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Abstract. In this paper, the variable-coefficient (1 + 1)-dimensional Benjamin-Bona-Mahony (BBM) and
(2 + 1)-dimensional asymmetric Nizhnik-Novikov-Veselov (ANNV) equations are investigated via the gen-
eralized exponential rational function method (GERFM). This paper proceeds step-by-step with increasing
detail about derivation processes, first illustrating the algorithms of the proposed method and then ex-
ploiting an even deeper connection between the derived solutions with the GERFM. As a result, versions of
variable-coefficient exact solutions are formally generated. The presented solutions exhibit abundant phys-
ical phenomena. Particularly, upon choosing appropriate parameters, we demonstrate a variety of traveling
waves in figures. Finally, the results indicate that free parameters can drastically influence the existence
of solitary waves, their nature, profile, and stability. They are applicable to enrich the dynamical behavior
of the (1 + 1) and (2 + 1)-dimensional nonlinear wave in fluids, plasma and others.

1 Introduction

It is well-known that nonlinear evolution equations (NLEEs) are widely used to describe complex physical phenomena
in various science domains, such as fluid physics, plasma physics and nonlinear optics [1–12]. It is worth mentioning
that solitary waves play the key role in NLEEs. Therefore, it is necessary to focus on solitary waves in a detailed
manner from a mathematical point of view. So far, a variety of powerful methods used for seeking solitary wave
solutions have been developed, including the Tanh method, the Hirota method, the linear superposition principle and
so on [1–17].

In some cases, the solitary structures exist indefinitely in time, as long as parameters stay constant. But, they will
disappear if the values of parameters move outside the possible range of existence of the soliton waves. Moreover, in
physical situations the variable-coefficient solutions are important as they can provide much more realistic models than
their constant-coefficient counterparts. Consequently, a good understanding of exact solitary solutions with variable
coefficients is very useful for researchers to address the nonlinear wave model in real-world applications. At this moment
we are trying to search reliable solitary solutions via the newly developed method, called the generalized exponential
rational function method (GERFM) [13].

This paper aims to extract new solitary solutions of the variable-coefficient (1 + 1)-dimensional Benjamin-Bona-
Mahony (BBM) [14] and (2 + 1)-dimensional asymmetric Nizhnik-Novikov-Veselov (ANNV) equations [15]. The
GERFM is employed to help achieve our results. The remainder of this paper is organized as follows. In sect. 2,
the algorithms of GERFM are described. In sect. 3, new solitary solutions are generated. In sect. 4, conclusions are
given.
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2 The generalized exponential rational function method (GERFM)

In this section, we will briefly explain the fundamental steps involved in the GERFM. Let us take into account the
nonlinear partial differential equation (NPDE) in the form

L(ut, ux, uxx, . . .) = 0. (1)

Using the transformation ξ = kx + my − ct, we reduce eq. (1) to the following ordinary differential equation:

L

(
u(ξ),

du

dξ
,
d2u

dξ2
, . . .

)
= 0. (2)

Step 1 ) The key to this method is to suppose that eq. (2) has the formal solution

u(ξ) = A0 +
M∑

q=1

AqΦ
q(ξ) +

M∑
q=1

BqΦ
−q(ξ), (3)

where

Φ(ξ) =
ρ1e

κ1ξ + ρ2e
κ2ξ

ρ3eκ3ξ + ρ4eκ4ξ
. (4)

The unknown coefficients A0, Ak and Bq(1 ≤ q ≤ M) and ρj and κj(1 ≤ j ≤ 4) are arbitrary real (or complex)
constants to be determined, such that the solution (3) satisfies eq. (2). Note that, the positive integer M can be
determined by the balancing principle between the higher derivative and the nonlinear terms in eq. (2).

Step 2 ) After substituting eq. (3) into eq. (2) and collecting all terms, the left-hand side of eq. (2) is converted into
a polynomial P (Y1, Y2, Y3, Y4) in terms of Yj = eκjξ for j = 1, . . . , 4. If we set each coefficient of P to zero, then we
derive a set of algebraic equations for ρj and κj (1 ≤ j ≤ 4), and for λ, ν, A0, Ak, and Bq (1 ≤ q ≤ M). This can be
tackled with the aid of symbolic computation, such as Maple or Mathematica.

