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Abstract. This work is devoted to exploring the effects of f(G, T ) terms on the study of structure scalars
and their influence on the formulation of the Raychaudhuri, shear and Weyl scalar equations. For this
purpose, we have assumed non-static spherically symmetric geometry coupled with shearing viscous locally
anisotropic dissipative matter content. We have developed relations among Misner-Sharp mass, Weyl scalar,
matter and structure variables. We have also formulated a set of f(G, T ) structure scalars after orthogonally
breaking down the Riemann curvature tensor. The influences of these scalar functions on the modeling
of relativistic radiating spheres are also studied. The factor involved in the emergence of inhomogeneities
is also explored for the constant and varying modified curvature corrections. We inferred that f(G, T )
structure scalars could provide an effective tool to study the Penrose-Hawking singularity theorems and
the Newman-Penrose formalism.

1 Introduction

Even after the introduction of one century, the well-known General Relativity (GR) is considered itself as the most
effective relativistic theory to investigate the gravitational interactions in the sel-gravitating system and the related
scenarios. However, the need for the exploration of its alternatives cannot be ignored that stem from the confrontation
that GR presently experience [1–7]. The current burning issues of dark matter (DM) and accelerated expansion of our
cosmos (along with the cosmological constant (Λ) problem) urged the need of hour towards GR modification. After
performing a detailed analysis on the modified relativistic dynamics, Qadir et al. [8] suggested that GR may need
to extend for the discussion of DM problem, quantum gravity effects and some other related burning issues. Many
theoretical scheme have been seen in the literature with the aim to handle such problems.

The modified gravity theories (MGTs) are found to be one of the attractive mathematical tools to explore the dark
sector of the universe. various DE theoretical models are being suggested by modifying the gravitational part of the
usual Einstein-Hilbert (EH) action (for details, please see [9–12]). Nojiri and Odintsov [13] found some observationally
well-consistent modified gravity models (MGM) for the study of dark cosmic aspect. They inferred that there could
be few very interesting f(R) models that can provide the dynamical study of relativistic systems compatible with the
solar systems tests. Yousaf and Bhatti [14] claimed that some MGM prefer to host super-massive but with relatively
smaller radii compact objects.

The notable f(R) theory is found to be suffer from some scale dependence effects, which can not be ignored for the
exploration of one post-Newtonian term alone. Furthermore, it could be interesting to include amalgams of curvature
measuring mathematical quantities, like Riemann tensor (Rαβμν), Ricci tensor (Rμν) and its scalar (R) in the EH
action. This approach results with the f(G) gravity theory, in which G is a topological invariant Gauss-Bonnet term
and is defined as G = R−4RμνRμν +RμναβRμναβ . This theory was first introduced in [15]. Such theories could help out
to understand cosmic inflationary epochs and to see the transition phases of our cosmos in the accelerating phase from
the corresponding deceleration era. It could be considered as a viable substitute to understand DE issues [12, 16, 17].
Recently, this theory has been modified further by including corrections from the trace of energy-momentum tensor
(T ) in the EH action. This gravitational model is known as f(G,T ) theory. Just like Harko et al. [18] modified f(R)
to f(R, T ) theory.

Houndjo [19] calculated few observationally viable mathematical models for f(R, T ) gravity and claimed that
these could encode our cosmic dynamics associated with the matter dominated regime. Baffou et al. [20] applied

a e-mail: zeeshan.math@pu.edu.pk



Page 2 of 10 Eur. Phys. J. Plus (2019) 134: 245

perturbation theory to analyze the behavior of some cosmic mathematical models in the background of power law and
de-Sitter spacetime. Bamba et al. [21] studied the influences of extra degrees of freedom mediated by modified gravity
terms on the accelerating nature of our expanding universe. The phenomenon of gravitational instabilities for the self-
gravitating stellar interiors were examined in the mode of f(R) gravity by [22–24]. Yousaf and his collaborators studied
the collapse rate of the compact bodies in account of various modified theories with the planar [25–27], spherical [28–33]
and cylindrical [34, 35] environments. Ilyas et al. studied the impact of quadratic and exponential f(R, T ) models in
the mathematical modeling and stability of observationally well-consistent spherical stars. Moraes et al. [36] explored
hydrostatic state of strange stars in order to investigate their stable regimes with f(R, T ) = R+2λT model. Recently,
Bhatti et al. [37] performed computational analysis to check the role of logarithmic f(G,T ) models on the existence
of Her X-1 compact star.

