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Abstract. We point out a misleading treatment in the literature regarding bound-state solutions for the
s-wave Klein-Gordon equation with exponential scalar and vector potentials. Following the appropriate
procedure for an arbitrary mixing of scalar and vector couplings, we generalize earlier works and present
the correct solution to bound states and additionally we address the issue of scattering states. Moreover,
we present a new effect related to the polarization of the charge density in the presence of weak short-range
exponential scalar and vector potentials.

1 Introduction

The solution of the Klein-Gordon (KG) equation with the exponential potential may find applications in the study
of pionic atoms, doped Mott insulators, doped semiconductors, interaction between ions, quantum dots surrounded
by a dielectric or a conducting medium, protein structures, etc. Bound-state and scattering s-wave solutions of the
three-dimensional KG equation for a minimally coupled exponential potential have already been analyzed in the
literature [1]. The bound states were revisited in [2], and the continuum in [3]. The authors of [2], though, were not
able to reproduce the numerical results found in [1], and the solution for continuum states found in [3] differs from that
one found in [1]. Later, bound-state s-wave solutions received attention for a mixing of vector and scalar couplings
with different magnitudes [4–6]. The authors of [4] and [5] used a quantization condition founded on a wrong boundary
condition on the radial eigenfunction at the origin by considering the limit to infinity of a variable necessarily finite,
so turning Kummer’s function into a polynomial. In [6], a method to solve Kummer’s equation was applied without
paying attention to the proper behaviour of the radial eigenfunction at the origin, obtaining in that way a polynomial
expression to Kummer’s function. In ref. [7], the authors addressed the problem for arbitrary angular momentum in
D dimensions with arbitrary scalar-vector mixing plus an exponential position dependent mass. A position dependent
mass can be seen as an additional scalar potential in the KG theory. Manifestly, the eigenfunctions found in ref. [7]
satisfy a wrong boundary condition at the origin. It is worthwhile to mention that bound-state solutions for the
symmetric exponential potential in the one-dimensional case (sometimes called cusp potential or screened Coulomb
potential) have also received attention for vector [8,9], scalar [10] and a general mixing of vector and scalar [11]
couplings. Scattering in a repulsive exponential potential minimally coupled has been studied in [12]. For an enough
deep and narrow vector potential it might appear additional antiparticle bound states in a potential attractive only
for particles, the phenomenon called Schiff-Snyder-Weinberg (SSW) effect [13].

This work presents a detailed qualitative and quantitative analyses of continuum s-wave solutions of the KG
equation for attractive or repulsive exponential potentials with arbitrary mixing of vector and scalar couplings in a
three-dimensional space. Quantization condition and constraints on the potential parameters for bound states are
identified by two different processes: vanishing of the radial eigenfunction at infinity and poles of the scattering
amplitude. With this systematic plan of action we not only generalize previous approaches but also elucidate some
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important obscure points referred to in the previous paragraph. A particular case of our results for the continuum gives
support to that found in [3]. Unquestionable bound states satisfying proper boundary conditions at the origin and at
infinity are obtained from the zeros of Bessel’s function of the first kind in the case of vector and scalar couplings with
equal magnitudes, or from the zeros of Kummer’s function (confluent hypergeometric function) in the case of vector
and scalar couplings with unequal magnitudes. There is no need for breaking off the series defining Bessel’s function
or Kummer’s function.

2 KG equation with vector and scalar interactions

The time-independent KG equation for a spinless particle with rest mass m and energy E under the influence of
external scalar, S, and vector, V , interactions reads (� = c = 1)

[
∇2 + (E − V )2 − (m + S)2

]
φ = 0, (1)

with charge density and charge current density expressed as

� =
E − V

m
|φ|2 , J =

i

2m

(
φ�∇φ∗ − φ∗�∇φ

)
. (2)

Note that if φ is a solution for a particle (antiparticle) with energy E for the potentials V and S, then ±φ∗ is a solution
for a antiparticle (particle) with energy −E and for the potentials −V and S. It is also valuable to note that one finds
the nonrelativistic regime governed by Schrödinger equation

[
∇2 + 2m (±E − m − S ∓ V )

]
φ = 0, (3)

for weak couplings and E � ±m. In the nonrelativistic regime one finds � � ±|φ|2 for E � ±m. However, the charge
density has not a definite sign for strong vector couplings. Of course, the resulting binding force depends on the average
charge closer to the center of force. Therefore, not only for strong couplings, intrinsically relativistic effects can also
be related to short-range vector potentials due the polarization of the charge density.