Step 3) After solving the algebraic equations in step 2, and substituting non-trivial solutions in eq. (3), the wave
solutions of eq. (2) could be obtained this way.

3 Applications

3.1 The new solutions for the (1 + 1)-dimensional BBM equation

Consider the BBM equation [14] as
ut + αux − βuxxt + γ(u2)x = 0, (5)

where α, β, γ are arbitrary constants.
The BBM equation, a regularized version of the KdV equation was derived as a model for the unidirectional

propagation of long-crested, surface water waves and well investigated in the explicit literature. Furthermore, it is
applied in the analysis of waves arising in several physical fields, such as waves in cold plasma, inharmonic crystals
and other [18,19].

By the traveling wave ansatz and u(ξ) = u(x, t), ξ = kx − ct eq. (5) is transformed into

−cuξ + αkuξ + ck2βuξξξ + γk(u2)ξ = 0. (6)

Preceding the same matter, we can assume the solution as

u(ξ) = A0 + A1Φ(ξ) + A2Φ
2(ξ) +

B1

Φ(ξ)
+

B2

Φ2(ξ)
. (7)

Using the GERFM, we obtain the following non-trivial solutions of (5), as listed below.

Family 1. We obtain ρ = [1, 1,−1, 1] and κ = [1,−1, 1,−1], which gives

Φ(ξ) = −cosh(ξ)
sinh(ξ)

. (8)
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Case 1 ) c = − αk
16βk2−1 , k = k, A0 = − 12αβk2

16βγk2−γ , A1 = 0, A2 = 6αβk2

16βγk2−γ , B1 = 0, B2 = 6αβk2

16βγk2−γ .
Substituting the above values and eqs. (7), (8) into (6), we have

u(ξ) =
6αβk2(coth2(ξ) − 1)2

γ(16βk2 − 1) coth2(ξ)
.

Therefore, an exact solution of eq. (5) is obtained as

u1(x, t) =
6αβk2(coth2(kx + αk

16βk2−1 t) − 1)2

γ(16βk2 − 1) coth2(kx + αk
16βk2−1 t)

.

Case 2 ) c = αk
16βk2+1 , k = k, A0 = − 4αβk2

16βγk2+γ , A1 = 0, A2 = − 6αβk2

16βγk2+γ , B1 = 0, B2 = − 6αβk2

16βγk2+γ .
Substituting the above values and eq. (7) into (6), we have

u(ξ) = −α(6 coth4(ξ) + 4 coth2(ξ) + 6)βk2

(16βγk2 + γ) coth2(ξ)
.

Therefore, an exact solution is obtained as

u2(x, t) = −
α(6 coth4(kx − αk

16βk2+1 t) + 4 coth2(kx − αk
16βk2+1 t) + 6)βk2

(16βγk2 + γ) coth2(kx − αk
16βk2+1 t)

.

Family 2. We obtain ρ = [2, 0, 1,−1] and κ = [1, 0, 1,−1], which gives

Φ(ξ) =
cosh(ξ) + sinh(ξ)

sinh(ξ)
(9)

Case 1 ) c = − αk
4βk2−1 , k = k, A0 = 0, A1 = − 12αβk2

4βγk2−γ , A2 = 6αβk2

4βγk2−γ , B1 = 0, B2 = 0.
Substituting the above values, eqs. (7) and (9) into (6), we have

u(ξ) =
6αβk2

γ(4βk2 − 1) sinh2(ξ)
.

Therefore, an exact solution is obtained as

u3(x, t) =
6αβk2

γ(4βk2 − 1) sinh2(kx + αk
4βk2−1 t)

.

Case 2 ) c = αk
4βk2+1 , k = k, A0 = − 4αβk2

4βγk2+γ , A1 = 12αβk2

4βγk2+γ , A2 = − 6αβk2

4βγk2+γ , B1 = 0, B2 = 0.
Substituting the above values, eqs. (7) and (9) into (6), we have

u(ξ) = −αβk2(4 cosh2(ξ) + 2)
(4βγk2 + γ) sinh2(ξ)

.

