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Abstract. Based on single-mode squeezed vacuum state (SVS) and Hermite-excited elementary superpo-
sition operator Hm(xa† + ya), we induce two new quantum states, i.e., Hermite-excited squeezed vacuum
state (HSVS) and Hermite-excite-orthogonalized squeezed vacuum state (HOSVS). HSVS is obtained by
applying the operator on SVS and HOSVS is obtained by applying the orthogonalizer on SVS, where
HSVS is just HOSVS for odd m. We study and compare mathematical and nonclassical properties for SVS,
HSVS and HOSVS, including photon number distribution, Mandel’s Q parameter, quadrature squeezing,
and Wigner function. Numerical results show that i) HSVS and HOSVS have only even (odd) photon
components for even (odd) m; ii) HSVS and HOSVS can exhibit sub-Poissonian statistics in low-squeezing
parameter regime and squeezing effect in large-squeezing parameter regime; iii) moreover, squeezing is
always incompatible with sub-Poissonianity; iv) Wigner functions for HSVS and HOSVS have negative
values in phase space.

1 Introduction

Quantum states of optical light are important resources for modern quantum technology, such as quantum teleportation
and quantum metrology. In order to meet the requirements of engineering, a significant attention has been given to
the preparation and manipulation of various nonclassical states. Therefore many theoretical and experimental ways
are proposed to generate new quantum states [1]. Meanwhile, studying nonclassical states of light has become a very
important topic of quantum optics [2,3]. One theoretical way is to obtain states by superposing two or more known
quantum states. For example, Schrodinger cat state is a superposition of two coherent states [4–6]. Another common
way is to applying an operator on a known quantum state. For example, the famous photon-added coherent state [7]
is obtained by applying the photon-added operator on the coherent state [8,9]. As another example, new quantum
states can be generated by subtracting or adding photons from or to traditional quantum states, which have received
more attention from both experimentalists and theoreticians [10–16]. Of course, there are many other new ways to
generate quantum states.

Recently, finding the orthogonal state |ψ⊥〉 for a known pure quantum state |ψ〉 has become a novel way to generate
new states. The generalized orthogonalization procedure to infinite-dimensional, continuous-variable pure state was
proposed by Coelho et al. [17]. The basic steps include: i) Giving an operator Ĉ and an pure state |ψ〉; ii) Calculating
the mean value 〈Ĉ〉|ψ〉 for the state |ψ〉; iii) Constructing the orthogonalizer ÔC ≡ Ĉ − 〈Ĉ〉|ψ〉1̂, where 1̂ is the
identity operator; iv) Applying ÔC on |ψ〉 and obtain orthogonal state |ψ⊥〉. This technique has become a useful
tool for quantum state engineering, which can help us to produce custom-made quantum states. That is to say, the
orthogonalizer is general enough to work based on any operator Ĉ and with any pure input state |ψ〉 [18,19].
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Since more than twenty years ago, Hermit polynomial states have been attracted extensive interest of researchers.
Theoretically, these states are constructed by applying a squeezed operator to a state that consists of a Hermite
polynomial. There are two viewpoints about these states. One is that they are a subset of the minimum uncertainty
states for amplitude-squared squeezing, and another is that they are solutions of an eigenvalue equation which is
quadratic in creation and annihilation operators. That is to say, the Hermitian polynomial states are related with
the quadrature quantities Ŷ1 = (a2 + a†2)/

√
2 and Ŷ2 = (a2 − a†2)/(i

√
2). Some properties for these states, including

squeezing effect, sub-Poissonian photon statistics, and quasiprobability distributions have been presented in the works
of Bergou [20] and Datta [21]. Some other nonclassicality are also studied by Tan [22].