For spherically symmetric interactions, i.e. S(�r ) = S(r) and V (�r ) = V (r), the wave function can be factorized as

φμlml
(�r ) =

uμ(r)
r

Ylml
(θ, ϕ) , (4)

where Ylml
(θ, ϕ) is the usual spherical harmonic, with l = 0, 1, 2, . . ., ml = −l,−l+1, . . . , l and μ denotes the principal

quantum number plus other possible quantum numbers which may be necessary to characterize φ.
The radial function u(r) obeys the radial equation (for l = 0, s-wave)

d2u

dr2
+

[
k2 + V 2 − S2 − 2(EV + mS)

]
u = 0, (5)

with k =
√

E2 − m2. Equation (5) is effectively the time-independent Schrödinger equation with the effective potential
S2 −V 2 + 2(EV + mS). One can see that the effective potential tends to S2 −V 2 for potentials which tend to infinity
at large distances so that the KG equation furnishes a purely discrete (continuous) spectrum for |S| > |V | (|S| < |V |).
On the other hand, if the potentials vanish at large distances the continuum spectrum is omnipresent but the necessary
conditions for the existence of a discrete spectrum is not an easy task for general functional forms. Assuming that
r2S(r) and r2V (r) go to zero as r → 0, one must impose the homogeneous Dirichlet condition u(0) = 0 (see, e.g. [14]).
On the other hand, if both potentials vanish at large distances the solution u behaves like e±ikr as r → ∞.

For scattering states in spherically symmetric scatterers, the scattering amplitude can be written as a partial wave
series (see, e.g., [14])

fk(θ) =
∞∑

l=0

(2l + 1)fl(k)Pl(cos θ), (6)

where θ is the angle of scattering, Pl is the Legendre polynomial of order l and the partial scattering amplitude is

fl(k) =
[
e2iδl(k) − 1

]
/(2ik). (7)

For elastic scattering the phase shift δl(k) is a real number in such a way that at large distances

u(r) ∼ e−ikr + (−1)l+1e2iδl(k)e+ikr. (8)

Information about the energies of the bound-state solutions can be obtained from poles of the partial scattering
amplitude when one considers k imaginary, but it carries an important caveat: not all the poles correspond to bound
states. For potentials with range a one finds ka 	 l (see, e.g., [14]). Hence, for short-range potentials and low enough
momentum the partial wave series converges rapidly and the contribution is predominantly s-wave, i.e. fk(θ) ≈ f0(k),
which is of great importance for what follows.



Eur. Phys. J. Plus (2019) 134: 248 Page 3 of 7

3 Exponential potentials

Let us consider scalar and vector exponential interactions in the form

S(r) = −S0e
−αr, V (r) = −V0e

−αr, (9)

where α is a positive constant. Substituting (9) into (5) we get

d2u

dr2
+

(
k2 − V1e

−αr − V2e
−2αr

)
u = 0, (10)

where
V1 = −2(EV0 + mS0), V2 = S2

0 − V 2
0 . (11)

Equation (10) is effectively a time-independent Schrödinger equation for the exponential potential, when |S0| = |V0|,
and for the generalized Morse potential, when |S0| �= |V0|. These effective potentials have well structures, when V1 < 0
and V2 > 0, or V1 < −V2 and V2 < 0. Bound states are expected for |E| < m. By the way, the positive(negative)-
energy solutions are not to be promptly identified with the bound states for particles (antiparticles). Rather, whether
it is positive or negative, an eigenenergy can be unambiguously identified with a bound-state solution for a particle
(antiparticle) only by observing if the energy level emerges from the upper (lower) continuum.