Therefore, an exact solution is obtained as

u4(x, t) = −
αβk2(4 cosh2(kx − αk

4βk2+1 t) + 2)

(4βγk2 + γ) sinh2(kx − αk
4βk2+1 t)

.

Family 3. We obtain ρ = [−1 − i, 1 − i,−1, 1] and κ = [i,−i, i,−i], which gives

Φ(ξ) =
sin(ξ) + cos(ξ)

sin(ξ)
. (10)
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Case 1 ) c = αk
4βk2+1 , k = k, A0 = − 12αβk2

4βγk2+γ , A1 = 0, A2 = 0, B1 = 24αβk2

4βγk2+γ , B2 = − 24αβk2

4βγk2+γ .
Substituting the above values, eqs. (7) and (10) into (6), we have

u(ξ) = − 12αβk2

γ(4βk2 + 1)(2 cos(ξ) sin(ξ) + 1)
.

Therefore, an exact solution is obtained as

u5(x, t) = − 12αβk2

γ(4βk2 + 1)(2 cos(kx − αk
4βk2+1 t) sin(kx − αk

4βk2+1 t) + 1)
.

Case 2 ) c = − αk
4βk2−1 , k = k, A0 = 8αβk2

4βγk2−γ , A1 = 0, A2 = 0, B1 = − 24αβk2

4βγk2−γ , B2 = 24αβk2

4βγk2−γ .
Substituting the above values, eqs. (7) and (10) into (6), we have

u(ξ) = − 8αβk2(cos(ξ) sin(ξ) − 1)
γ(4βk2 − 1)(2 cos(ξ) sin(ξ) + 1)

.

Therefore, an exact solution is obtained as

u6(x, t) = −
8αβk2(cos(kx + αk

4βk2−1 t) sin(kx + αk
4βk2−1 t) − 1)

γ(4βk2 − 1)(2 cos(kx + αk
4βk2−1 t) sin(kx + αk

4βk2−1 t) + 1)
.

Family 4. We obtain ρ = [2, 0, 1, 1] and κ = [−1, 0, 1,−1], which gives

Φ(ξ) =
cosh(ξ) − sinh(ξ)

cosh(ξ)
. (11)

Case 1 ) c =
√

2α
6
√

β
, k =

√
2

2
√

β
, A0 = − 2α

3γ , A1 = 2α
γ , A2 = −α

γ , B1 = 0, B2 = 0.
Substituting the above values, eqs. (7) and (11) into (6), we have

u(ξ) = −α(2 cosh2(ξ) − 3)
3γ cosh2(ξ)

.

Therefore, an exact solution is obtained as

u7(x, t) = −
α(2 cosh2(

√
2

2
√

β
x −

√
2α

6
√

β
t) − 3)

3γ cosh2(
√

2
2
√

β
x −

√
2α

6
√

β
t)

.

Case 2 ) c = − αk
4βk2−1 , k = k, A0 = 0, A1 = − 12αβk2

4βγk2−γ , A2 = 6αβk2

4βγk2−γ , B1 = 0, B2 = 0.
Substituting the above values, eqs. (7) and (11) into (6), we have

u(ξ) = − 6αβk2

γ(4βk2 − 1) cosh2(ξ)
.

Therefore, an exact solution is obtained as

u8(x, t) = − 6αβk2

γ(4βk2 − 1) cosh2(kx + αk
4βk2−1 t)

.

Family 5. We obtain ρ = [−3,−2, 1, 1] and κ = [0, 1, 0, 1], which gives

Φ(ξ) =
cosh(ξ) − sinh(ξ)

cosh(ξ)
. (12)
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Case 1 ) c =
√

γB2−216α
√

γ
√

B2

216
√

β
, k = −

√
γ
√

B2√
β
√

γB2−216α
, A0 = B2

6 , A1 = 0, A2 = 0, B1 = 5B2
6 , B2 = B2.

Substituting the above values, eqs. (7) and (12) into (6), we have

u(ξ) = − eξB2

6(3 + 2eξ)2
.

Therefore, an exact solution is obtained as

u9(x, t) = − e

„

−
√

γ
√

B2√
β
√

γB2−216α
−

√
γB2−216α

√
γ
√

B2
216

√
β

t

«

B2

6

(
3 + 2e

„

−
√

γ
√

B2√
β
√

γB2−216α
−

√
γB2−216α

√
γ
√

B2
216

√
β

t

«)2 .