Inspired by the orthogonalization idea and some works relevant with Hermite polynomial squeezed state, we
take Hm(xa† + ya) as operator Ĉ and single-mode squeezed vacuum state (SVS) [23] as state |ψ〉 and theoretically
construct two non-Gaussian quantum states in this paper. Hermite-excited squeezed vacuum state (HSVS) is obtained
by operating Ĉ on SVS directly and Hermite-excite-orthogonalized squeezed vacuum state (HOSVS) is obtained by
orthogonalization procedure. It should be noted that xa† + ya is the elementary superposition operator from creation
operator a† and annihilation operator a with corresponding coefficients x and y. Moreover, Hm(z) is the m-th–
order Hermite polynomials [24], which can also be expressed as Hm(z) = dm

dtm e2zt−t2 |t=0. Mathematical and physical
properties for such states are studied in detail. These nonclassical properties include photon number distribution,
Mandel’s Q parameter, quadrature squeezing, and Wigner function. By adjusting all relative parameters, we can
obtain the different quantum states with abundant properties.

The paper is organized as follows: In sect. 2 we introduce three quantum states considered in this paper. In sect. 3
we present preliminary techniques, which is quite useful in dealing with problems. In sect. 4 we give the uniform
expressions of physical quantities which connect all these quantum states. In sect. 4 we analyze the photon number
distributions for these states. In sect. 5 the statistical properties are studied including Mandel’s Q parameter and
quadrature squeezing. Then in sect. 6 we discuss the Wigner functions whose negativity shows the nonclassicality.
Conclusion is given in the last section.

2 Three quantum states

In this section, we first introduce three quantum states. One is the single-mode squeezed vacuum state (SVS), which
is familiar to everyone in the field of quantum optics. The other two are induced from the SVS by operating the
operators related to Ĉ = Hm(V̂ ) with V̂ = xa† + ya in different ways.

Mathematically, one can generate the SVS by operating Sr on the vacuum state |0〉,

|ψ〉 = Sr|0〉, (1)

where Sr = e
r
2 (a†2−a2) is single-mode squeezing operator with real squeezing parameter r.

Applying Ĉ on SVS, we obtain Hermite-excited SVS

|ψC〉 =
1√
NC

Ĉ|ψ〉, (2)

where NC = 〈ψ|Ĉ†Ĉ|ψ〉 is the normalization coefficient.
By operating the orthogonalizer on SVS according to the orthogonalization procedure, we obtain Hermite-excite-

orthogonalized SVS,

|ψ⊥〉 =
1√
N⊥

(
Ĉ − 〈Ĉ〉|ψ〉1̂

)
|ψ〉, (3)

where N⊥ = NC − |〈Ĉ〉|ψ〉|2 is the normalization coefficient with 〈Ĉ〉|ψ〉 = 〈ψ|Ĉ|ψ〉.
The simple case is m = 1. The HSVS and the HOSVS are just Sr|1〉 (i.e., squeezed one-photon state), which is

independent of x and y. Moreover, when m is odd, we find that the identity 〈Ĉ〉|ψ〉 = 0 always holds, which means
that HOSVS is the same as HSVS when the integer m is odd. Only when the integer m is even, HOSVS is different
from HSVS due to 〈Ĉ〉|ψ〉 �= 0. There are many adjusted parameters include r, m, x and y for these quantum states.
By adjusting these parameters, we can analyze and compare their statistical properties. The key is to analyze their
rich nonclassical characteristics.

3 Preliminary techniques

Some useful techniques are introduced in this section, which can help us to calculate normalization factor and all
statistical properties.
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3.1 Technique for the SVS

The squeezing operator Sr is unitary since S†
r = S−r, which is the inverse of Sr. The factored form of the operator Sr

can be written as [25]

Sr = (1 − λ2)1/4e
λ
2 a†2

(√
1 − λ2

)a†a

e−
λ
2 a2

, (4)

with λ = tanh r. Then by operating it on the vacuum state |0〉, we obtain another expression of SVS with |ψ〉 =
(1 − λ2)1/4e

λ
2 a†2 |0〉. Using the completeness of the coherent state

∫
d2α
π |α〉〈α| = 1̂ [26], we can write the SVS in the

following form:

|ψ〉 = (1 − λ2)1/4

∫
d2α

π
e−

|α|2
2 + λ

2 α∗2 |α〉, (5)

which is an integral in the coherent state representation. Similarly, we also have its conjugate state

〈ψ| = (1 − λ2)1/4

∫
d2β

π
〈β|e−

|β|2
2 + λ

2 β2
. (6)

The fact that the SVS is expressed as an integral in the coherent state representation can help us deal with all
subsequent calculations.