When |S0| = |V0|, no bound state is expected when S0 < 0. Nevertheless, when S0 > 0 and V0 = +S0 (V0 = −S0)
the well potential is deeper (shallower) for positive-energy levels than that one for negative-energy levels, and bound
states with E � −m (E � +m) can only be found asymptotically as S0 increases. In this particular case, one can
asseverate that the discrete spectrum consists only of particle (antiparticle) energy levels with no chance for pair
production associate with Klein’s paradox.

When |S0| �= |V0| the possible existence of bound-state solutions permits us to distinguish two subclasses: a)
V1 < 0 and V2 > 0, corresponding to S0 + V0E/m > 0 with S0 > |V0|, allowing the presence of energy levels with
E � ±m; b) V1 < −V2 and V2 < 0, with positive(negative)-energy levels occurring exclusively for V0 > 0 (V0 < 0)
with −|V0| < S0 < m −

√
m2 + V 2

0 . More than this, there may appear energy levels for V0 ≷ 0 with E � ±m when
|V0| < m and |S0| < |V0|, and E � ∓m when |V0| > m and −|V0| + 2m < S0 < |V0|. In this last case, the spectrum
including E � ∓m for a strong pure vector coupling with V0 ≷ ±2m may be related either to the SSW effect or
to energy levels of particles (antiparticles) diving into the continuum of antiparticles (particles). Because the scalar
coupling does not contribute to the polarization of the charge density its addition contributes to lower the threshold
of this peculiar effect: V0 = ±m when S0 = m.

Now we move to consider a quantitative treatment of our problem by considering the two distinct classes of effective
potentials.

4 The effective exponential potential (|S0| = |V0|)
With the change of variable

y = y0e
−αr/2 (12)

and the definitions

y0 =
2i
√

V1

α
, ν =

2ik

α
, (13)

eq. (10) becomes Bessel’s equation of order ν

y2 d2u

dy2
+ y

du

dy
+

(
y2 − ν2

)
u = 0. (14)

One solution of this equation is Bessel’s function of the first kind of order ν [15]

Jν(y) =
∞∑

j=0

(−1)j (y/2)ν+2j

j!Γ (ν + j + 1)
, (15)

where Γ (z) denotes the meromorphic gamma function with no zeros, and with simple poles z = 0,−1,−2, . . . Bessel’s
function Jν(z) is an analytic function, except for a branch point at z = 0. The principal branch of Jν(z) is analytic
in the z-plane cut along the interval (−∞, 0]. For z �= 0 each branch of Jν(y) is entire in ν. Bessel’s function of real
order has an infinite number of positive zeros jνn, where n designates the n-th zero, and all of these zeros are simple.
The zeros obey the inequalities jν,n < jν+1,n jν,n+1, when ν � 0 [15].
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The general solution of eq. (14) can be expressed as

u(y) = AJ+ν(y) + BJ−ν(y), ν �= integer. (16)

The condition u|r=0 = 0 makes

u(y) =

⎧
⎪⎨

⎪⎩

AJ−ν(y), for J−ν(y0) = 0,

A

[
J+ν(y) − J+ν(y0)

J−ν(y0)
J−ν(y)

]
, for J−ν(y0) �= 0,

(17)

and the limiting form for small argument of Bessel’ function prescribes that u behaves for large r as

u(r) ∼

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(y0/2)−ν

Γ (1 − ν)
e+ναr/2, for J−ν(y0) = 0,

(y0/2)ν

Γ (1 + ν)
e−ναr/2 − (y0/2)−ν

Γ (1 − ν)
J+ν(y0)
J−ν(y0)

e+ναr/2, for J−ν(y0) �= 0.