Family 6. We obtain ρ = [2, 3, 1, 1] and κ = [1, 0, 1, 0], which gives

Φ(ξ) =
2 + 3eξ

1 + eξ
. (13)

Case 1 ) c =
√
−γB2−216α

√
γ
√

B2

216
√

β
, k = −

√
γ
√

B2√
β
√
−γB2−216α

, A0 = 37B2
216 , A1 = 0, A2 = 0, B1 = − 5B2

6 , B2 = B2.
Substituting the above values, eqs. (7) and (13) into (6), we have

u(ξ) =
B2(9e2ξ − 24eξ + 4)

216(3eξ + 2)2
.

Therefore, an exact solution is obtained as

u10(x, t) =

B2

(
9e

2

„

−
√

γ
√

B2√
β
√

−γB2−216α
x−

√
−γB2−216α

√
γ
√

B2
216

√
β

t

«

− 24e

„

−
√

γ
√

B2√
β
√

−γB2−216α
x−

√
−γB2−216α

√
γ
√

B2
216

√
β

t

«

+ 4

)

216

(
3e

„

−
√

γ
√

B2√
β
√

−γB2−216α
x−

√
−γB2−216α

√
γ
√

B2
216

√
β

t

«

+ 2

)2 .

It is worth noting that based on solitary solutions u1−10 the free parameters α, β, γ are revealed as non-zero arbitrary
constants.

3.2 The new solutions for the (2 + 1)-dimensional ANNV equation

The ANNV equation is considered as

ut + ω

(
u

∫
uxdy

)
x

+ uxxx = 0. (14)

It is notable that eq. (14) is also called the coupled KdV equation [15,20,21] due to the fact that it can be transformed
as

ut + ωuxv + ωuvx + uxxx = 0,∫
uxdy = v, (15)

where ω is a non-zero arbitrary constant. When u = v, x = y and ω = 3 eq. (14) is reduced to the original KdV
equation

ut + 6uux + uxxx = 0. (16)

The ANNV equation is derived as the model for an incompressible fluid, where u and v are the components of the
dimensionless velocity. In [20] the lump soliton, mixed lump stripe and periodic lump solutions were obtained.

Using the traveling ansatz ξ = kx + my − ct, U(ξ) = u(x, y, t) and V (ξ) = v(x, y, t) eq. (15) are thus transformed
into

− cUξ + ωkUξV + ωkUVξ + k3Uξξξ = 0, (17)
kUξ = mVξ. (18)
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Proceeding as before we assume the solution as

U(ξ) = A0 + A1Φ(ξ) + A2Φ
2(ξ) +

B1

Φ(ξ)
+

B2

Φ2(ξ)
. (19)

Via the GERFM, we obtain the following non-trivial solutions of (15), as listed below.

Family 1. We obtain ρ = [1 − i,−1 − i,−1, 1] and κ = [i,−i, i,−i], which gives

Φ(ξ) =
cos(ξ) − sin(ξ)

sin(ξ)
. (20)

Case 1 ) c = −4k3, k = k, m = −ωA2
12k , A0 = 2A2, A1 = 2A2, A2 = A2, B1 = 0, B2 = 0.

Substituting the above values, eqs. (19) and (20) into (17), (18), we have

U(ξ) =
A2

sin2(ξ)
,

V (ξ) = − 12k2

ω sin2(ξ)
.

Therefore, the exact solutions of the ANNV equations are obtained as

u1(x, y, t) =
A2

sin2(kx − ωA2
12k y + 4k3t)

,

v1(x, y, t) = − 12k2

ω sin2(kx − ωA2
12k y + 4k3t)

.

Case 2 ) c = 4k3, k = k, m = −ωB1
48k , A0 = B1

3 , A1 = 0, A2 = 0, B1 = B1, B2 = B1.
Substituting the above values, eqs. (19) and (20) into (17), (18), we have

U(ξ) = −B1(cos(ξ) sin(ξ) + 1)
6 cos(ξ) sin(ξ) − 3

,

V (ξ) =
48k2(cos(ξ) sin(ξ) + 1)
ω(6 cos(ξ) sin(ξ) − 3)

.