3.2 Technique for the operator

Using the so-called Baker-Hausdorff formula eA+B = e−
1
2 [A,B]eAeB with [[A,B], A] = [[A,B], B] = 0 [27], we expand

Hm(V̂ ) and H†
m(V̂ ) into the following normal ordering form:

Hm1(V̂ ) =
dm1

dtm1
e(2xy−1)t2e2txa†

e2tya|t=0 (7)

and
H†

m2
(V̂ ) =

dm2

dsm2
e(2x∗y∗−1)s2

e2sy∗a†
e2sx∗a|s=0, (8)

respectively. These two normal ordering forms are very useful in the process of calculation.

3.3 Two useful basic expressions

Combinating eqs. (5) and (7), we have

Hm1(V̂ )|ψ〉 = (1 − λ2)1/4 dm1

dtm1
e(2xy−1)t2

∫
d2α

π
e−|α|2+2tyα+ λ

2 α∗2
e(2tx+α)a† |0〉|t=0. (9)

Similarly, combinating eqs. (6) and (8), we have

〈ψ|H†
m2

(V̂ ) = (1 − λ2)1/4 dm2

dsm2
e(2x∗y∗−1)s2

∫
d2β

π
〈0|e(2sx∗+β∗)ae−|β|2+2sy∗β∗+ λ

2 β2 |s=0. (10)

3.4 Normalization coefficients

Using eqs. (9) and (10) with proper m1 and m2, we finally obtain

〈Ĉ〉|ψ〉 =
dm

dtm
e
−t2+ 2λ

1−λ2 t2(x2+y2)+2 1+λ2

1−λ2 t2xy|t=0 (11)

and

NC =
d2m

dsmdtm
e
−t2−s2+2 1+λ2

1−λ2 (t2xy+s2x∗y∗)

e
+ 2λ

1−λ2 (t2(x2+y2)+s2(x∗2+y∗2))

e
+ 4

1−λ2 st(xx∗+λ2yy∗)+ 4λ
1−λ2 st(xy∗+x∗y)|s=t=0. (12)

Then N⊥ can be obtained.
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4 Uniform expressions of physical quantities

Uniform expression relevant with any considered quantity M̂ can be expressed as

F (M̂ ;m1,m2) = 〈ψ|H†
m2

(V̂ )M̂Hm1(V̂ )|ψ〉. (13)

As long as we know the expression in eq. (13), we can obtain the expectation value 〈M̂〉 for SVS, HSVS and HOSVS
by choosing the appropriate integers m1, m2. The procedures are illustrated as follows.

I) For SVS, we have
〈M̂〉|ψ〉 = F (M̂ ; 0, 0). (14)

II) For HSVS, we have

〈M̂〉|ψC〉 =
F (M̂ ;m,m)

NC
. (15)

III) For HOSVS, we have

〈M̂〉|ψ⊥〉 =
F (M̂ ;m,m)

N⊥
−

F (M̂ ; 0,m)〈Ĉ〉|ψ〉
N⊥

−
〈Ĉ〉∗|ψ〉F (M̂ ;m, 0)

N⊥
+

〈Ĉ〉∗|ψ〉F (M̂ ; 0, 0)〈Ĉ〉|ψ〉

N⊥
. (16)

In our following work, we shall take a quantity M̂ for each considered property.

5 Photon number distribution

In this section, we discuss photon number distribution (PND) of SVS, HSVS and HOSVS. The PND is the probability
of finding n photons in the optical field ρ, which can be given by

P (n) = 〈n|ρ|n〉 = Tr [|n〉〈n|ρ] . (17)

Taking M̂n = |n〉〈n|, which can be further expressed as

M̂n =
1
n!

d2n

dμndνn
eμa† |0〉〈0|eνa|μ=ν=0, (18)

substituting it into eq. (13), and using eqs. (9) and (10), we finally obtain

F (M̂n;m1,m2) =
(1 − λ2)1/2

n!
dm1+m2+2n

dtm1dsm2dμndνn

e−t2−s2+ λ
2 (μ2+ν2)+2(t2xy+s2x∗y∗)+2λ(t2y2+s2y∗2)

e+2(νtx+μsx∗)+2λ(νty+μsy∗)|μ=ν=s=t=0. (19)

