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Abstract. In this paper, the schemes based on the high-order quasi-compact split-step finite difference
methods are derived for the one- and two-dimensional coupled fractional Schrödinger equations. In order
to improve the computing efficiency, we adopt the split-step method for handling the nonlinearity. By using
a high-order quasi-compact scheme in space, the numerical method improves the accuracy effectively. We
prove the conservation laws, prior boundedness and unconditional error estimates of the quasi-compact
finite difference scheme for the linear problem. Moreover, for the nonlinear problem, we show that the quasi-
compact split-step finite difference method can also keep the conservation law in the mass sense. For solving
the multi-dimensional problem, we combine the quasi-compact split-step method with the alternating
direction implicit technique. At last, numerical examples are performed to illustrate our theoretical results
and show the efficiency of the proposed schemes.

1 Introduction

The fractional Schrödinger equation (FSE), as a natural generalization of the classical (integer order) Schrödinger
equation, has been widely exploited to study fractional quantum phenomena. In [1, 2], Laskin extended the Feynman
path integral to the Lévy one, and then obtained the FSE including a space fractional derivative of order α (1 < α < 2)
instead of the Laplacian in the classical Schrödinger equation. Naber [3] derived the time-fractional Schrödinger
equation by replacing the first-order time derivative with a Caputo fractional derivative. We can find more physical
applications of the FSE in [2, 4–9]. The extensive theoretical studies, such as the well-posedness, conservation law,
dynamics and ground states of the FSEs, can be found in [2, 3, 10–13]. From the numerical point of view, Amore
et al. [14] developed a collocation method to obtain the numerical solutions to the quantum-mechanical problems
involving a fractional Laplacian. Bao and Dong [15] constructed a time-splitting sine pseudospectral method for the
nonlinear relativistic Hartree equation. In [16], Atangana et al. solved the space fractional variable-order Schrödinger
equation numerically via the Crank-Nicolson scheme, and then presented the stability and the convergence results. Wei
et al. [17,18] considered implicit fully discrete local discontinuous Galerkin methods for the time FSEs. Zhao et al. [19]
proposed a novel fourth-order compact ADI scheme for two-dimensional nonlinear space FSE. In [20–22], a series
of efficient numerical schemes were constructed for the coupled nonlinear FSEs with the Riesz fractional derivative.
Wang and Huang [23–26] studied the nonlinear FSEs via various finite difference methods. Li et al. [27–30] derived the
numerical solutions of the nonlinear FSE by using some difference schemes in time and finite-element methods in space.
In [31], Bhrawy et al. put forward an improved a collocation method for multi-dimensional space-time variable-order
FSEs. There were also some other numerical methods dealing with the classical Schrödinger equations and fractional
problems, such as [32–40].

As we all know, due to the efficiency in saving CPU time computer memory, the splitting methods are widely
adopted in many nonlinear problems. In the earlier work, Weideman [41] pointed an efficient and stable split-step
method for the numerical solution of the nonlinear Schrödinger equation. Muslu et al. [42] numerically solved the
generalized nonlinear Schrödinger equation by a split-step Fourier method. Wang [43] utilized the split-step finite
difference method to solve various types of nonlinear Schrödinger equations. Taha et al. [44] introduced a parallel split-
step Fourier method to numerically solve the coupled nonlinear Schrödinger equation and presented some numerical
experiments to show that the methods have accurate results and considerable speedup.
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In order to improve the spatial accuracy, there are also the authors using the high-order compact split-step finite
difference scheme to numerically solve the nonlinear Schrödinger equations [45–49]. The success of the split-step
method for the classical nonlinear Schrödinger equations, prompted several authors to try to extend this method to
the FSE. Wang and Huang [26] constructed a split-step alternating direction implicit difference scheme for solving the
FSEs in two dimensions. In [50], Duo and Zhang proposed three Fourier spectral methods for the FSEs, including the
split-step Fourier spectral method, the Crank-Nicolson Fourier spectral method and the relaxation Fourier spectral
method. In [51], the split-step quasi-compact finite difference method was proposed to solve the nonlinear fractional
Ginzburg-Landau equations both in one and two dimensions. However, there is no work focusing on the high-order
(quasi-)compact split-step difference method for the space fractional coupled nonlinear Schrödinger equation (CNLS).

In this paper, we consider a high-order quasi-compact split-step difference method for the system of the space
fractional CNLS (1 < α ≤ 2)

iut − κ(−Δ)
α
2 u + ρ(|u|2 + β|v|2)u = 0, x ∈ R, t > 0, (1)

ivt − κ(−Δ)
α
2 v + ρ(|v|2 + β|u|2)v = 0, x ∈ R, t > 0, (2)

with the initial conditions
u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ R, (3)

where i =
√
−1 is the complex unit, u(x, t) and v(x, t) are two complex-valued wave functions of time t and space x, κ,

ρ and β are positive real constants, and u0(x) and v0(x) are given complex-valued smooth initial data. The operator
(−Δ)α/2 is defined by

−(−Δ)α/2u(x, t) := − 1
2 cos(απ/2)

(−∞Dα
x + xDα

+∞)u(x, t), (4)

where −∞Dα
x u(x, t) denotes the left-side Riemann-Liouville fractional derivative

−∞Dα
x u(x, t) =

1
Γ (2 − α)

d2

dx2

∫ x

−∞

u(ξ, t)
(x − ξ)α−1

dξ,

and xDα
+∞u(x, t) denotes the right-side Riemann-Liouville fractional derivative

xDα
+∞u(x, t) =

1
Γ (2 − α)

d2

dx2

∫ +∞

x

u(ξ, t)
(ξ − x)α−1

dξ.

Following a similar approach as [11, 15, 45, 52], we easily obtain the following two standard conserved quantities
(mass and energy) for the space fractional CNLS (1)–(3).

Proposition 1. If the wave functions u(x, t) and v(x, t) are the solutions of (1)–(3), then we have the following conser-
vation results:

1) mass conservation:
M1(t) ≡ M1(0), M2(t) ≡ M2(0), t > 0, (5)

2) energy conservation:
E(t) ≡ E(0), t > 0, (6)

where M1(t) := ‖u‖2
L2(R), M2(t) := ‖v‖2

L2(R), E(t) := κ
2 (‖(−Δ)

α
4 u‖2

L2(R) + ‖(−Δ)
α
4 v‖2

L2(R))−
ρ
4 (‖u‖4

L4(R) + ‖v‖4
L4(R) +

2β
∫

R
|u|2|v|2dx). Here, ‖ · ‖L2(R) and ‖ · ‖L4(R) denote the L2-norm and L4-norm, respectively.