Therefore, the exact solutions are obtained as

u2(x, y, t) = −
B1(cos(kx − ωB1

48k y − 4k3t) sin(kx − ωB1
48k y − 4k3t) + 1)

6 cos(kx − ωB1
48k y − 4k3t) sin(kx − ωB1

48k y − 4k3t) − 3
,

v2(x, y, t) =
48k2(cos(kx − ωB1

48k y − 4k3t) sin(kx − ωB1
48k y − 4k3t) + 1)

ω(6 cos(kx − ωB1
48k y − 4k3t) sin(kx − ωB1

48k y − 4k3t) − 3)
.

Family 2. We obtain ρ = [i,−i, 1, 1] and κ = [i,−i, i,−i], which gives

Φ(ξ) = − sin(ξ)
cos(ξ)

. (21)

Case 1 ) c = ω3A0
3

432m3 , k = −ωA0
12m , m = m, A0 = A0, A1 = 0, A2 = A0, B1 = 0, B2 = 0.

Substituting the above values, eqs. (19) and (21) into (17), (18), we have

U(ξ) =
A0

cos2(ξ)
,

V (ξ) = − ωA0
2

12m2 cos2(ξ)
.
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Therefore, the exact solutions are obtained as

u3(x, y, t) =
A0

cos2(−ωA0
12mx + my − ω3A0

3

432m3 t)
,

v3(x, y, t) = − ωA0
2

12m2 cos2(−ωA0
12mx + my − ω3A0

3

432m3 t)
.

Case 2 ) c = 4k3, k = k, m = −ωA2
12k , A0 = A2

3 , A1 = 0, A2 = A2, B1 = 0, B2 = 0.
Substituting the above value, eqs. (19) and (21) into (17), (18), we have

U(ξ) = − (2 cos2(ξ) − 3)A2

3 cos2(ξ)
,

V (ξ) =
4k2(2 cos2(ξ) − 3)

ω cos2(ξ)
.

Therefore, the exact solutions are obtained as

u4(x, y, t) = −
(2 cos2(kx − ωA2

12k y − 4k3t) − 3)A2

3 cos2(kx − ωA2
12k y − 4k3t)

,

v4(x, y, t) =
4k2(2 cos2(kx − ωA2

12k y − 4k3t) − 3)
ω cos2(kx − ωA2

12k y − 4k3t)
.

Family 3. We obtain ρ = [2, 1, 1, 1] and κ = [1, 0, 1, 0], which gives

Φ(ξ) =
2eξ + 1
eξ + 1

. (22)

Case 1 ) c = − ω3B2
3

110592m3 , k = −ωB2
48m , m = m, A0 = B2

2 , A1 = 0, A2 = 0, B1 = − 3B2
2 , B2 = B2.

Substituting the above values, eqs. (19) and (22) into (17), (18), we have

U(ξ) = − eξB2

2(2eξ + 1)2
,

V (ξ) =
ωB2

2eξ

96m2(2eξ + 1)2
.

Therefore, the exact solutions are obtained as

u5(x, y, t) = − e

„

−ωB2
48m x+my+

ω3B2
3

110592m3 t

«

B2

2
(

2e
“

−ωB2
48m x+my+

ω3B23

110592m3 t
”

+ 1
)2 ,

v5(x, y, t) =
ωB2

2e

„

−ωB2
48m x+my+

ω3B2
3

110592m3 t

«

96m2

(
2e
“

−ωB2
48m x+my+

ω3B23

110592m3 t
”

+ 1
)2 .

Family 4. We obtain ρ = [−3,−2, 1, 1] and κ = [0, 1, 0, 1], which gives

Φ(ξ) =
−3 − 2eξ

1 + eξ
. (23)

Case 1 ) c = ω3B2
3

80621568m3 , k = − ωB2
432m , m = m, A0 = 37B2

216 , A1 = 0, A2 = 0, B1 = 5B2
6 , B2 = B2.
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Substituting the above values, eqs. (19) and (23) into (17), (18), we have

U(ξ) = −B2(−4e2ξ + 24eξ − 9)
216(3 + 2eξ)2

,

V (ξ) =
ωB2

2(−4e2ξ + 24eξ − 9)
93312m2(3 + 2eξ)2

.

