε) − 108g2k2(1432270h2kr2 + 9090k3r10

+ 47565kπεr4 − 126h(1324k2r6 + 7415πε)) + 756gk2(−688640h3k + 127890h2k2r4

− 120h(121k3r8 + 599kπεr2) + 27(25k4r12 + 136k2πεr6 + 420π2ε2))

− 432k3(−582400h3kr2 + 63h2(1477k2r6 + 7720πε) − 135h(62k3r10 + 329kπεr4)

+ 315(k4r14 + 6k2πεr8 + 18π2ε2r2))) + 35(796849g8 − 11165136g6hk

+ 56633229g4h2k2 − 2112264g5kπε + 19269576g3hk2πε − 54587520gh2k3πε

− 216g2k2(542176h3k − 8829π2ε2) + 20736hk3(5521h3k − 324π2ε2)))β1

]
. (48)

The degree of anisotropy becomes

Δ =
4J(−g − 6kr2)(kr4 + gr2 + h)

(−3kr4 − gr2 + h)2

[
2I(g + 2kr2)(−3kr4 − gr2 + h)

+ (J − 1)(−g − 6kr2) + r2(−3kr4 − gr2 + h)(kr4 + gr2 + h)

− −6
J(−g − 6kr2)

]
+ 8r2I(g + 2kr2)(kr4 + gr2 + h)

[
L

Y ′

Y
+ W

Z ′

Z

]

×
(

N ′2L
Y ′

Y
+ 2W

Z ′

Z

)
+ 4r2(kr4 + gr2 + h)

[
L

Y ′′

Y
+ W

Z ′′

Z

]

+ 4r2(kr4 + gr2 + h)2
[
L(L − 1)

(
Y ′

Y

)2

+ W (W − 1)
(

Z ′

Z

)2]

+ 4r2(−3kr4 − gr2 + h)
[
L

Y ′

Y
+ W

Z ′

Z

]
+ 4r2(kr4 + gr2 + h)

×
[
N ′′ + 2LW (kr4 + gr2 + h)

Y ′Z ′

Y Z
+

(
I(g + 2kr2) + L(kr4 + gr2 + h)

Y ′

Y

+ W (kr4 + gr2 + h)
Z ′

Z
+ (kr4 + gr2 + h)N ′

)
N ′

]
+ 4I(2kr2 + g)

×
[
r2(I − 1)(2kr2 + g) + (−3kr4 − gr2 + h)

]
+ 4(kr4 + gr2 + h)

×
[
2kr2I + J(−g − 6kr2)

]
+ 4(kr4 + gr2 + h)(−3kr4 − gr2 + h)N ′

− 4(2kr2 + g)(−4kr4 − gr2 + h) − 16kr2(kr4 + gr2 + h)

− 4β0

[
4kr2(kr4 + gr2 + h) − 3(2kr2 + g)(kr4 − h) − 2πε

]
− 2β1

π

[
4kr2(kr4 + gr2 + h) − 3(2kr2 + g)(kr4 − h) − 2πε

]4
. (49)

The line element in eq. (1) for n = 1
3 , takes the form

ds2 = −C(kr4 + br2 + h)2I(−3kr4 − br2 + h)2(J−1)
[
Y (r)

]2L[
Z(r)

]2W
e2N(r)dt2

+ (−3kr4 − br2 + h)−2
[
dr2 + r2(dθ2 + sin2 θ dφ2)

]
. (50)

This solution is categorized as pr = β0ρ + β1ρ
4
3 .

5 Properties of the new solution

The physical properties of the polytropic model n = 1, w.r.t. the coordinate r, are discussed in this section (as in [41]).
In the previous section three exact models were developed for gravitational system, anisotropy and for the line element
equation (1); out of all, n = 1 is relatively less complicated. The radial pressure for the considered value becomes

pr = β0ρ + β1ρ
2, (51)
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Table 1. Radius (R), mass (M�), central radial pressure (pr0) and central density (ρ0) with β1 = 0.931, g = −0.0558811 and
ε = 7.5657 × 10−16 of various relativistic stars.