Proof. Computing the inner product of u and v with (1) and (2) respectively, and then taking the imagine parts of
the resulting equations, we can immediately obtain (5). Moreover, computing the inner product of ut and vt with (1)
and (2), respectively, and then taking the real parts of the resulting equations, we can also derive (6). �

The above conservation properties of the exact solutions u(x, t) and v(x, t) also motivate us to study the conserva-
tion results along the numerical front. As we all know, the conservative schemes perform better than the nonconserva-
tive ones for the classical Schrödinger equation. In [53], Zhang et al. proposed that the nonconservative schemes may
easily show their nonlinear blow-up. Li and Vu-Quoc [54] pointed out that one of the criterions to judge the success of
a numerical simulation was the ability to preserve some invariant properties of the original differential equation. For
the FSEs, there have been a lot of numerical methods satisfying the conservation properties. For example, the schemes
in [20,24] are mass conservative, and the schemes in [21–23,25,27,55] satisfy both the mass and energy conservation.
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All these schemes show their advantages in the long-time simulation. Nevertheless, to the best of our knowledge, there
is no work to utilize the high-order quasi-compact split-step difference scheme to study the conservation properties of
the space fractional CNLS.

This paper is organized as follows. In sect. 2, we introduce the quasi-compact WSGD operator for discretizing the
Riesz fractional derivatives, and the definitions and properties of the fractional Sobolev norm. In sect. 3, the quasi-
compact split-step WSGD scheme is derived for the fractional CNLS. In sect. 4, the rigorous theoretical analysis,
including the conservation laws, prior boundedness and unconditional error estimates, are given for the difference
scheme of the linear problem. Moreover, we show in this section that the constructed quasi-compact split-step difference
scheme of the nonlinear problem can also keep the conservation law in the mass sense. For the multi-dimensional system,
we derive a quasi-compact ADI split-step difference method in sect. 6. In sect. 7, numerical examples are performed to
check our theoretical results and show the efficiency of the proposed schemes. Some conclusions are drawn in sect. 8,
and some other three difference schemes in two dimensions are introduced in sect. A for the demand of the experiment.

2 Preliminaries

2.1 Quasi-compact WSGD operator for Riesz fractional derivatives

Various numerical methods have been given for approximating the Riemann-Liouville fractional derivative, such as the
first-order accuracy shifted Grünwald scheme [56,57], second-order accurate weighted and shifted Grünwald difference
scheme [58], high-order difference algorithms [59–63]. The shifted Grünwald formulae is defined by [56]

LA α
h,pu(x) :=

1
hα

∞∑
l=0

g
(α)
l u(x − (l − p)h) = −∞Dα

x u(x) + O(h), (7a)

RA α
h,pu(x) :=

1
hα

∞∑
l=0

g
(α)
l u(x + (l − r)h) = xDα

+∞u(x) + O(h), (7b)

where p, r are integers and gα
l (l ≥ 0) are the coefficients of the power series of (1 − z)α, such that

(1 − z)α =
∞∑

l=0

(−1)l

(
α

l

)
zl =

∞∑
l=0

g
(α)
l zl, |z| < 1. (8)

Obviously, the coefficients {gα
l } can be computed by the following recursive form:

g
(α)
0 = 1, g

(α)
l =

(
1 − α + 1

l

)
g
(α)
l−1, l = 1, 2, . . . .

The weighted and shifted Grünwald difference (WSGD) operators are then given by [63]

LDα
h u(x) = λ1LA α

h,1u(x) + λ0LA α
h,0u(x) + λ−1LA α

h,−1u(x),

RDα
h u(x) = λ1RA α

h,1u(x) + λ0RA α
h,0u(x) + λ−1RA α

h,−1u(x), (9)

where

λ1 =
α2 + 3α + 2

12
, λ0 =

4 − α2

6
, λ−1 =

α2 − 3α + 2
12

.

Therefore, rearranging the WSGD operators obtains that

LDα
h u(x) =

1
hα

∞∑
l=0

w
(α)
l u(x − (l − 1)h), RDα

h u(x) =
1
hα

∞∑
l=0

w
(α)
l u(x + (l − 1)h), (10)

where the coefficients w
(α)
i (i ≥ 0) are defined by

w
(α)
0 = λ1g

(α)
0 , w

(α)
1 = λ1g

(α)
1 + λ0g

(α)
0 , w

(α)
l = λ1g

(α)
l + λ0g

(α)
l−1 + λ−1g

(α)
l−2 (l ≥ 2). (11)

Lemma 1. (See [63, 64].) The coefficients w
(α)
i (i ≥ 0) have the properties

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

w
(α)
0 ≥ 0, w

(α)
1 ≥ 0, w

(α)
l ≥ 0, l ≥ 3,

+∞∑
l=0

w
(α)
l = 0,

M∑
l=0

w
(α)
l ≤ 0, M ≥ 1,

w
(α)
0 + w

(α)
2 ≥ 0.

(12)
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When 1 < α < 2, the inequalities in (12) are strictly true, i.e., the sign “≤” and “≥” can be substituted by “<” and
“>”.

The quasi-compact operator is defined by

Aα
xu(x) := (I + dαh2δ2

x)u(x), (13)

where I is the identity operator, dα = (−α2 + α + 4)/24 and

δ2
xu(x) =

u(x − h) + u(x) + u(x + h)
h2

.

The following lemma gives the error estimates between the Riemann Liouville derivatives and the quasi-compact
WSGD operators.

Lemma 2. (See [63].) Suppose that u ∈ L1(R) and

u(x) ∈ C 4+α(R) :=
{

u

∣∣∣∣
∫ +∞

−∞
(1 + |ξ|)4+α|û(ξ)|dξ < ∞

}
,

where û(ξ) is the Fourier transformation of u(x). Then for a fixed h, the quasi-compact operators hold

LDα
h u(x) := Aα

x(−∞Dα
x u(x)) + O(h4), RDα

h u(x) := Aα
x(xDα

+∞u(x)) + O(h4),

uniformly for x ∈ R. Particularly, if α = 2, then it coincides with the approximation of the second-order derivative.

Define

Δα
hu(x) :=

1
2 cos απ

2

(LDα
h u(x) + RDα

h u(x))

=
1
hα

1
2 cos απ

2

( ∞∑
l=0

w
(α)
l u(x − (l − 1)h) +

∞∑
l=0

w
(α)
l u(x + (l − 1)h)

)
. (14)

From lemma 2, we have

Δα
hu(x) = Aα

x((−Δ)
α
2 u(x)) + O(h4), u(x) ∈ L1(R) ∩ C 4+α(R). (15)

It is remarkable that when we replace the quasi-compact Aα
x by the identity operator I, we have

Δα
hu(x) = (−Δ)

α
2 u(x) + O(h2), u(x) ∈ L1(R) ∩ C 2+α(R). (16)

2.2 Fractional Sobolev norm

Denote hZ be the infinite grid with the gird points xj = jh for j ∈ Z. For any grid functions u = {uj} and ω = {ωj}
on hZ, we define the discrete inner product and its associated l2h norm as

(u, v) = h
∑
j∈Z

uj v̄j , ‖u‖2 = (u, u),

where v̄ denotes the conjugate of v. Furthermore, the discrete lp norms are defined by

‖u‖p
lp = h

∑
j∈Z

|uj |p (1 ≤ p < +∞), ‖u‖l∞ = sup
j∈Z

|uj |.