Therefore, the exact solutions are obtained as

u6(x, y, t) = −
B2

(
−4e

2

„

− ωB2
432m x+my− ω3B2

3

80621568m3 t

«

+ 24e

„

− ωB2
432m x+my− ω3B2

3

80621568m3 t

«

− 9

)

216
(

3 + 2e
“

− ωB2
432m x+my− ω3B23

80621568m3 t
”

)2 ,

v6(x, y, t) =

ωB2
2

(
−4e

2

„

− ωB2
432m x+my− ω3B2

3

80621568m3 t

«

+ 24e

„

− ωB2
432m x+my− ω3B2

3

80621568m3 t

«

− 9

)

93312m2

(
3 + 2e

“

− ωB2
432m x+my− ω3B23

80621568m3 t
”

)2 .

Family 5. We obtain ρ = [−1 − i, 1 − i, 1,−1] and κ = [i,−i, i,−i], which gives

Φ(ξ) =
sin(ξ) + cos(ξ)

sin(ξ)
. (24)

Case 1 ) c = ω3A0
3

3456m3 , k = −ωA0
24m , m = m, A0 = A0, A1 = 0, A2 = 0, B1 = −2A0, B2 = 2A0.

Substituting the above values, eqs. (19) and (24) into (17), (18), we have

U(ξ) =
A0

2 cos(ξ) sin(ξ) + 1
,

V (ξ) = − ωA0
2

24m2(2 cos(ξ) sin(ξ) + 1)
.

Therefore, the exact solutions are obtained as

u7(x, y, t) =
A0

2 cos(−ωA0
24mx + my − ω3A0

3

3456m3 t) sin(−ωA0
24mx + my − ω3A0

3

3456m3 t) + 1
,

v7(x, y, t) = − ωA0
2

24m2(2 cos(−ωA0
24mx + my − ω3A0

3

3456m3 t) sin(−ωA0
24mx + my − ω3A0

3

3456m3 t) + 1)
.

Family 6. We obtain ρ = [1, 1,−1, 1] and κ = [1,−1, 1,−1], which gives

Φ(ξ) = −cosh(ξ)
sinh(ξ)

. (25)

Case 1 ) c = ω3B2
3

108m3 , k = −ωB2
12m , m = m, A0 = 2B2

3 , A1 = 0, A2 = B2, B1 = 0, B2 = B2.
Substituting the above values, eqs. (19) and (25) into (17), (18), we have

U(ξ) =
B2(3 coth4(ξ) + 2 coth2(ξ) + 3)

3 coth2(ξ)
,

V (ξ) = −ωB2
2(3 coth4(ξ) + 2 coth2(ξ) + 3)

36m2 coth2(ξ)
.

Therefore, the exact solutions are obtained as

u8(x, y, t) =
B2(3 coth4(−ωB2

12mx + my − ω3B2
3

108m3 t) + 2 coth2(−ωB2
12mx + my − ω3B2

3

108m3 t) + 3)

3 coth2(−ωB2
12mx + my − ω3B2

3

108m3 t)
,

v8(x, y, t) = −
ωB2

2(3 coth4(−ωB2
12mx + my − ω3B2

3

108m3 t) + 2 coth2(−ωB2
12mx + my − ω3B2

3

108m3 t) + 3)

36m2 coth2(−ωB2
12mx + my − ω3B2

3

108m3 t)
.
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Family 7. We obtain ρ = [−1, 1, 1, 1] and κ = [1,−1, 1,−1], which gives

Φ(ξ) = − sinh(ξ)
cosh(ξ)

. (26)

Case 1 ) c = ω3B2
3

432m3 , k = −ωB2
12m , m = m, A0 = −B2

3 , A1 = 0, A2 = 0, B1 = 0, B2 = B2.
Substituting the above values, eqs. (19) and (26) into (17), (18), we have

U(ξ) = −B2(tanh2(ξ) − 3)
3 tanh2(ξ)

,

V (ξ) =
ωB2

2(tanh2(ξ) − 3)
36m2 tanh2(ξ)

.