(18)

For J−ν(y0) = 0, the asymptotic behaviour only suggests that bound states might exist if ν < 0. As for J−ν(y0) �= 0,
the asymptotic behaviour suggests that bound states might exist if ν > 0 and J+ν(y0) = 0, and scattering states
requires that ν is an imaginary.

4.1 Bound states

In this case k is an imaginary number. This means that |E| < m. Regardless the sign of ν and explicitly using the fact
that ν is not an integer, the condition determining bound-state solutions takes the concise form

J2|k|/α(y0) = 0, (19)

with corresponding eigenfunction expressed as

u(r) = AJ2|k|/α

(
y0e

−αr/2
)

. (20)

Because of the way the zeros of Bessel’s function of positive order interlace, one conclude that the s-wave spectrum
is nondegenerate. The order of Bessel’s function in eq. (19) is a positive number so that y0 > 0 and the effective
exponential potential has a well structure when S0 > 0. As a result, from eqs. (11) and (13), S0 must be strong enough
to make the existence of bound states possible. In fact, eq. (19) has at least one solution, when

S0 >
(αj2|k|/α,1)2

8(m ± E)
, V0 = ±S0. (21)

Therefore, one conclude that a solution with E � ±m appears if S0 � (αj0,1)2/(16m). Consequently, bound states
in a weak potential are only allowed if the range of the potential is enough large. On the other hand, solutions with
E � ∓m might appear for very large S0. Bound-state solutions in a short-range potential need strong couplings.

4.2 Scattering states

As for the continuous spectrum, k is a real number so that |E| > m. From the second line of eq. (18), the asymptotic
form of u for large r clearly shows incoming and outgoing partial s-waves with amplitudes differing by factors related
to the phase shift,

u(r) ∼ (y0/2)2ik/α

Γ (1 + 2ik/α)
e−ikr − (y0/2)−2ik/α

Γ (1 − 2ik/α)
J+2ik/α(y0)
J−2ik/α(y0)

e+ikr, (22)

in such a way that

e2iδ0 =
(

2
y0

)4ik/α
Γ (1 + 2ik/α)
Γ (1 − 2ik/α)

J+2ik/α(y0)
J−2ik/α(y0)

. (23)

Therefore, if one considers the analytic continuation for the entire complex k-plane J+2ik/α(y0) is an analytic function
of k, and the same happens with Γ (1 + 2ik/α) except for k = iαn/2 with n = 1, 2, 3 . . . Hence, the partial scattering
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amplitude for s-waves is analytical in the entire complex k-plane, except for isolated singularities related either to the
poles of the gamma function or to the zeros of J−2ik/α(y0). It is true that poles of the partial scattering amplitude for
s-waves make

u(r) ∼ e−|k|r, kr � 1, (24)

so that they could be related to bound states. However, poles of the gamma function do not furnish licit bound states
because they make ν = −1,−2,−3, . . ., values already excluded from the general solution expressed by eq. (16). There
remains

J−2ik/α(y0) = 0. (25)

As seen before, only the solution with k = +i|k| correspond to bound states.

5 The effective generalized Morse potential (|S0| �= |V0|)
With the changes

y = y0e
−αr, u(y) = y−1/2w(y) (26)

and the definitions

y0 =
2
√

V2

α
, κ = − V1

α2y0
, ν =

ik

α
, (27)

eq. (10) becomes Whittaker’s equation

d2w

dy2
+

(
−1

4
+

κ

y
+

1/4 − ν2

y2

)
w = 0. (28)

The general solution of (28) can be expressed in terms of Kummer’s function [15]

M(a1, b1, z) =
Γ (b1)
Γ (a1)

∞∑

n=0

Γ (a1 + n)
Γ (b1 + n)

zn

n!
, b1 �= 0,−1,−2, . . . (29)

Kummer’s function M(a1, b1, z) is entire in z and a1, and is a meromorphic function of b1 with simple poles at
b1 = 0,−1,−2, . . . It converges to ezza1−b1/Γ (a1) as z → ∞ and has an infinite set of complex zeros when a1 and
b1 − a1 are different from 0,−1,−2, . . . The number of real zeros is finite when both a1 and b1 are real. For b1 ≥ 0,
Kummer’s function has no zeros when a1 � 0, and a number of positive zeros given by the ceiling of −a1 when
a1 < 0 [15].