Name of the star M� R k(×10−13) h β0(×10−4) ρ0(×10−4) pr0(×10−14)

PSR J1614-2230 1.97 10.927 42.19 −0.013514 −3.3356 3.6057 18.251

Vela X-1 1.77 10.608 12.51 −0.013274 −3.2972 3.5416 4.7435

4U 1608-52 1.74 10.558 11.01 −0.013259 −3.2935 3.5376 4.3504

4U 1820-30 1.58 10.271 10.88 −0.013057 −3.2433 3.4837 3.5008

Cen X-3 1.49 10.098 10.76 −0.012987 −3.2260 3.4651 3.2831

PSR J0437-4715 1.4 10.51 10.34 −0.010822 −2.6882 2.8874 3.0692

EXO 1785-248 1.3 9.701 10.03 −0.012748 −3.1666 3.3401 2.5624

LMC X-4 1.29 9.678 9.19 −0.012734 −3.1631 3.3975 2.3232

SMC X-1 1.04 9.070 9.19 −0.012475 −3.0988 3.3284 1.7605

SAX J1808.4-3658 0.90 8.676 8.09 −0.012344 −3.0662 3.2935 1.2867

4U 1538-52 0.87 8.558 7.91 −0.012421 −3.0854 3.3140 1.1996

Her X-1 0.85 8.524 7.75 −0.012281 −3.0506 3.2767 1.1436

the energy density
8πρ = −8k2r6 + 4kgr4 + 40khr2 + 12gh − 8πε, (52)

the radial pressure

pr = β0

[
−2k2r6 + kgr4 + 10khr2 + 3gh − 2πε

2π

]
+ β1

[
−2k2r6 + kgr4 + 10khr2 + 3gh − 2πε

2π

]2

, (53)

and the gravitational mass takes the form

m(r) =
(
− 4

9
k2r9 +

2
7
kgr7 + 4khr5 + 2ghr3 − 4

3
πεr3

)
. (54)

All the physical quantities discussed above are well behaved. The radial pressure (pr) and energy density (ρ) remains
finite at the center for r = 0, as

ρ =
(

3gh

2π
− ε

)
, (55)

pr =
[
β0

(
3gh

2π
− ε

)
+ β1

(
3gh

2π
− ε

)2]
. (56)

Thus the speed of sound will be

υ2 =
dpr

dρ
. (57)

For viability, we have the limitation υ ≤ 1, and at the boundary, radial pressure has to be zero, thus following relation
is obtained:

β0 = −β1

[
−2k2r6 + kgr4 + 10khr2 + 3gh − 2πε

2π

]
. (58)

For all model parameters, the numerical values of twelve various stars are given in table 1. Their masses and the
radii from [45,47], have been generated by varying parameters β0, k and h, which are also mentioned in table 1. The
adequate values for ρ0 and pr0 are also given in table 1. For Pulsar PSR J0437-4715, we regained mass 1.4M� and
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Table 2. Radial pressure (pr), energy density (ρ) and mass (M�) of the realistic star PSR J0437-4715 from its center core to
end limitation.

R ρ(×10−4) pr(×10−14) M�
dpr
dρ

(×10−10)

0.0 2.887445943257 3.06922 0.000000 1.06295

0.75 2.887445943128 3.06887 0.000510 1.06283

1.5 2.887445942391 3.06689 0.004083 1.06215

2.25 2.887445939999 3.06046 0.013776 1.05992

3.0 2.887445934206 3.04489 0.032656 1.05453

3.75 2.887445922567 3.01360 0.063781 1.04369

4.5 2.887445901941 2.95815 0.110215 1.02449

5.25 2.887445868486 2.86822 0.175017 0.99334

6.0 2.887445817664 2.73160 0.261250 0.94602

6.75 2.887445744236 2.53421 0.371975 0.87766

7.5 2.887445642268 2.26010 0.510254 0.78273

8.25 2.887445505124 1.89143 0.679148 0.65505

9.0 2.887445325473 1.40849 0.881719 0.48779

9.75 2.887445095283 0.78968 1.121030 0.27349

10.51 2.887444805826 0.01156 1.400140 0.0040049

radius 10.51 from [45], by choosing β1 = 0.931, g = −0.558811 and ε = 7.5657 × 10−16 [48]. Table 2 lists the values
from the center of the star to its boundary, for ρ, pr, M� and dpr

dρ . Graphical representation demonstrate that speed of
sound, radial pressure and density are gradually decreasing functions of r, while mass, anisotropy and the tangential
pressure are gradually increasing function of the radius. All the quantities in the graphical analysis are acceptable.