Using eqs. (14) and (19), we obtain the PND of SVS, which consists of a superposition only of the even-number
states, as one can see from fig. 1(a). Combinating eq. (19) with eqs. (15) and (16), we obtain the PNDS of HSVS
and HOSVS, respectively. In the special case with m = 1, HSVS and HOSVS are just Sr|1〉, whose PND consists of a
superposition of only the odd-number states (see from fig. 1(b)). By fixing m = 2 and r = 0.5, we plot the PNDs of
HSVS and HOSVS with different x and y in fig. 2, which consist of only even-number states. Similarly, we plot the
PNDs of HSVS and HOSVS by fixing m = 3 and r = 0.5 in fig. 3, which consist of only odd-number states.

6 Quantum statistical properties

In order to discuss the properties of SVS, HSVS and HOSVS, we derive the general expression of 〈a†kal〉 for each
quantum states, where k, l can be chosen cleverly according to the circumstance. Substituting M̂ = a†kal with
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Fig. 1. PNDs for (a) Sr|0〉 and (b) Sr|1〉 with r = 0.5.

Fig. 2. PNDs for (a) HSVS and (b) HOSVS with m = 2, r = 0.5 and x = 1/
√

2, y = 1/
√

2.

Fig. 3. PNDs for HSVS (or HOSVS) with m = 3, r = 0.5 but (a) x = 1/
√

2, y = 1/
√

2 and (b) x = −i/
√

2, y = i/
√

2.

a†k = dk

dμk eμa† |μ=0 and al = dl

dνl e
νa|ν=0 into eq. (13), and using eqs. (9) and (10), we obtain the general expression of

the form

F (a†kal;m1,m2) =
dm1+m2+k+l

dtm1dsm2dμkdνl
e
−t2−s2+ 1

2
λ

1−λ2 (μ2+ν2)+ λ2

1−λ2 μν

e
+ 2λ

1−λ2 (t2(x2+y2)+s2(x∗2+y∗2))+2 1+λ2

1−λ2 (t2xy+s2x∗y∗)

e
+2 ν+λμ

1−λ2 tx+2 μ+λν

1−λ2 sx∗+
2λ(ν+λμ)

1−λ2 ty+
2λ(λν+μ)

1−λ2 sy∗

e
+ 4λ

1−λ2 st(xy∗+x∗y)+ 4
1−λ2 st(xx∗+λ2yy∗)|μ=ν=s=t=0. (20)

The above expression is of importance for further investigating the properties of SVS, HSVS and HOSVS. According
to eq. (14), eq. (15) and eq. (16), we can obtain the analytical expressions of 〈a†kal〉 for SVS, HSVS and HOSVS,
respectively. Of course, we must notice the choice of m1 and m2.

6.1 Mandel’s Q parameter

As pointed out by Bergou, Hermite polynomial states may or may not have sub-Poissonian photon statistics [20]. This
prompts us to discuss the sub-Poissonianity of the HSVS and the HOSVS. A simple way to gauge the nature of the
photon statisitcs of any quantum state is to calculate the Mandel’s Q parameter [28],

QM =
〈a†2a2〉
〈a†a〉 − 〈a†a〉, (21)
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Fig. 4. QM versus r with fixed x = 1/
√

2, y = 1/
√

2 for SVS (black solid), HSVS (red dashed), HOSVS (blue dotted),
respectively: (a) m = 1; (b) m = 2; (c) m = 3; (d) m = 4.

which measures the deviation of the PND of the optical field state under consideration from the Poissonian distribution.
For a state with QM in the range of −1 ≤ QM < 0, the statistics is sub-Poissonian, and if QM > 0, the statistics is
super-Poissonian. Obviously, QM = 0 for a coherent state with Poissonian photon statistics.