For any u ∈ l2h := {u | u = {uj}, ‖u‖h < +∞, j ∈ Z}, denote û ∈ L2[−π/h, π/h] be the semi-discrete Fourier
transform of u, i.e.,

û(k) :=
1√
2π

h
∑
j∈Z

uje
−ikxj

(see [65,66]). Obviously,

uj =
1√
2π

∫ π/h

−π/h

û(k)eikxj dk.
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By using Parseval’s theorem, we have

(u,w)h =
∫ π/h

−π/h

û(k)ŵ(k)dk.

Define the fractional Sobolev semi-norm and norm as follows:

|u|2Hμ =
∫ π/h

−π/h

|k|2μ|û(k)|2dk, ‖u‖2
Hμ = ‖u‖2 + |u|2Hμ . (17)

We now introduce the following two lemmas, which play the essential role in the subsequent theoretical analysis [52].

Lemma 3. (Discrete Sobolev inequality.) For any 1/2 < μ ≤ 1, there exists a constant Cμ = C(μ) > 0, such that

‖u‖l∞ ≤ Cμ‖u‖Hμ . (18)

Lemma 4. For any 1 < α ≤ 2, we have
Cα|u|2H α

2
≤ (Δα

hu, u) ≤ |u|2
H

α
2
, (19)

where Cα = 2α(1−α2)
3πα cos απ

2
> 0.

3 Derivation of a quasi-compact split-step WSGD scheme

In practical computation, if u(x, t) and v(x, t) are defined on the finite interval Ω = (a, b) and satisfy the homogeneous
boundary conditions, we can extend the functions by taking u(x, t) ≡ 0 and v(x, t) ≡ 0 for x ≤ a and x ≥ b,
respectively. Therefore, the space fractional CNLS (1)–(3) is truncated as

iut − κ(−Δ)
α
2 u + ρ(|u|2 + β|v|2)u = 0, (x, t) ∈ Ω × (0, T ], (20)

ivt − κ(−Δ)
α
2 v + ρ(|v|2 + β|u|2)v = 0, x ∈ Ω × (0, T ], (21)

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω, (22)
u(x, t) = 0, v(x, t) = 0, x ∈ R\Ω, t ∈ [0, T ], (23)

where, under the homogeneous boundary conditions, the Riesz fractional derivative has reduced to

−(−Δ)
α
2 u(x, t) = − 1

2 cos απ
2

[aDα
x u(x, t) + xDα

b u(x, t)].

The boundary conditions (23) are referred to as the nonlocal volume constraint (or the extended Dirichlet boundary)
and the corresponding problem (20)–(23) as the volume constraint problem (see [67,68]).

Let M , N be any positive integers and h = (b− a)/M , τ = T/N . We define a partition of [0, T ]× [a, b] by Ωτ ×Ωh

with the grid Ωτ = {tn = nτ ; n = 0, 1, · · · , N} and Ωh = {xj = a + jh; j = 0, 1, · · · ,M}. From (10), if u ∈ C 4+α(R)
(see remark 2.5 in [63]), we have the simplified WSGD operator

LDα
h u(x) :=

1
hα

j+1∑
l=0

w
(α)
l u(xj−l+1) = aDα

x u(x) + O(h2), (24a)

RDα
h u(x) :=

1
hα

M−j+1∑
l=0

w
(α)
l u(xj+l−1) = xDα

b u(x) + O(h2). (24b)

Then, we get the following WSGD approximation of the Riesz fractional derivative

Δα
hu(x) =

1
2 cos απ

2

(LDα
h u(x) + RDα

h u(x))

=
1
hα

1
2 cos απ

2

(
j+1∑
l=0

w
(α)
l u(xj−l+1) +

M−j+1∑
l=0

w
(α)
l u(xj+l−1)

)

= Aα
x((−Δ)

α
2 u(x)) + O(h4), (25)
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Given any sequence of grid function ϕ = {ϕn
j | (xj , tn) ∈ Ωh × Ωτ}, we denote

δtϕ
n+ 1

2
j =

ϕn+1
j − ϕn

j

τ
, ϕ

n+ 1
2

j =
ϕn+1

j + ϕn
j

2
.

For convenience, we denote the index set TM = {j | j = 1, 2, · · · ,M −1} and the grid function space Vh = {ϕ | ϕ =
(ϕ1, ϕ2, · · · , ϕM−1)}. Moreover, under the boundary constraint (23), the previously defined norms are now restricted
in TM .

With these premises, we intend to derive the high-order quasi-compact split-step difference scheme of the space
fractional CNLS (20)–(23). To this end, we first split (20) and (21) into linear equations,

ut = Lu(x, t) = −iκ(−Δ)
α
2 u, vt = Lv(x, t) = −iκ(−Δ)

α
2 v, (26)

and nonlinear equations,

ut = N1(u, v) = iρ(|u|2 + β|v|2)u, vt = N2(u, v) = iρ(|v|2 + β|u|2)v. (27)

We will solve the linear equations (26) by the quasi-compact difference method in space and Crank-Nicolson scheme
in time. For the nonlinear equations (27), they can be integrated exactly in the physical space.

Considering (26) on the grid points xj (j ∈ TM ), and taking the quasi-compact operator Aα
x on both sides of the

resulting equations give
Aα

xut(xj , t) = Aα
x(Lu(xj , t)) = −iκAα

x((−Δ)
α
2 u(xj , t)) (28)

and
Aα

xvt(xj , t) = Aα
x(Lv(xj , t)) = −iκAα

x((−Δ)
α
2 v(xj , t)). (29)

By virtue of (15), we have

Aα
xut(xj , t) = −iκΔα

hu(xj , t) + O(h4), Aα
xvt(xj , t) = −iκΔα

hv(xj , t) + O(h4). (30)

Denote grid functions Un
j := u(xj , tn) (j ∈ TM , 0 ≤ n ≤ N). Then, by using Taylor’s expansion, we get

ut(xj , tn+ 1
2
) = δtU

n+ 1
2

j + O(τ2), Δα
hU

n+ 1
2

j =
Δα

hUn+1
j + Δα

hUn
j

2
+ O(τ2). (31)

Hence, taking t = tn+ 1
2

in (28) and utilizing (31) give

Aα
xδtU

n+ 1
2

j = −iκΔα
hÛ

n+ 1
2

j + R
n+ 1

2
j , (32)

where Û
n+ 1

2
j := (Un+1

j + Un
j )/2 and |Rn+ 1

2
j | = O(τ2 + h4). Similarly, we have

Aα
xδtV

n+ 1
2

j = −iκΔα
h V̂

n+ 1
2

j + P
n+ 1

2
j , (33)

in which |Pn+ 1
2

j | = O(τ2 + h4).