Herrera et al. [38, 39] studied few dynamical features of cylindrical as well as spherical gravitational collapse after
evaluating junction conditions. Tewari et al. [40] examined effects of locally anisotropic pressure on the spherical
collapse. Sharif and Yousaf [41, 42] analyzed the problem of collapsing system by investigating the role of matter
variables in modified gravity. Recently, Yousaf et al. [43, 44] smoothly matched non-static irrotational cylindrical
spacetime with an exterior geometry of Einstein-Rosen bridge and examined the issue of dynamical instability. Sahoo
et al. [45] considered the problem of cosmic evolution and discussed some kinematical features of the temporal varying
deceleration parameters. Recently, Moraes et al. [46–48] studied various interesting cosmic and stellar issues in the
field of f(R, T ) theory.

The self-gravitating relativistic system would undergo the collapsing phase, once it experiences inhomogeneities
in its energy density. This has urged many researchers to explore those factors that are involved in the emergence of
irregularities in the initially homogeneous celestial object. Penrose and Hawking [49] discussed the causes of inhomo-
geneous energy density (IED) with the help of tidal forces producing tensor called the Weyl tensor for the relativistic
sphere. Herrera et al. [50] explored few parameters involved in the maintenance of IED in an environment of anisotropic
spheres and inferred that effects of anisotropy in the stellar pressure could to the formations of naked singularity (NS).
In the mathematical viewpoint, Virbhadra et al. [51–53] provided formula for helping the relativistic to analyze the
formation of NS and black holes during the evolutionary phases of stars.

Herrera et al. [54] studied the gravitational time arrow in the Einstein gravity for the radiating compact stars
and presented a relation among the tidal forces, IED and locally anisotropic pressure. Herrera et al. [55] explored
the variations of expansion scalar in the maintenance of IED foe the viscous charged spherical objects. Yousaf et
al. [56] extended these results for the case of radiating relativistic sphere with extra degrees of freedom coming from
modified gravity. They concluded that modified gravity terms has greatly influence the role of Weyl scalar in the
maintenance of IED. Bhatti and his collaborators [57, 58] examined some characteristics of collapsing spheres and
explored the corresponding IED factors in modified gravity. Herrera et al. [59] and Herrera [60] evaluated transport
equations for the spherically symmetric matter distributions which undergoes in the collapsing state as seen by a
tilted observer. Yousaf et al. [61] modified these results and looked into the effects of Palatini f(R) terms in the rate
of gravitational collapse. Most recently, Herrera [62] investigated that why observations of non-comoving congruences
observe dissipation from the celestial objects which seem to be isentropic for moving observers.

Here, we have extended the work of Herrera et al. [55] with the aim to analyze the influences of f(G,T ) =
αGn(βGm + 1) + λT model in the mathematical modeling of structure scalars, Weyl, expansion and shear equations.
We shall outline this paper as follows. The coming section will describe some equations required to describe f(G,T )
gravity and spherical dissipative viscous matter configurations. Section 3 is devoted to evaluating modified f(G,T )
structure scalars obtained from the orthogonal breaking down of the Riemann curvature tensor with power law Gauss
Bonnet and linear T terms. The role of differential equation corresponding to Weyl, shear and expansion scalars are
also discussed in this gravity. In sect. 4, we demonstrate the working of f(G,T ) scalar functions in the evolution of
IED over the surface of the initially smooth dust ball with constant G and T terms. Finally, we describe our conclusion
in the last section.