Some special cases: 1) For the SVS, we know QM ||ψ〉 = cosh 2r; 2) If m = 1, then |ψC〉 = |ψ⊥〉 = Sr|1〉 and
QM |Sr|1〉 = − 2

3 + 8
3−9 cosh 2r + cosh 2r, which is independent of x, y. As is shown in fig. 4, with fixed x = 1/

√
2,

y = 1/
√

2, one can see clearly that QM of SVS is always larger than 1, which shows that SVS has no possibility of
sub-Poissonian distribution. While for HSVS and HOSVS, QM is negative when the squeezing parameter r is between
0 and a certain threshold value rc, which shows the sub-Poissonian characteristic. For instance, rc � 0.470836 for
HSVS and rc � 0.406702 for HOSVS in fig. 4(b).

6.2 Quadrature squeezing effects

There are many ways to definte squeezing. As pointed out by Bergou [20], the Hermite polynomial states may or may
not be squeezed in the normal sense. This normal squeezing is just the quadrature squeezing we will consider in this
subsection. Clearly, the SVS being a squeezed vacuum is squeezed for all r �= 0. It is of interest to determine where
the HSVS and the HOSVS are squeezed in the normal sense.

Coordinate operator X̂ = (a + a†)/
√

2 and momentum operator P̂ = (a− a†)/(i
√

2) are the quadrature operators
of quantum fields, satisfying [X̂, P̂ ] = i. Their variances Δ2X̂ = 〈X̂2〉 − 〈X̂〉2 and Δ2P̂ = 〈P̂ 2〉 − 〈P̂ 〉2 can further be
expressed as

Δ2X̂ = 〈a†a〉 − |〈a†〉|2 + Re
(
〈a†2〉 − 〈a†〉2

)
+

1
2

(22)

and
Δ2P̂ = 〈a†a〉 − |〈a†〉|2 − Re

(
〈a†2〉 − 〈a†〉2

)
+

1
2

, (23)

which satisfy the uncertainty relation of quantum mechanics ΔX̂ΔP̂ ≥ 1/2. Obviously, the variances Δ2X̂ and Δ2P̂

for the coherent state (or vacuum state) is equal to 1/2. Squeezing has, by definition, a characteristic that Δ2X̂ or
Δ2P̂ is smaller than 1/2 [29].

Next, let us analyze some special cases. For the SVS (i.e. Sr|0〉), we know Δ2X̂||ψ〉 = 1
2e2r, Δ2P̂ ||ψ〉 = 1

2e−2r, and
ΔX̂ΔP̂ = 1/2, which is just a standard squeezing case. Moreover, when m = 1, HSVS and HOSVS are corresponding
to Sr|1〉, which lead to Δ2X̂||ψC〉 = Δ2X̂||ψ⊥〉 = 3

2e2r, Δ2P̂ ||ψC〉 = Δ2P̂ ||ψ⊥〉 = 3
2e−2r, and ΔX̂ΔP̂ = 3/2. The

results show that Δ2X̂ and Δ2P̂ are independent of x, y in this case and that HSVS and HOSVS are squeezed in the
“p-direction” when 3

2e−2r < 1
2 , i.e. r > ln 3

2 ≈ 0.549306.
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Fig. 5. Δ2P̂ versus r with fixed x = 1/
√

2, y = 1/
√

2 for SVS (black solid), HSVS (red dashed), HOSVS (blue dotted),
respectively: (a) m = 1; (b) m = 2; (c) m = 3; (d) m = 4.

In order to see clearly the value Δ2P̂ with other parameter m, we plot Δ2P̂ versus r in fig. 5, with fixed x = 1/
√

2,
y = 1/

√
2. From these figures, one can see that Δ2P̂ for SVS is always less than 1/2 and Δ2P̂ for HSVS (and HOSVS)

is less than 1/2 only when the squeezing parameter r exceeds a certain threshold value rc. For instance, rc � 0.572106
for HSVS and rc � 0.804719 for HOSVS in fig. 5(b). That is to say, only when r > rc, there exists the squeezing
effects for HSVS and HOSVS. Furthermore, one can see clearly that Δ2P̂ for HSVS is same as that for HOSVS for
odd number m and Δ2P̂ for HSVS is different from that for HOSVS for even number m.