Let un
j and vn

j be the approximation of u(xj , tn) and v(xj , tn). Then, omitting the truncation errors R
n+ 1

2
j and

P
n+ 1

2
j in (32) and (33) respectively, the quasi-compact difference schemes of the linear equations (26) read

Aα
xδtu

n+ 1
2

j + iκΔα
hu

n+ 1
2

j = 0, j ∈ TM , 0 ≤ n ≤ N − 1, (34)

Aα
xδtv

n+ 1
2

j + iκΔα
hv

n+ 1
2

j = 0, j ∈ TM , 0 ≤ n ≤ N − 1, (35)

u0
j = u0(xj), v0

j = v0(xj), j ∈ TM , (36)

un
j = 0, vn

j = 0, j ∈ Z\TM , 0 ≤ n ≤ N. (37)

Algorithms. The quasi-compact split-step finite difference (SSFD) method for the space fractional CNLS (20)–(23)
from time tn to time tn+1.

Step 1: for j = 0(1)M

u
n(1)
j = exp

{
iρ

(
|un

j |2 + β|vn
j |2

)
τ/2

}
un

j , (38)

v
n(1)
j = exp

{
iρ

(
|vn

j |2 + β|un
j |2

)
τ/2

}
vn

j , (39)
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Step 2: for j = 1(1)M − 1

Aα
xu

n(2)
j −Aα

xu
n(1)
j

τ
+ iκ

Δα
hu

n(2)
j + Δα

hu
n(1)
j

2
= 0, (40)

Aα
xv

n(2)
j −Aα

xv
n(1)
j

τ
+ iκ

Δα
hv

n(2)
j + Δα

hv
n(1)
j

2
= 0. (41)

Step 3: for j = 0(1)M

un+1
j = exp

{
iρ

(∣∣∣un(2)
j

∣∣∣2 + β
∣∣∣vn(2)

j

∣∣∣2
)

τ/2
}

u
n(2)
j , (42)

vn+1
j = exp

{
iρ

(∣∣∣vn(2)
j

∣∣∣2 + β
∣∣∣un(2)

j

∣∣∣2
)

τ/2
}

v
n(2)
j . (43)

4 Theoretical properties of the quasi-compact difference scheme

In this section, we show the theoretical analysis of the quasi-compact difference scheme (34)–(37), including the
discrete conservation laws, uniform boundedness and optimal higher order error estimate. To this end, We first give
the following properties of the operators Aα

x and Δα
h that are needed hereafter.

Lemma 5. (See [63].) Aα
x is self-adjoint, i.e., for any u, v ∈ Vh, it holds that

(Aα
xu, v) = (u,Aα

xv).

Lemma 6. (See [63].) For any u ∈ Vh, it holds that

1
3
‖u‖2 ≤ ‖u‖2

A ≤ ‖u‖2,

where ‖u‖A :=
√

(Aα
xu, u).

Lemma 7. (See [64].) For any two grid functions u, v ∈ Vh, there exists a linear operator Λα such that

(Δα
hu, v) = (Λαu,Λαv).

We define below Im(s) and Re(s) as the imaginary part and the real part of a complex number s, respectively.
Then, a simple calculation by above lemmas gives

Lemma 8. For any grid function un ∈ Vh, 0 ≤ n ≤ N , we have

Re
(
Aα

xδtu
n+ 1

2 , un+ 1
2

)
=

1
2τ

(
‖un+1‖2

A − ‖un‖2
A

)
, (44)

Re
(
Δα

hun+ 1
2 , δtu

n+ 1
2

)
=

1
2τ

(
‖Λαun+1‖2 − ‖Λαun‖2

)
. (45)

Proof. It is obvious that

(
Aα

xδtu
n+ 1

2 , un+ 1
2

)
=

1
2τ

{
(Aα

xun+1, un+1) + (Aα
xun+1, un) − (Aα

xun, un+1) + (Aα
xun, un)

}

=
1
2τ

{
‖un+1‖2

A + (Aα
xun+1, un) − (Aα

xun, un+1) + ‖un‖2
A
}

.

From lemma 5, we have (Aα
xun+1, un) = (un+1,Aα

xun). Therefore, we get

Re
(
Aα

xδtu
n+ 1

2 , un+ 1
2

)
=

1
2τ

(
‖un+1‖2

A − ‖un‖2
A

)
.

Similarly as above method and by using lemma 7, we can derive (45). �
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Theorem 1. The quasi-compact difference solution of scheme (34)–(37) is conservative in the following senses:

Mn
1 ≡ M0

1 , Mn
2 ≡ M0

2 , En
1 ≡ E0

1 , En
2 ≡ E0

2 , n = 1, 2, . . . , N, (46)

where
Mn

1 := ‖un‖2
A, Mn

2 := ‖vn‖2
A, En

1 := ‖Λαun‖2, En
2 := ‖Λαvn‖2.

Proof. Making the inner product of (34) with un+ 1
2 , taking the imaginary part of the resulting equation, and by using

lemma 8, we obtain Mn+1
1 = Mn

1 , which implies Mn
1 ≡ M0

1 for n = 1, 2, . . . , N . Making the inner product of (34) with
δtu

n+ 1
2 , taking the imaginary part of the resulting equation, and by using lemma 8, we obtain En+1

1 = En
1 , which

implies En
1 ≡ E0

1 for n = 1, 2, . . . , N . Similarly, we can obtain Mn
2 ≡ M0

2 and En
2 ≡ E0

2 for n = 1, 2, . . . , N . �

Remark 1. Indeed, the mass conservation results (i.e., ‖un‖ ≡ ‖u0‖ and ‖vn‖ ≡ ‖v0‖, 0 ≤ n ≤ N) are still valid. We
will give the detailed proof in sect. 5.

Next, we establish the prior boundedness of the discrete solutions.

Theorem 2. The solutions of the scheme (34)–(36) are bounded in the following senses:

‖un‖ ≤ Cu1 , |un|
H

α
2
≤ Cu2 , ‖un‖l∞ ≤ Cu3 , 0 ≤ n ≤ N (47)

and
‖vn‖ ≤ Cv1 , |vn|

H
α
2
≤ Cv2 , ‖vn‖l∞ ≤ Cv3 , 0 ≤ n ≤ N, (48)

where Cu1 , Cu2 , Cu3 , and Cv1 , Cv2 , Cv3 are some positive constants.

Proof. From lemma 6 and the compact-norm conservation (46), we easily obtain the first inequality in (47). Then by
the conservation result of En

1 in (46), from lemma 4, the second inequality is arrived at immediately. Finally, combining
the first two inequalities in (47) with the discrete Sobolev inequality (18) implies that

‖un‖2
l∞ ≤ C2

μ

(
‖un‖2 + |un|2

H
α
2

)
≤ C2

μ(C2
u1

+ C2
u2

) := C2
u3

, 0 ≤ n ≤ N.