2 Spherical viscous spherical system and f(G, T) gravity

The action function for the theory of f(G,T ) gravity can be written as

S =
1
κ2

∫
d4x

√
−g

[
R

2
+ f(G,T )

]
+ SM (gμν , ψ) , (1)

where κ2 is a coupling constant which is taken to be unity here. In the above equation, GT is the Gauss-Bonnet term
whose expression with the help of the Ricci tensor (Rμν), scalar (R) and the Riemann curvature tensors (Rμναβ) can
be given as

G = RμναβRμναβ − 4RμνRμν + R.
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Further, g and SM are the metric tensor determinant and the matter action, respectively. The quantity T is the trace
of the following energy momentum tensor:

Tγδ = − 2√−g

δ(
√−gLm)
δgγδ

. (2)

This equation after some manipulations and assumptions, can be rewritten as

Tγδ = gγδLm − 2∂Lm

∂gγδ
, (3)

whose δ variations gives
δTγδ

δgμν
=

δgγδ

δgμν
Lm − 2∂2Lm

∂gμν∂gγδ
+ gγδ

∂Lm

∂gμν
. (4)

Upon varying eq. (1) with the metric tenor, we obtain the following f(G,T ) equations of motion:

Gγδ = T eff
γδ , (5)

where Gγδ = Rγδ − 1
2Rgγδ and T eff

γδ is

T eff
γδ = κ2Tγδ − (Tγδ + Θγδ)fT (G,T ) +

1
2
gγδf(G,T ) − (2RRγδ − 4Rε

γRεβ − 4RγεδηRεη + 2Rεημ
γ Rδεημ)fG(G,T )

− (2Rgγδ∇2 − 2R∇γ∇δ − 4Rγδ∇2 − 4gγδR
εη∇ε∇η + 4Rε

γ∇δ∇ε + 4Rε
δ∇γ∇ε + 4Rγεδη∇ε∇η)fG(G,T ),

where ∇γ is an operator for covariant derivations and ∇2 ≡ ∇γ∇γ and the subscript in the above terms describe the
respective partial differentiations. Moreover, the expression for Θγδ is given by

Θγδ = gμν δTμν

δgγδ
. (6)

After using eq. (4), eq. (6) turns out to be

Θγδ = gγδLm − 2Tγδ − 2gμν ∂2Lm

∂gγδ∂gμν
.

The trace of eq. (5) is given by

T + R − (Θ + T )fT + 2GfG + 2f − 2R∇2fG + 4Rγδ∇γ∇δfG = 0.

One of the aims of this work is to analyze the role of heat dissipation (qγ), radiation density (ε) and pressure
anisotropicity Π ≡ Pr − P⊥ in the definitions of modified scalars functions, the scalars whose expressions can be
achieved by the orthogonal breaking down of the Riemann tensor. For this purpose, we assume the following form of
the stress-energy tensor:

Tλν = μVλVν + P⊥hλν + Πχλχν − 2ησλν + εlλlν + q(χνVλ + χλVν), (7)

where η describes the magnitude of the shear tensor σγδ and hγδ is the projection tensor that can be given via four
vector Vγ as hγδ = gγδ + VγVδ. Further, lβ and χβ are the null and radial four vectors, respectively.