6 Discussion and conclusion

In this paper, we developed the mathematical models of relativistic objects filled with anisotropic fluid along with the
contribution of heat flux and radiation density by making use of generalized polytropic equation of state. The process
of gravitational collapse is highly dissipative, because of the emission of massless particles, namely neutrinos and
photons (quantized energy), which are responsible for carrying away the binding energy to a black hole or a neutron
star. These massless energy particles form a radiative field. In fact, these radiations with respect to volume are termed
as radiation density, which is of two kinds, diffusion and free streaming approximation. In diffusion approximation,
dissipation is interpreted by the energy flux. The energy flux of radiation is proportional to the temperature gradient;
this statement is valid because the mean free path of the particles, which propagates the energy in the interior region
of stellar objects, is very small in comparison to the real length of the object [49,50]. However, when the mean free
path of the particles becomes large enough they would be referred to as free streaming approximation then to diffusion
approximation [51]. Therefore, we have considered the radiative transport in terms of diffusion and free streaming
approximation to cover the wide range. This certain selection will make the hydrostatic timescale very small as
compared to other stellar timescales in the evolution of a star. The gravitational waves generated by any astrophysical
object with high pressure constrains are monopole gravitational radiations [18]. So, the monopole radiation density
ε = 7.5657× 10−16 is used [48]. These monopole waves satisfy Einstein’s equations, considering a regular stress-energy
tensor.

One important point of discussion is that in matter configuration, we include heat flux as a source of dissipation
due to which gravitational radiation arises. However, onset of field equations show that components of heat flux are
vanishing, while radiation density can clearly be seen in eqs. (4)–(6). Also, the developed models are well behaved
and physically viable, this gives rise to the argument that their might be some other factors that serve as source of
radiation other than the heat energy.
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Fig. 1. Radial pressure.
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Fig. 2. Density.
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Fig. 3. Speed of sound.

It is important to mention that no naked singularity was observed in the developed models with various parametric
values mentioned in table 1. Physically reasonable masses of twelve different astronomical objects has been obtained
from the developed models. The masses of six eclipsing X-ray binary pulsars, Vela X-1, Cen X-3, 4U 1538-52, LMC
X-4, SMC X-1, Her X-1, four low-mass X-ray binaries, 4U 1608-52, 4U 1820-30, EXO 1785-248, SAX J1808.4-3658
and two pulsars PSR J1614-2230 and PSR J0437-4715, have been regained with recent predicted radii [45–47].

To analyze the effect of gravity on the matter quantities, we have considered, in particular, pulsar PSR J0437-
4715, with mass of 1.4M� and radius R = 10.51. Table 2 contains the variation of ρ, pr, M� and dpr

dρ of pulsar PSR
J0437-4715 from the center of the star to its boundaries. To study the variation physically, all the quantities in table 2
are illustrated graphically. Radial pressure, density and pressure gradient are gradually decreasing functions of the
radius, as is illustrated in figs. 1, 2, 3, respectively. The radial pressure vanishes at the boundary of the compact
object. The central radial pressure and the central density ought to be finite. Taking into account the center of the
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Fig. 4. Tangential pressure.

2 4 6 8 10
R

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M

Fig. 5. Mass function.
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Fig. 6. Degree of anisotropy.

pulsar, the tangential pressure becomes zero and, at the boundary, it attains its maximum value. Figure 4 shows that
the tangential pressure is an increasing function of the radius. Similarly, figs. 5 and 6 show that mass and degree of
anisotropy are also an increasing function of the radius.

Stability is an essential factor for the acceptance of any model. Numerous techniques have been used in the literature
for the stability analysis of stellar objects, where speed of sound (pressure gradient) was considered as a criterion to
check the stability of models, as in [41]. The speed of sound remains positive inside the star, as is shown in fig. 3, and
thus the casuality condition υ ≤ 1 is satisfied. The degree of anisotropy is selected in a way that the pressure gradient
must be less than zero, setting r = 0, at the center, Δ will become zero, which is the basic requirement for stability.
In the interior of any star, radial pressure, tangential pressure, energy density, degree of anisotropy and the metric
quantities remain non-singular, finite and positive. Hence the models are well behaved and physically viable.
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