The results of vn follow analogue. Thus, we complete the proof. �

Finally, we establish the unconditional error estimates of the quasi-compact scheme (34)–(37). For convenience, we
define the error functions en ∈ Vh and En ∈ Vh as

en
j = Un

j − un
j , En

j = V n
j − vn

j , j ∈ TM , 0 ≤ n ≤ N.

Subtracting (34) from (32), and (35) from (33), we obtain the following error equations:

Aα
xδte

n+ 1
2

j + iκΔα
he

n+ 1
2

j = R
n+ 1

2
j , j ∈ TM , 0 ≤ n ≤ N − 1 (49)

and
Aα

xδtE
n+ 1

2
j + iκΔα

hE
n+ 1

2
j = R

n+ 1
2

j , j ∈ TM , 0 ≤ n ≤ N − 1, (50)

with the initial and boundary conditions

e0
j = 0, j ∈ TM , (51)

en
j = 0, j ∈ Z\TM , 0 ≤ n ≤ N. (52)

Theorem 3. Suppose that the exact solutions of the original problem (20)–(22) under the condition ρ = 0 are sufficiently
smooth. Then we have

‖en‖ + ‖En‖ ≤ C(τ2 + h4), 0 ≤ n ≤ N, (53)

where C is a positive constant independent of h and τ .

Proof. Computing the inner product of (49) with en+ 1
2 , taking the real part of the resulting equation, and by virtue

of lemma 8, we obtain
1
2τ

(‖en+1‖2
A − ‖en‖2

A) = Re
(
Rn+ 1

2 , en+ 1
2

)
. (54)
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For the term on the right-hand side of (54), by lemma 6, we have

Re
(
Rn+ 1

2 , en+ 1
2

)
≤

∥∥∥Rn+ 1
2

∥∥∥ ·
∥∥∥en+ 1

2

∥∥∥ ≤
∥∥∥Rn+ 1

2

∥∥∥ ·
√

3
∥∥∥en+ 1

2

∥∥∥
A
≤

√
3

2

∥∥∥Rn+ 1
2

∥∥∥ ·
(
‖en+1‖A + ‖en‖A

)
. (55)

Therefore, from (54) and (55), and by using ‖en+1‖2
A − ‖en‖2

A = (‖en+1‖A + ‖en‖A)(‖en+1‖A − ‖en‖A), we obtain

‖en+1‖A ≤ ‖en‖A +
√

3τ
∥∥∥Rn+ 1

2

∥∥∥ , (56)

which further implies

‖en+1‖A ≤ ‖e0‖A +
√

3τ

n∑
l=0

∥∥∥Rn+ 1
2

∥∥∥ ≤
√

3CRT (τ2 + h4). (57)

By lemma 6, we have
‖en+1‖ ≤

√
3‖en+1‖A ≤ C(τ2 + h4), (58)

where C = 3CRT . Similarly, we can obtain the estimate of ‖En‖. Therefore, we complete the proof of theorem 3. �

5 Conservative properties of the quasi-compact SSFD scheme

In this section, we study the conservative properties of the quasi-compact SSFD scheme (38)–(43). For u =
(u1, u2, · · · , uM−1)T , we rewrite Aα

xu and Δα
hu in the matrix forms

Aα
xu = Au, Δα

hu =
1
hα

Cu, (59)

where matrix A is a symmetric tri-diagonal matrix of (M − 1)-square, and matrix C := 1
2 cos απ

2
(W(α) + (W(α))T ) ∈

R
(M−1)×(M−1),

W(α) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w
(α)
1 w

(α)
0

w
(α)
2 w

(α)
1 w

(α)
0

... w
(α)
2 w

(α)
1

. . .

w
(α)
M−2

...
. . . . . . w

(α)
0

w
(α)
M−1 w

(α)
M−2 · · · w

(α)
2 w

(α)
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
(M−1)×(M−1).

From [19,60,64], we know that A and C are real-valued symmetric positive-definite matrices.
After above preparations, we now turn to prove the conservation properties of the quasi-compact SSFD scheme.

Theorem 4. The quasi-compact SSFD method (34)–(36) is conservative in the senses

Mn
u ≡ M0

u , Mn
v ≡ M0

v , 0 ≤ n ≤ N, (60)

where
Mn

u := ‖un‖2, Mn
v := ‖vn‖2,

are the mass in the discrete senses.

Proof. Denote u = ϕ + iψ and ũ = (ϕ1, ϕ2, · · · , ϕM−1, ψ1, ψ2, · · · , ψM−1)T . It follows from (40) and (59) that

Hũn(2) = HT ũn(1), (61)

where

H :=
(

A −rC
rC A

)
, r :=

κτ

2hα
.

It is obvious that

HHT = HT H =
(

A2 + r2C2 0
0 A2 + r2C2

)
. (62)
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Hence, we have
(HHT )−1(HT H) = (HHT )−1(HHT ) = I.

Then, we obtain
H(HHT )−1HT = I.

Therefore, we conclude that

‖H−1HT ‖ =
√

ρ([H−1HT ]T [H−1HT ]) =
√

ρ(H(HHT )−1HT ) = 1. (63)

It follows from (62) and (63) that

‖ũn(2)‖ = ‖H−1HT ũn(1)‖ ≤ ‖H−1HT ‖ · ‖ũn(1)‖ ≤ ‖ũn(1)‖. (64)

Similarly, we have
‖ũn(1)‖ ≤ ‖ũn(2)‖. (65)

Therefore, by using (64) and (65), we get
‖ũn(2)‖ = ‖ũn(1)‖. (66)

Thus, it follows from (66) that
‖un(2)‖ = ‖un(1)‖. (67)

Further, according to (38) and (42), we get

‖un‖ = ‖un(1)‖, ‖un(2)‖ = ‖un+1‖. (68)

Consequently, combining (67) with (68) implies Mn
u ≡ M0

u . Similarly, we can conclude Mn
v ≡ M0

v . Therefore, the proof
is completed. �

Remark 2. The compact split-step difference scheme and the corresponding conclusions can be expended to K-coupled
Schrödinger equations

iult − κ(−Δ)
α
2 ul +

(
K∑

s=1

ρls|us|2
)

ul = 0, x ∈ R, t > 0, l = 0, 1 · · · ,K. (69)

We will show some numerical examples to illustrate some properties of (69) instead of stating them here for brevity of
the paper.