The extra curvature corrections of the f(G,T ) gravity can be invoked by considering separate formulations for the
functions of G and T . Therefore, we choose an f(G,T ) model of the following type:

f(G,T ) = f(G) + g(T ). (8)

Models of such type could be regarded as the possible corrections in the well-known f(G) gravity. Nojiri and Odintsov
firstly introduced f(G) gravity in [15]. The choices of models given above could be considered as a possible toy models
for the understanding of the dark sector of the universe. Here, we use linear g(T ) with the aim to see some striking
consequences on the dynamics of spherical stars on the basis of extra curvature terms stem from the f(G) gravity.
Therefore, we have

f(G,T ) = f(G) + λT,
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in which λ is a constant number. To include Gauss-Bonnet corrections, we consider f(G) model containing three
different constants α, β and m, given as follows [63]:

f(G) = αGn (βGm + 1) , (9)

where n > 0. This model was introduced to understand the finite time future singularities.
Now, we consider a diagonally symmetric non-static general form of spherical spacetime as

ds2 = B2(t, r)dr2 − A2(t, r)dt2 + C2(dθ2 + sin2 θdφ2), (10)

where the scale factors A, B and C are considered to be positive. We assume that our relativistic sphere have an
anisotropic shearing viscous and radiating interior whose mathematical form is mentioned in eq. (7). In the non-tilted
frame of reference, the four vectors appearing in the formulation of usual energy momentum tensor (7) are obeying
the relations

χνχν = 1, V νVν = −1, χνVν = 0,

lνVν = −1, V νqν = 0, lν lν = 0,

along with their definitions

V ν =
1
A

δν
0 , χν =

1
C

δν
1 , lν =

1
A

δν
0 +

1
B

δν
1 , qν = q(t, r)χν .

The corresponding expansion scalar and shear tensor are given by

σA =

(
Ḣ

H
− Ċ

C

)
, Θ1A =

(
Ḣ

H
+

2Ċ
C

)
,

where dot notation represents the ∂
∂t operator. The f(G,T ) field equations for eqs. (7)–(10) are

G00 = A2

[
μ + ε + ελ − α

2
{β(1 − n − m)Gm + (1 − n)}Gn − λT

2
+

ϕ00

A2

]
, (11)

G01 = BA
[
−(1 + λ)(q + ε) +

ϕ01

BA

]
, (12)

G11 = B2

[
μλ + (1 + λ)

(
Pr + ε − 4

3
ησ

)
+

α

2
{β(1 − n − m)Gm + (1 − n)}Gn +

λT

2
+

ϕ11

H2

]
, (13)

G22 = C2

[
(1 + λ)

(
P⊥ +

2
3
ησ

)
+ μλ +

α

2
{β(1 − n − m)Gm + (1 − n)}Gn +

λT

2
+

ϕ22

C2

]
, (14)

where the expressions of Gγδ can be found from [55]. Here, the notation prime indicates radial partial differentiation.
Now, we consider the definitions of the fluid 4-velocity as

U = DT C =
Ċ

A
. (15)

The mass m for the spherical structures can be calculated via Misner-Sharp directions as [64]

m(t, r) =
C

2

(
1 +

Ċ2

A2
− C ′2

H2

)
. (16)

The variations in the physical quantity m can found through eqs. (11)–(13) and (15) as

DT m =
−1
2

[
U

{
(1+λ)

(
P̄r−

4
3
ησ

)
+λμ+

α

2
{β(1−n−m)Gm+(1−n)}Gn+

λT

2
+

ϕ11

H2

}
+E

{
(1+λ)q̄− ϕ01

BA

} ]
, (17)

DCm =
C2

2

[
μ̄ + λε − α

2
{β(1 − n − m)Gm + (1 − n)}Gn − λT

2
+

ϕ00

A2
− U

E

{ ϕ01

AH
− (1 + λ)q̄

}]
, (18)

where H̄ = h + ε, while DT = 1
A

∂
∂t . Equation (18) can be remanipulated through E ≡ C′

H as

m =
1
2

∫ C

0

C2

[
μ̄ + λε − α

2
{β(1 − n − m)Gm + (1 − n)}Gn − λT

2
+

ϕ00

A2
+

U

E

{ϕ01

BA
+ (1 + λ)q̄

}]
dC. (19)
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The influences of tidal forces can also be described as

E ≡ C ′

H
=

[
1 + U2 − 2m(t, r)

C

]1/2

. (20)