Therefore, the exact solutions are obtained as

u9(x, y, t) = −
B2(tanh2(−ωB2

12mx + my − ω3B2
3

432m3 t) − 3)

3 tanh2(−ωB2
12mx + my − ω3B2

3

432m3 t)
,

v9(x, y, t) =
ωB2

2(tanh2(−ωB2
12mx + my − ω3B2

3

432m3 t) − 3)

36m2 tanh2(−ωB2
12mx + my − ω3B2

3

432m3 t)
.

Family 8. We obtain ρ = [1, 1, 1,−1] and κ = [1,−1, 1,−1], which gives

Φ(ξ) =
cosh(ξ)
sinh(ξ)

. (27)

Case 1 ) c = 16k3, k = k, m = −ωA2
12k , A0 = −2A2, A1 = 0, A2 = A2, B1 = 0, B2 = A2.

Substituting the above values, eqs. (19) and (27) into (17), (18), we have

U(ξ) =
A2

cosh2(ξ) sinh2(ξ)
,

V (ξ) = − 12k2

ω cosh2(ξ) sinh2(ξ)
.

Therefore, the exact solutions read as

u10(x, y, t) =
A2

cosh2(kx − ωA2
12k y − 16k3t) sinh2(kx − ωA2

12k y − 16k3t)
,

v10(x, y, t) = − 12k2

ω cosh2(kx − ωA2
12k y − 16k3t) sinh2(kx − ωA2

12k y − 16k3t)
.

So far, new exact solutions of BBM and ANNV equations are concisely obtained. They are all checked for accuracy
via Maple. It is easily found that all free parameters α, β, γ, ω are non-zero arbitrary constants. Here, a brief summary
is given.

i) The obtained solutions can be presented as various versions of traveling waves by specifying the parameters α, β,
γ, ω, including the solitary waves. They are helpful to simulate and elaborate a lot of experimental situations, as
shown in figs. 1–9. The resultant solutions and figures may provide significant supplements to the studies in cold
plasma and incompressible fluids.

ii) All free parameters α, β, γ, ω directly affect the amplitude and speed of the traveling waves to BBM and ANNV
equations.
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Fig. 1. The traveling waves to the BBM equation in the case of α = 1.2, β = 15, k = 0.6, γ = 4 via the solution u1.

Fig. 2. The traveling waves to the BBM equation in the case of α = −1, β = 2, k = 0.5, γ = 1.5 via the solution u2.

Fig. 3. The traveling waves to the BBM equation in the case of α = −1.6, β = −3, k = 0.09, γ = −1.2 via the solution u5.
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Fig. 4. The traveling waves to the BBM equation in the case of α = −0.1, β = 3.2, B2 = 0.1, γ = 41.2 via the solution u9.

Fig. 5. The traveling waves to the BBM equation in the case of α = −0.1, β = 3.2, B2 = 0.1, γ = 41.2 via the solution u10.

Fig. 6. The traveling waves to the ANNV equation in the case of t = 1, ω = 0.2, A2 = −2, k = 0.5 via the solution u2 (a) and
v2 (b).
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Fig. 7. The traveling waves to the ANNV equation in the case of t = 1, ω = 3.2, A2 = −1.2, k = 0.5 via the solution u4 (a)
and v4 (b).

Fig. 8. The traveling waves to the ANNV equation in the case of t = 1, ω = −0.2, B2 = −1.2, m = 0.4 via the solution u6 (a)
and v6 (b).

Fig. 9. The traveling waves to the ANNV equation in the case of t = 1, ω = −0.01, B2 = 1.2, m = 0.01 via the solution u8 (a)
and v8 (b).
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4 Conclusions

In this work, we have presented a lot of exact wave solutions to the (1 + 1)-dimensional BBM and (2 + 1)-dimensional
ANNV equations via the GERFM. The features and influences of free parameters α, β, γ, ω are elaborated. The
extracted solutions exhibit abundant physical phenomena displayed as the traveling waves in figs. 1–9. The results show
the GERFM is an effective and reliable mathematical tool for solving NLEEs in the related science. By applying the
the proposed method, the variable-coefficient NLEEs can be solved straightforwardly and concisely. As a result, seeking
exact variable-coefficient wave solutions can make great contributions to nonlinear science in real-world applications.

Publisher’s Note The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional
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