Figure 4 shows that the Mandel parameter for HSVS and HOSVS can be negative for the low squeezing parameter,
whereas fig. 5 shows that squeezing happens for the high squeezing parameter. Is it possible to find such domains of
parameters (r,m, x, y) where squeezing and sub-Poissonianity could co-exist, or squeezing is always incompatible with
sub-Poissonianity? By using the scientific computing software MATHEMATICA, we try our best to find the domains
of parameters (r,m, x, y) satisfying both −1 ≤ QM < 0 and Δ2P̂ < 1/2, but fail. Thus, the fact is that squeezing is
always incompatible with sub-Poissonianity for HSVS and HOSVS.

7 Wigner function

The Wigner function is a powerful tool with which to investigate the nonclassicality of optical fields. Its partial
negativity implies the highly nonclassical properties of quantum states [30–33]. In this section, we derive the analytical
expressions of the Wigner functions for SVS, HSVS and HOSVS and then make numerical simulation to analyze their
nonclassicality.

Wigner function W (ζ) for a quantum state ρ can be measured through a combination of coherent displacements
and parity measurement, that is

W (ζ) =
2
π

Tr
[
Π̂D†(ζ)ρD(ζ)

]
, (24)

where D(ζ) = eζa†−ζ∗a is the usual displacement operator with ζ = q+ip√
2

, and Π̂ = (−1)a†a is the parity operator. In

order to uniform the calculation of the Wigner function for SVS, HSVS and HOSVS, we assume M̂W = 2
π D(ζ)Π̂D†(ζ).

According to D(ζ)aD†(ζ) = a− ζ and (−1)a†a = eiπa†a =: e−2a†a : , we immediately obtain the normal ordering form
as follows:

M̂W =
2
π

: exp
(
−2

(
a† − ζ∗

)
(a − ζ)

)
: , (25)
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Fig. 6. Wigner functions for (a) Sr|0〉 and (b) Sr|1〉 with r = 0.5.

where the symbol : : denotes normal ordering. Substituting it into eq. (13) and using eqs. (9) and (10), we finally
obtain the explicit expression

F (M̂W ;m1,m2) =
2
π

e
−2 1+λ2

1−λ2 |ζ|2+ 2λ
1−λ2 (ζ2+ζ∗2)

dm1+m2

dtm1dsm2
e
−t2−s2− 4

1−λ2 st(xx∗+λ2yy∗)− 4λ
1−λ2 st(xy∗+x∗y)

e
4

1−λ2 (tζ∗x+sζx∗)− 4λ2

1−λ2 (tζy+sζ∗y∗)− 4λ
1−λ2 (t(ζx−ζ∗y)+s(ζ∗x∗−ζy∗))

e
2λ

1−λ2 (t2(x2+y2)+s2(x∗2+y∗2))+2 1+λ2

1−λ2 (t2xy+s2x∗y∗)|s=t=0. (26)

According to eq. (14) and choosing m1 = m2 = 0, eq. (26) can be reduced to the Wigner function of the SVS with
the following form:

W|ψ〉(ζ) =
2
π

e
−2 1+λ2

1−λ2 |ζ|2+ 2λ
1−λ2 (ζ2+ζ∗2)

. (27)

Obviously, this is a real function and is Gaussian in phase space (see fig. 6(a)).
In special case m = 1, the Wigner functions for HSVS and HOSVS have the following form:

WSr|1〉(ζ) =
2
π

G(λ; ζ)e−2 1+λ2

1−λ2 |ζ|2+ 2λ
1−λ2 (ζ2+ζ∗2)

, (28)

with

G(λ; ζ) =
4(1 + λ2)|ζ|2

1 − λ2
− 4λ(ζ2 + ζ∗2)

1 − λ2
− 1. (29)

It corresponds to the Wigner function of Sr|1〉. This is a non-Gaussian function because of the existence of the term
G(λ; ζ) and if the region satisfies G(λ; ζ) < 0, the Wigner function will show negativity (see fig. 6(b)).

For the even-m case, the HSVS is different from the HOSVS. While for the odd-m case, the HSVS is same as the
HOSVS. In order to see the differences more clearly, the phase-space Wigner distributions of HSVS and HOSVS are
depicted in figs. 7 and 8 for several different parameter values of x, y, m and fixed r = 0.5. In fig. 7, we show the
Wigner functions of the HSVS and the HOSVS with same parameters (m = 2, x = 1/

√
2, y = 1/

√
2). In fig. 8, we show

the Wigner functions for HSVS or HOSVS with m = 3 but different x, y. Obviously, squeezing in one of quadratures,
as evidence of the nonclassicality of the state, is clear in these plots. In additions, there are some negative regions of
the Wigner functions in the phase space, which is another indicator of the nonclassicality of these states.