Equations (17)–(20) yield

3m

C3
=

3κ

2C3

∫ r

0

[
μ̄ + λε − α

2
{β(1 − n − m)Gm + (1 − n)}Gn − λT

2
+

ϕ00

A2
+

U

E

{
(1 + λ)q̄ +

ϕ01

BA

}
C2C ′

]
dr. (21)

This expression connects f(G,T ) dark source corrections with the dissipative fluid variables, like spherical mass, energy
density, heat conduction. The decomposition of the Weyl tensor provides us with two major parts, namely, magnetic
and electric denoted, respectively, by Hαβ and Eαβ . These two are defined, respectively, as

Hαβ =
1
2
εαγηδC

ηδ
βρV

γV ρ = C̃αγβδV
γV δ =, Eαβ = CαφβϕV φV ϕ,

where ελμνω ≡ √−gηλμνω with ηλμνω as a Levi-Civita symbol. The quantity Eλν can be given via Vγ as

Eλν =
[
χλχν − gλν

3
− 1

3
VλVν

]
E ,

where E is a Weyl scalar whose expression can be given alternatively as

E =

[(
Ȧ

A
+

Ċ

C

) (
Ḃ

B
− Ċ

C

)
− B̈

B
+

C̈

C

]
1

2A2
− 1

2C2
−

[
−

(
A′

A
− C ′

C

)(
C ′

C
+

B′

B

)
+

C ′′

C
− A′′

A

]
1

2B2
. (22)

The Weyl scalar E with extra degrees of freedom mediated from f(G,T ) gravity is given by

E =
1
2

[
μ̄ + λε − (1 + λ)(Π̄ − 2ησ) − α

2
{β(1 − n − m)Gm + (1 − n)}Gn − λT

2
− ϕ00

A2
+

ϕ11

B2
− ϕ22

C2

]

− 3
2C3

∫ r

0

C2

[
μ̄ + λε − α

2
{β(1 − n − m)Gm + (1 − n)}Gn − λT

2
+

ϕ00

A2
+

U

E

{
(1 + λ)q̄ − ϕ01

BA

}]
C ′dr, (23)

where Π̄ ≡ P̄r − P⊥.

3 Structure scalars and f(G, T) gravity

This section discusses the analytical computation of extended forms of structure scalars for the spherical relativistic
interiors framed with f(G) + λT gravity. In this background, we define couple of tensorial expressions, Xαβ and Yαβ ,
that were presented firstly by Herrera et al. [54, 55, 65]. They not only presented the way to evaluate such scalar
(orthogonal splitting of Riemann tensor) but also used these variables in the modeling of the many stellar objects in
the realm of GR. These are

Xαβ = ∗R∗
αγβδV

γV δ =
1
2
ηερ

αγR∗
ερβδV

γV δ, Yαβ = RαγβδV
γV δ, (24)

where the notation steric on the both, left- and right-sides of the tensor indicate double, left and right duals of the
subsequent entities, respectively,

Xγδ = X
(m)
γδ + X

(D)
γδ =

1
3

[
μ̄ + λε − α

2
{β(1 − n − m)Gm + (1 − n)}Gn − λT

2
+

ψ00

A2

]
hγδ

− 1
2

[
(1 + λ)(Π̄ − 2ησ) − ψ11

B2
+

ψ22

C2

] (
χγχδ −

1
3
hγδ

)
− Eγδ, (25)

Yγδ = Y
(m)
γδ + Y

(D)
γδ =

1
6

[
μ̄ + λε + 3μλ + (1 + λ)(3Pr − 2Π̄) − ψ00

A2
− ψ11

B2
+

2ψ22

C2
+

α

2

× {β(1 − n − m)Gm + (1 − n)}Gn +
λT

2

]
hγδ +

1
2fR

[
(1 + λ)(Π̄ − 2ησ) − ψ11

B2
+

ψ22

C2

]