6 Extension to the two-dimensional problem

In this section, we adopt the quasi-compact SSFD method to solve the two-dimensional space fractional CNLS

iut − κ
[
(−Δx)

α
2 u + (−Δy)

α
2 u

]
+ ρ(|u|2 + β|v|2)u = 0, (x, y, t) ∈ Ωd × (0, T ], (70)

ivt − κ
[
(−Δx)

α
2 v + (−Δy)

α
2 v

]
+ ρ(|v|2 + β|u|2)v = 0, (x, y, t) ∈ Ωd × (0, T ], (71)

u(x, y, 0) = u0(x, y), v(x, y, 0) = v0(x, y), (x, y) ∈ Ωd, (72)

u(x, y, t) = 0, (x, y, t) ∈ ∂Ωd × (0, T ], (73)

where Ωd = Ωd
x × Ωd

y = (a, b) × (c, d).
We denote hx = (b − a)/M1 and hy = (d − c)/M2. Define a partition of [a, b] × [c, d] by Ωd

hx
× Ωd

hy
with the grid

Ωd
hx

= {xj = a+ jhx; j = 0, 1, · · · ,M1} and Ωd
hy

= {yj = c+ jhy; j = 0, 1, · · · ,M2}. In addition, we denote the index
set TM1×M2 = {(i, j) | i = 1, 2, · · · ,M1 − 1, j = 1, 2, · · · ,M2 − 1}. Similarly as the one-dimensional case, we define

Δα
hu(x, y, t) = Δα

hx
u(x, y, t) + Δα

hy
u(x, y, t),

where Δα
hx

u(x, y, t) and Δα
hy

u(x, y, t) are given by (25) in the x- and y-direction, respectively, in which, LDα
hx

u(x, y, t)
(or LDα

hy
u(x, y, t)) and RDα

hx
u(x, y, t) (or RDα

hy
u(x, y, t)) are denoted by (24). Then, denote Aα

x and Aα
y be the quasi-

compact operators in the x- and y-direction, respectively. Similarly as the one-dimensional case, one obtains

Δα
hx

u(x, y, t) = Aα
x((−Δx)

α
2 u(x, y, t)) + O(h4

x), Δα
hy

u(x, y, t) = Aα
y ((−Δy)

α
2 u(x, y, t)) + O(h4

y). (74)
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In what follows, we first consider the linear space fractional CNLS, i.e., ρ = 0. A simple calculation yields

Aα
xAα

y δtU
n+ 1

2
i,j + iκ

[
Aα

y Δα
hx

U
n+ 1

2
i,j + Aα

xΔα
hy

U
n+ 1

2
i,j

]
= R

n+ 1
2

U , (i, j) ∈ TM1×M2 , 1 ≤ n ≤ N − 1, (75)

Aα
xAα

y δtV
n+ 1

2
i,j + iκ

[
Aα

y Δα
hx

V
n+ 1

2
i,j + Aα

xΔα
hy

V
n+ 1

2
i,j

]
= R

n+ 1
2

V , (i, j) ∈ TM1×M2 , 1 ≤ n ≤ N − 1, (76)

where R
n+ 1

2
U and R

n+ 1
2

V denote the truncation errors. Obviously, we have∣∣∣Rn+ 1
2

U

∣∣∣ ≤ CRU
(τ2 + h4

x + h4
y),

∣∣∣Rn+ 1
2

V

∣∣∣ ≤ CRV
(τ2 + h4

x + h4
y),

where CRU
and CRV

are positive constants independent of h and τ . Adding the small items − τ2

4 Δα
hx

Δα
hy

δtU
n+ 1

2
i,j and

− τ2

4 Δα
hx

Δα
hy

δtV
n+ 1

2
i,j into (75) and (76) respectively, one obtains
(
Aα

x + i
τ

2
Δα

hx

)(
Aα

y + i
τ

2
Δα

hy

)
Un+1

i,j =
(
Aα

x − i
τ

2
Δα

hx

)(
Aα

y − i
τ

2
Δα

hy

)
Un+1

i,j + R̂
n+ 1

2
U , (77)

(
Aα

x + i
τ

2
Δα

hx

)(
Aα

y + i
τ

2
Δα

hy

)
V n+1

i,j =
(
Aα

x − i
τ

2
Δα

hx

)(
Aα

y − i
τ

2
Δα

hy

)
V n+1

i,j + R̂
n+ 1

2
V , (78)

where

R̂
n+ 1

2
U = R

n+ 1
2

U − τ2

4
Δα

hx
Δα

hy
δtU

n+ 1
2

i,j ,

R̂
n+ 1

2
V = R

n+ 1
2

V − τ2

4
Δα

hx
Δα

hy
δtV

n+ 1
2

i,j .

It is obvious that ∣∣∣R̂n+ 1
2

U

∣∣∣ = O(τ2 + h4
x + h4

y),

∣∣∣R̂n+ 1
2

V

∣∣∣ = O(τ2 + h4
x + h4

y).

Then, removing the local truncation errors R̂
n+ 1

2
U and R̂

n+ 1
2

V in (77)–(78) arrives at the following alternating direction
implicit (ADI) difference schemes(

Aα
x + i

τ

2
Δα

hx

)(
Aα

y + i
τ

2
Δα

hy

)
un+1

i,j =
(
Aα

x − i
τ

2
Δα

hx

)(
Aα

y − i
τ

2
Δα

hy

)
un

i,j , (79)

(
Aα

x + i
τ

2
Δα

hx

)(
Aα

y + i
τ

2
Δα

hy

)
vn+1

i,j =
(
Aα

x − i
τ

2
Δα

hx

)(
Aα

y − i
τ

2
Δα

hy

)
vn

i,j , (80)

u0
i,j = u0(xi, yj), v0

i,j = v0(xi, yj), (i, j) ∈ Z
2, (81)

un
i,j = 0, vn

i,j = 0, (i, j) ∈ Z
2\TM1×M2 , 1 ≤ n ≤ N. (82)

To seek the solutions un+1 and vn+1, the Peaceman-Rachford ADI scheme is adopted. Firstly, we solve(
Aα

x + i
τ

2
Δα

hx

)
u∗

i,j =
(
Aα

y − i
τ

2
Δα

hy

)
un

i,j ,
(
Aα

x + i
τ

2
Δα

hx

)
v∗

i,j =
(
Aα

y − i
τ

2
Δα

hy

)
vn

i,j , (83)

and then (
Aα

y + i
τ

2
Δα

hy

)
un+1

i,j =
(
Aα

x − i
τ

2
Δα

hx

)
u∗

i,j ,
(
Aα

y + i
τ

2
Δα

hy

)
vn+1

i,j =
(
Aα

x − i
τ

2
Δα

hx

)
v∗

i,j , (84)

where (i, j) ∈ TM1×M2 , 1 ≤ n ≤ N − 1. Denote en
i,j = Un

i,j − un
i,j and En

i,j = V n
i,j − vn

i,j , 0 ≤ n ≤ N . Then, one obtains
the error equations(

Aα
x + i

τ

2
Δα

hx

)(
Aα

y + i
τ

2
Δα

hy

)
en+1

i,j =
(
Aα

x − i
τ

2
Δα

hx

)(
Aα

y − i
τ

2
Δα

hy

)
en

i,j + R̂
n+ 1

2
U , (85)

(
Aα

x + i
τ

2
Δα

hx

)(
Aα

y + i
τ

2
Δα

hy

)
En+1

i,j =
(
Aα

x − i
τ

2
Δα

hx

)(
Aα

y − i
τ

2
Δα

hy

)
En

i,j + R̂
n+ 1

2
V . (86)

Then, similarly as theorem 3.3 in [26], we arrive at the following approximation results.
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Theorem 5. Suppose that the exact solutions of the original problem (70)–(73) under the condition ρ = 0 are sufficiently
smooth. Then we have for 0 ≤ n ≤ N ,

‖en‖ ≤ Ce(τ2 + h4
x + h4

y), ‖En‖ ≤ CE(τ2 + h4
x + h4

y), (87)

where Ce and CE are positive constants independent of hx, hy and τ .