8 Conclusion and discussion

In summary, we study and compare properties for SVS, HSVS and HOSVS, which are related to the SVS Sr|0〉 and
the operator Hm(xa† + ya). Mathematical and physical properties of SVS, HSVS and HOSVS are discussed in detail.
Some useful techniques are employed in the processes of deriving the analytical expressions of normalization coefficients
and all physical quantities. For example, the SVS is expressed as an integral in the coherent state representation and
the operator is expressed in normal ordering form. These techniques are helpful in the calculation of whole work.
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Fig. 7. Wigner functions for (a) HSVS and (b) HOSVS with m = 2, r = 0.5 and x = 1/
√

2, y = 1/
√

2. (c) Cross-sections for
Wigner functions. Here, the black solid, red dashed, and blue dotted lines are corresponding to SVS, case (a), and case (b),
respectively.

Furthermore, we give a unified relationship for each property to connect SVS, HSVS and HOSVS because of their
links. This is another success point in this paper. HSVS and HOSVS have their respective special properties which is
different from the traditional Gaussian SVS. Since HSVS and HOSVS are related to many parameters, one can choose
them appropriately to present their peculiar nonclassicality.

The properties we discussed in this paper include PND, Mandel’s Q parameter, quadrature squeezing, and Wigner
function. Some results are summarized as follows: 1) HSVS and HOSVS are just squeezed one-photon state Sr|1〉 in
the case of m = 1, which is independent of x and y; 2) HSVS and HOSVS are same for the odd-m case; 3) HSVS
and HOSVS have only even-(odd-) photon components when m is even (odd); 4) HSVS and HOSVS can exhibit
sub-Poissonian character in the low-squeezing parameter range, but SVS has no chance to exhibit sub-Poissonian;
5) HSVS and HOSVS can exhibit squeezing character in the large-squeezing parameter range, but SVS always has
squeezing for any nonzero r; 6) HSVS and HOSVS can exhibit their non-Gaussian and nonclassical properties, which
can be judged from their Wigner functions in phase space.

Indeed, every new quantum state induced from original state has its own properties. We can compare and analyze
the properties of these three quantum states considered in this paper. The main features are as follows: i) the SVS
always shows squeezing for any nonzero squeezing parameter r, but the HSVS and the HOSVS show squeezing only
for large squeezing parameter r. Moreover, the degrees of squeezing for HSVS and HOSVS are even smaller than
that for SVS. ii) The HSVS and the HOSVS have sub-Poissonian photon statistics in low squeezing parameter range,
but the SVS has no sub-Poissonian photon statistics for whole squeezing parameter range. iii) The Wigner function
for the SVS has no negative values, but the Wigner functions for the HSVS and the HOSVS may have negative
values.
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Fig. 8. Wigner functions for HSVS (or HOSVS) with m = 3, r = 0.5 but (a) x = 1/
√

2, y = 1/
√

2 and (b) x = −i/
√

2,
y = i/

√
2. (c) Cross-sections for Wigner functions. Here, the black solid, red dashed, and blue dotted lines are corresponding to

SVS, case (a), and case (b), respectively.

The studies on quantum states can not only deepen our understanding of the nature of quantum fields, but also
help us to realize these fields for possible future applications. Our goal is to produce a complicated orthogonal quantum
state (HOSVS) for the familiar squeezing vacuum state from the view of physics. Here we use the generalized orthogo-
nalization procedure and choose a complicated operator relating to Hermitian Polynomials. Of course, we also discuss
SVS and HSVS for comparison. Fortunately, Vanner et al. illustrated how to achieve experimental orthogonalization
using the Jaynes-Cumming or beamsplitter interaction [19]. Following the work of Vanner et al., one can expect that
some more concrete experimental scheme will be proposed to produce these quantum states in terms of the technique
of this paper in the future.
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