×
(

χγχδ −
1
3
hγδ

)
− Eγδ. (26)
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Such tensorial forms can be given in another way via their trace (denoted with subscript T ) and trace-less (labeled
with subscript TF ) parts as

Xγδ =
1
3

Tr Xhγδ + X〈γδ〉, (27)

Yγδ =
1
3

Tr Y hγδ + Y〈γδ〉, (28)

where

X〈γδ〉 = hν
γhμ

δ

(
Xνμ − 1

3
Tr Xhνμ

)
, (29)

Y〈γδ〉 = hν
γhμ

δ

(
Yνμ − 1

3
Tr Y hνμ

)
. (30)

From eqs. (23)–(26), we found

Tr X ≡ XT =

{
μ̄ + λε − α

2
{β(1 − n − m)Gm + (1 − n)}Gn − λT

2
− λ

2
T +

ψ̂00

A2

}
, (31)

Tr Y ≡ YT =

{
μ̄ + λε + 3μλ + 3(1 + λ)P̄r −

ψ̂11

B2
+ 2α(1 − n)Rn − ψ̂00

A2

−2(1 + λ)Π̄ − 2ψ̂22

C2
+ 2β(3 − n)R2−n − 2λT

}
, (32)

where XTF and YTF stand for the trace-free components of the tensors Xαβ and Yαβ , respectively (for details, please
see [66–74]). We can also write X〈αβ〉 and Y〈αβ〉 in an alternate form:

X〈γδ〉 = XTF

(
χγχδ −

1
3
hγδ

)
, (33)

Y〈γδ〉 = YTF

(
χγχδ −

1
3
hγδ

)
. (34)

Using eqs. (11)–(15), (28) and (29), we obtain

XTF = −E − 1
2

{
(λ + 1)(−2ση + Π̄) +

ϕ22

C2
− ϕ11

H2

}
, (35)

YTF = E − 1
2

{
(Π̄ − 2ησ)(λ + 1) +

ϕ22

C2
− ϕ11

H2

}
. (36)

The value of YTF can follow from eqs. (23) and (36):

YTF =
1
2

(
μ̄ + ελ − α

2
{β(1 − m − n)Gm + (1 − n)}Gn − λT

2
− 2(1 + λ)(Π̄ − 4ησ) − ϕ00

A2
+

2ϕ11

H2
− 2ϕ22

C2

)

− 3
2C3

∫ r

0

C2

1+2RλT 2

[
μ̄−α

2
{β(1−m−n)Gm+(1−n)}Gn− λT

2
+ελ+

ϕ00

A2
+

U

E

{
(1+λ)q̄+

ϕ01

AB

}
C2C ′

]
dr.

(37)

It can be interesting to visualize our set of equations in terms of some dagger variables which are defined as follows:

μ† ≡ μ̄ − ϕ00

A2
, P †

r ≡ P̄r −
ϕ11

H2
− 4

3
ησ ,

P †
⊥ ≡ P⊥ − ϕ22

C2
+

2
3
ησ,

Π† ≡ P †
r − P †

⊥ = Π − 2ησ +
ϕ22

C2
− ϕ11

B2
.
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Then, eqs. (30)–(36) give

XTF =
3

2C3

∫ r

0

[{
μ† − α

2
{Gmβ(1 − m − n) + (1 − n)}Gn − λT

2
+ λε +

(
q̂(λ + 1) +

ϕq

BA

)
× U

E

}
C2C ′

]
dr

− 1
2

[
μ† − α

2
{Gmβ(1 − m − n) + (1 − n)}Gn − λT

2
+ λε

]
, (38)

YTF =
1
2

[
μ† − α

2
{Gmβ(1 − m − n) + (1 − n)}Gn − λT

2
+ ελ − 2λ

×
(ϕ11

H2
− ϕ22

C2

) ]
− 3

2C3

∫ r

0

[{
μ† − α

2
{Gmβ(1 − m − n) + (1 − n)}Gn − λT

2
+ λε

+
(
q̂(λ + 1) +

ϕq

BA

) U

E

}
C2C ′

]
dr, (39)