For the nonlinear system (70)–(73), we put forward a split-step algorithm as follows.

Algorithms. The quasi-compact ADI SSFD method for the nonlinear two-dimensional space fractional CNLS (70)–(73)
from time tn to time tn+1, 1 ≤ n ≤ N − 1.

Step 1: for i = 0(1)M1, j = 0(1)M2

u
n(1)
i,j = exp

{
iρ

(
|un

i,j |2 + β|vn
i,j |2

)
τ/2

}
un

i,j , (88)

v
n(1)
i,j = exp

{
iρ

(
|vn

i,j |2 + β|un
i,j |2

)
τ/2

}
vn

i,j . (89)

Step 2: for i = 1(1)M1 − 1, j = 1(1)M2 − 1
(
Aα

x + i
τ

2
Δα

hx

)(
Aα

y + i
τ

2
Δα

hy

)
u

n(2)
i,j =

(
Aα

x − i
τ

2
Δα

hx

)(
Aα

y − i
τ

2
Δα

hy

)
u

n(1)
i,j , (90)

(
Aα

x + i
τ

2
Δα

hx

)(
Aα

y + i
τ

2
Δα

hy

)
v

n(2)
i,j =

(
Aα

x − i
τ

2
Δα

hx

)(
Aα

y − i
τ

2
Δα

hy

)
v

n(1)
i,j . (91)

Step 3: for i = 0(1)M1, j = 0(1)M2

un+1
i,j = exp

{
iρ

(∣∣∣un(2)
i,j

∣∣∣2 + β
∣∣∣vn(2)

i,j

∣∣∣2
)

τ/2
}

u
n(2)
i,j , (92)

vn+1
i,j = exp

{
iρ

(∣∣∣vn(2)
i,j

∣∣∣2 + β
∣∣∣un(2)

i,j

∣∣∣2
)

τ/2
}

v
n(2)
i,j . (93)

For the difference scheme (88)–(93), the mass conservation results can be obtained following similar lines as theo-
rem 4. For brevity of the paper, we omit the proof here.

7 Numerical experiments

All our tests are performed under MATLAB 2012a on a Dell desktop with i7-4790 CPU and 8 GB memory.

Example 1. Consider (1)–(3) with the initial conditions [20–22,45,46]

u(x, 0) = sech(x + D0) · exp(iV0x),

v(x, 0) = sech(x − D0) · exp(−iV0x). (94)

In this example, the considered domain is (x, t) ∈ [−20, 20]× [0, T ], and we choose the parameters D0 = 10, V0 = 3,
κ = 1, ρ = 1 and β = 3.

Firstly, the convergent rates in temporal and spatial directions for the quasi-compact SSFD method are checked.
We obtain the numerical “exact” solutions Un and V n by the schemes with a very fine mesh and a small time step,
e.g. h = 0.0125 and τ = 0.0001. In order to check the temporal convergent rate, the spatial step is fixed small enough.
Moreover, to check the spatial convergent rate, we take the temporal step sufficiently small. In this example, we choose
h = 0.0125 and τ = 0.0001, respectively. Due to the consistency of the errors and convergence orders for un and vn,
we only plot the errors between the numerical solution un and the “exact” solution Un in fig. 1 which show that the
scheme is of second order in temporal direction and fourth order in spatial direction. In this experiment, we take T = 1
and denote eu = un − Un.

Secondly, we study the conservation laws in the mass sense. Define Qn
u = ‖un‖ and Qn

v = ‖vn‖ for 0 ≤ n ≤ N .
Table 1 and fig. 2 show the values of |Q

n
u−Q0

u

Q0
u

| or |Q
n
v −Q0

v

Q0
v

| for different values of α. We observe that the scheme is
conservative in the mass, and this supports the result of theorem 4. In this experiment, we choose τ = h = 0.05.

Finally, we compare the errors via the SSFD method and quasi-compact SSFD method which show that although
the CPU time of both methods are almost the same, the quasi-compact SSFD method is more accurate than the SSFD
method (see table 2).
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Fig. 1. Convergent rate in time and space.

Table 1. The values of |Qn
u−Q0

u
Q0

u
| or |Qn

v −Q0
v

Q0
v

| for different α and τ = h = 0.05.

α t = 1 t = 3 t = 5

1.2 2.8060e-12 2.6917e-10 3.6133e-10

1.5 4.4795e-12 4.2922e-12 2.7960e-10

1.8 1.7175e-12 1.4351e-12 6.3387e-11

2.0 4.7103e-16 4.7103e-16 5.1813e-15
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Table 2. Comparison of errors via SSFD and compact SSFD for different α.

α SSFD Compact SSFD

L∞-error L2-error L∞-error L2-error

1.2 1.1580e-01 1.6164e-01 2.2492e-03 2.8173e-03

1.4 1.3449e-01 1.9423e-01 4.0584e-03 5.6457e-03

1.6 1.2795e-01 2.1656e-01 5.9709e-03 1.0051e-02

1.8 1.0717e-01 2.2449e-01 7.8972e-03 1.7008e-02

2.0 8.7339e-02 2.2764e-01 1.1061e-02 3.1426e-02
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Fig. 3. Convergent rates of u, v and w in temporal direction.

Example 2. In this example, we consider the following 3-coupled fractional Schrödinger equations [20–22,45,46]

iut − κ(−Δ)
α
2 u + ρ(|u|2 + β|v|2 + β|w|2)u = 0, x ∈ Ω, t > 0, (95)

ivt − κ(−Δ)
α
2 v + ρ(|v|2 + β|u|2 + β|w|2)v = 0, x ∈ Ω, t > 0, (96)

iwt − κ(−Δ)
α
2 w + ρ(|w|2 + β|u|2 + β|v|2)w = 0, x ∈ Ω, t > 0, (97)

where the initial conditions are given by

u(x, 0) = sech(x + D0) · exp(iV0x), v(x, 0) = sech(x), w(x, 0) = sech(x − D0) · exp(−iV0x). (98)

In this example, we choose the considered domain (x, t) ∈ [−20, 20] × [0, T ].