YT =
1
2

[
(1 + 3λ)μ† − 2λε + 3(1 + λ)P †

r − 2Π†(1 + λ) +
α

2
{β(1 − m − n)Gm + (1 − n)}Gn

+ λ
(
2
ϕ22

C2
+

ϕ11

B2
+ 3

ϕ00

A2

)
+

λT

2

]
, (40)

XT = μ† − α

2
{βGm(1 − m − n) + (1 − n)}Gn − λT

2
+ ελ. (41)

These are f(G,T ) structure scalars which are four in number. These scalars occupy very important role in the dynamical
properties of the self-gravitating structures, for example, irregular energy density, mass function, tidal forces, curvature
of spacetime, etc. The well-known equations like, shear evolution equation (SEE), expansion evolution equation (EEE)
also known as Raychaudhuri equation and the Weyl differential equation (WDE). The so-called Raychaudhuri equation
was also calculated autonomously by Landau [75]. Through f(G,T ) scalar variables, the one of the structure scalar
YT can be recasted as

−(YT ) =
1
3

(
2σαβσαβ + Θ2

)
+ V αΘ;α − aα

;α. (42)

It can be checked from the above expression that the notable EEE can be well-written through one of the f(G,T )
matter scalar. Similarly, the SEE can be manipulated through YTF as follows:

E − 1
2

{
(Π̄ − 2ησ)(λ + 1) +

ϕ22

C2
− ϕ11

H2

}
= YTF = a2 + χαa;α − aC ′

BC
− 1

3
(
2Θσ + σ2

)
− V ασ;α. (43)

Equations (21)–(21) provide WDE for the shearing viscous spherical matter distribution as
[
XTF +

1
2

(
μ† − α

2
{β(1 − n − m)Gm + (1 − n)}Gn − λT

2

)]′
= −XTF

3C ′

C
+

1
2
(Θ − σ),

×
(
qB(λ + 1) +

ϕq

A

)
. (44)

It can be seen from the above equation that in the configurations of WDE, the f(G,T ) structure scalar, XTF , plays a
pivotal role. The solution of the above equation would present XTF as a factor of controlling inhomogeneous matter
density in the background of relativistic spheres in f(G,T ) gravity.

4 Dust ball with constant G and T

This section is devoted to examine the influences of f(G) + λT MGT on the formulations of SEE, WDE and EEE for
the pressure less non-interacting particles with constant G and T terms. We shall use the notation tilde to represent
that the corresponding terms are compute with constant choices of G and T . Thus, the mass function in the context
turns out to be

m =
1
2

∫ r

0

μC2dC − λR2T 2

2{1 + 2RλT 2}

∫ r

0

C2C ′dr. (45)

The value of the Weyl scalar in an environment of relativistic dust ball is found to be

E =
1

2C3

∫ r

0

μ′C3dr − α

2
{β(1 − n − m)Gm + (1 − n)}Gn − λT

2
, (46)
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while the spherical dust ball mass function is

3m

C3
=

1
2

[
μ − 1

C3

∫ r

0

μ′C3dr

]
− α

2
{βGm(1 − m − n) + (1 − n)}Gn − λT

2
. (47)

The set of scalar functions for the case of f(G,T ) gravity turns out to be

X̃T = μ − α

2
{βGm(1 − m − n) + (1 − n)}Gn − λT

2
, (48)

ỸTF = −X̃TF = E , (49)

ỸT =
1
2

[μ + α {β(1 − m − n)Gm + (1 − n)}Gn + λT ] . (50)

These expressions show that the effects of the scalars, i.e., YT , XT and YTF , XTF are controlled by matter variables,
like f(G,T ) terms, tidal forces and fluid energy density, in the subsequent evolution of the star. The causes for the
emergence of IED can be explored for the dust matter through the following WDE:

[
μ

2
+

α

2
{βGm(1 − m − n) + (1 − n)}Gn +

λT

2
+ X̃TF

]′
= − 3

C
X̃TF C ′. (51)

This points out that the f(G,T ) scalar, i.e. X̃TF , is a factor for producing and reducing inhomogeneities over the
surface of the initially homogeneous dust ball. One can analyze that μ = μ(t) ⇔ X̃TF = 0 = α = λ. This asserts
that dark source terms coming from f(G,T ) gravity are trying to produce resistance against the fluctuations of IED.
Furthermore, the EEE and SEE boil down to

V αΘ;α +
2
3
σ2 +

Θ2

3
− aα

;α =
1
2

[μ + α {β(1 − n − m)Gm + (1 − n)}Gn + λT ]

= −ỸT , (52)

V ασ;α +
σ2

3
+

2
3
σΘ = −E = −ỸTF , (53)

which shows the importance of ỸTF and ỸT in the definitions of EEE and SEE.

5 Conclusions

In this paper, we have investigated the influences of f(G,T ) corrections on some dynamical properties of evolving
stellar bodies. For this purpose, we have considered spherically symmetric geometry which is assumed to coupled
with anisotropic radiating matter contents. We assumed that the relativistic fluid distribution has a shearing viscous
property and is emitting radiations in the free streaming and diffusion approximations. The dissipation is carrying
out without scattering. We have then assumed extra degrees of freedom mediated by f(G,T ) gravity. We have then
calculated the corresponding field equations and dynamical equation. The source of producing tidal forces, i.e., Weyl
scalar has been calculated and then related it with the matter and metric variables along with dark sources terms
coming from polynomial f(G,T ) gravity. With the help of notable Misner-Sharp mass function, we have calculated
quantity of matter content within the spherical geometry. We then expressed such a relation with the previously
calculated Weyl scalar equation. This relation has peculiar importance in the modeling of stellar structures.

We have then broke down the expression of the Riemann curvature tensor by applying the orthogonal decomposition
technique. The technique that was firstly developed by Herrera et al. [65]. We have applied this technique for our stellar
model with one of the modified gravity theories, i.e., f(G,T ) gravity. With this, we have developed relations of two
tensor namely, Xμν and Yμν . The trace and trace-free parts of these tensorial quantities are computed, which have
utmost relevance in the study of gravitational collapse, stellar evolution, etc. These trace and trace-less parts are
called here as f(G,T ) structure scalars. We have then evaluated a well-known Raychaudhuri equation and expressed
it in terms of these structure scalars. It is worthy to mention that this equation plays a vital role in the discussion
of the Penrose-Hawking singularity theorems. This equation has also been used to find many exact solutions of
gravitational field equations in the literature. Thus, our one of the structure scalar YT occupy fundamental importance
in understanding the scenario under which gravitational effects could lead to singularities. Thus, YT could be helpful
to understand the singularity appearances in various black holes, like Schwarzschild, Kerr, the Reissner-Nordström
and the Kerr-Newman metrics, etc.
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After that, we have evaluated shear and Weyl scalar evolution equations through f(G,T ) structure scalars. The
Weyl scalar equation that is expressed through XTF describes the propagation of tidal forces in the modeling of radi-
ating spherical stars in modified gravity. This scalar has utmost relevance in the study of Newman-Penrose formalism
along with degrees of freedom mediated by f(G,T ) gravity. The scalar XTF which is related with Weyl scalar could
be fruitful to examine the outgoing gravitational radiation from the asymptotically flat geometry. Finally, we have
encode all of our results for the case of non-dissipative dust ball with constant values of G and T . In this scenario, we
have shown that two f(G,T ) scalar functions are directly related with Weyl scalar and thus tidal forces, Further, the
f(G,T ) scalar XTF is controlling the appearance of inhomogeneities in the initially regular compact body.
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