Firstly, similar as example 1, in order to check the convergence order of the difference scheme, we firstly obtain
the numerical “exact” solutions Un, V n and Wn by the schemes with a very fine mesh and a small time step, e.g.
h = 0.025 and τ = 0.0001. To check the convergence order of τ and h, we plot the errors of un (wn) and vn in fig. 3
and fig. 4. In this experiment, we choose the parameters D0 = 10, V0 = 3, κ = 1, ρ = 1 and β = 3.



Eur. Phys. J. Plus (2019) 134: 244 Page 15 of 22

10
2

10
−4

10
−3

10
−2

10
−1

10
0

M = xb− xa
h

er
r

eu ∞ or ew ∞

 

 
α=1.2
α=1.6
α=2.0
slope=−4

10
2

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

M = xb− xa
h

er
r

ev ∞

 

 
α=1.2
α=1.6
α=2.0
slope=−4

10
2

10
−4

10
−3

10
−2

10
−1

10
0

M = xb− xa
h

er
r

eu L 2 or ew L 2

 

 
α=1.2
α=1.6
α=2.0
slope=−4

10
2

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

M = xb− xa
h

er
r

ev L 2

 

 
α=1.2
α=1.6
α=2.0
slope=−4

Fig. 4. Convergent rates of u, v and w in spatial direction.

Table 3. The values of |Qn
u−Q0

u
Q0

u
| or |Qn

w−Q0
w

Q0
w

| for different α and τ = h = 0.05.

α t = 1 t = 3 t = 5

1.2 2.7927e-12 2.6178e-10 1.8549e-10

1.4 4.5096e-12 4.9189e-12 4.3988e-12

1.6 3.7188e-12 3.7150e-12 3.4675e-12

2.0 1.7271e-15 2.0411e-15 2.8262e-15

Table 4. The values of |Qn
v −Q0

v
Q0

v
| for different α and τ = h = 0.05.

α t = 1 t = 3 t = 5

1.2 8.9679e-10 3.6956e-09 4.3082e-09

1.4 1.7854e-10 6.9538e-10 5.1844e-10

1.6 2.8206e-11 7.9693e-11 5.9786e-11

2.0 1.9940e-14 5.2912e-14 8.8239e-14

Secondly, we study the conservation laws in the mass sense. See the details in table 3, table 4 and fig. 5.
Finally, we check that the order α will affect the shape of the soliton. From figs. 6–8, it is observed that the order α

dramatically influences the collision points of the three waves. In this experiment, we choose the parameters D0 = 10,
V0 = 3, κ = 1/2, ρ = 1 and β = 2.
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Fig. 5. The conservation laws of Qn
u, Qn

v and Qn
w.

Fig. 6. Profile (left) and contour plot (right) of |u|, |v| and |w| for α = 1.2.

Fig. 7. Profile (left) and contour plot (right) of |u|, |v| and |w| for α = 1.6.

Example 3. Consider (70)–(73) with the initial conditions [26, 45,46]

u(x, y, 0) =
2√
π

exp
(
−[(x − 3)2 + (y − 3)2]

)
, v(x, y, 0) =

2√
π

exp
(
−[(x + 3)2 + (y + 3)2]

)
. (99)

In this example, the considered domain is (x, y, t) ∈ [−10, 10] × [−10, 10] × [0, T ], and we choose the parameters
κ = 1, ρ = 1 and β = 3.
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Fig. 8. Profile (left) and contour plot (right) of |u|, |v| and |w| for α = 2.0.
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Fig. 9. Convergent rates of u and v in time and space.

Firstly, the convergence orders of the quasi-compact ADI SSFD method in time and space are given in fig. 9,
respectively. The numerical “exact” solutions Un and V n by the schemes with a very fine mesh and a small time step,
e.g. h = 0.025 and τ = 0.0001. It follows that the convergence order is O(τ2 + h4).

Secondly, by comparing the CPU times with the QCCN scheme, QCIM scheme, QCLI scheme and QCLII scheme,
we show the dramatic efficiency of the high-order quasi-compact split-step ADI (QCSSADI) scheme. We propose the
schemes in the appendix and the results of the comparison are given in table 5.
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Table 5. The CPU times of the CCN scheme, CIM scheme, CLI scheme and CLII scheme (seconds).

α M QCCN QCIM QCLI QCLII QCSSADI

1.2 25 1.6468 1.4127 7.9939 1.8103 0.0646

50 37.5997 35.3218 333.1728 43.8226 0.1098

1.5 25 1.4375 1.4759 7.8439 1.8210 0.0429

50 33.1416 35.3218 333.1728 43.8226 0.1079

1.8 25 1.3895 1.3662 8.2093 1.7239 0.0418

50 31.4152 31.7364 313.1218 42.2711 0.0956

2.0 25 1.3622 1.3224 8.2345 1.7581 0.0420

50 32.2549 31.3459 330.1181 41.1651 0.1188
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Fig. 10. The conservation laws of Qn
u and Qn

v .

Fig. 11. Profile (left) and contour plot (right) of |u| and |v| for α = 1.1.

Then, we also examine the conservation property of the QCSSADI scheme. The conservation results are shown in
fig. 10.

Finally, we use the QCSSADI scheme to simulate the dynamics of the model. Figures 11–14 depict the profiles
and contours of the wave functions with different α. It follows that the order α will affect the shape of the soliton.
We observe that as the decrease of α, the wave functions decay significantly faster, and moreover, the wave shapes
becoming taller and steeper. We get similar conclusions as the one-wave cases [26].
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Fig. 12. Profile (left) and contour plot (right) of |u| and |v| for α = 1.5.

Fig. 13. Profile (left) and contour plot (right) of |u| and |v| for α = 1.9.

Fig. 14. Profile (left) and contour plot (right) of |u| and |v| for α = 2.0.
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8 Conclusion

In this paper, we proposed and analyzed the quasi-compact split-step finite difference methods for the one- and two-
dimensional coupled fractional Schrödinger equations. For the linear problem, the conservation laws, prior boundedness
estimates and unconditional error estimates of the resulting schemes are proved rigorously. Moreover, for the nonlinear
problem, we showed that the quasi-compact SSFD scheme can keep the conservation law in the mass sense. Then,
the quasi-compact split-step method and the ADI technique were combined together for solving the multi-dimensional
problem. At last, numerical examples conformed our theoretical results and showed the efficiency of the proposed
schemes.
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Appendix A. Some other schemes

For comparison, we introduce other three difference schemes in two dimensions. The first one is the quasi-compact
Crank-Nicolson (QCCN) scheme
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y δtu
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2
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y Δα
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The second one is the quasi-compact implicit midpoint (QCIM) scheme
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The last one is the quasi-compact linearly implicit (QCLI) scheme
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In order to implement the numerical experiments, the efficient iterative algorithms of the QCCN and QCIM schemes
are also essential. See more details in [20–22,26]. Since a new coefficient matrix should be generated at each time step,
the compute of the QCLI scheme is very expensive. An iteration procedure (QCLII) is also proposed as follows:
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