Now, y lies in the interval (0, y0] and the general solution of eq. (28) is expressed as

w(y) = y1/2e−y/2
[
AyνM (+)(y) + By−νM (−)(y)

]
, (30)

with
M (±)(y) = M(1/2 − κ ± ν, 1 ± 2ν, y). (31)

Therefore,
u(y) = e−y/2

[
AyνM (+)(y) + By−νM (−)(y)

]
. (32)

The condition u|r=0 = 0 enforces

u(y) =

⎧
⎪⎨

⎪⎩

Ae−y/2y−νM (−)(y), for M (−)(y0) = 0,

Ae−y/2

[(
y

y0

)ν

M (+)(y) − M (+)(y0)
M (−)(y0)

(
y

y0

)−ν

M (−)(y)

]

, for M (−)(y0) �= 0.
(33)

From eq. (29), M(a1, b1, 0) = 1, hence one gets the following asymptotic expression for u at large distance:

u(r) ∼

⎧
⎪⎨

⎪⎩

y−ν
0 e+ναr, for M (−)(y0) = 0,

e−ναr − M (+)(y0)
M (−)(y0)

e+ναr, for M (−)(y0) �= 0.
(34)

For M (−)(y0) = 0, the asymptotic behaviour only suggests that bound states might exist if ν < 0. As for M (−)(y0) �= 0,
the asymptotic behaviour suggests that bound states might exist if ν > 0 and M (+)(y0) = 0, and scattering states
requires that ν is an imaginary number.
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5.1 Bound states

In this case k is imaginary (|E| < m). The quantization condition takes the concise form

M(1/2 − κ + |k|/α, 1 + 2|k|/α, y0) = 0, (35)

with the corresponding eigenfunction expressed as

u(r) = Ay
|k|/α
0 e−|k|r−y0e−αr/2

M(1/2 − κ + |k|/α, 1 + 2|k|/α, y0e
−αr). (36)

|S0| > |V0| makes V2 > 0, and the relation mentioned before involving the number of positive zeros and the parameters
of Kummer’s function requires V1 < 0. This is actually when the effective generalized Morse potential has a well
structure. Furthermore, S0 > |V0|, and

|V1|/
√

V2 � α. (37)

This last condition let us to get some conclusions regarding the range of the potential. One finds E � ±m for

S0 � ∓V0
1 + β

1 − β
, β =

( α

2m

)2

. (38)

Hence, solutions with E � ±m (E � ∓m) and V0 ≷ 0 for large(short)-range potentials just demand S0 > |V0|, whereas
solutions with E � ∓m (E � ±m) demand a stronger scalar coupling S0 � |V0|(1 + 2β) (S0 � |V0|(1 + 2/β)). Even
for weak potentials, the absence of solutions with E � ±m for |V0| < S0 � |V0|(1 + 2/β) for short-range potentials
is a genuine relativistic quantum effect. Due to the polarization of the charge density, an attractive (repulsive) vector
coupling for particles (antiparticles) for a large-range potential undergoes reversion of its effects as the range of the
potential decreases. Because the stronger scalar coupling is always attractive, the final outcome for this sort of mixing
of couplings is that the large(short)-range potential is more attractive for particles (antiparticles).

As for |S0| < |V0|, one obtains the set of imaginary zeros. Unfortunately, due to the lack of necessary information
about the set of imaginary zeros of Kummer’s function, we can not say more than we have already said before.

It does not take long to convince oneself that one can find bound-state solutions for |S0| < |V0| as well as for
|S0| > |V0|, at least for short-range strong potentials. In this case, with S0 and V0 proportional to α, the quantization
condition (35) can be approximate by M(1/2, 1, y0) = 0. Relations between Kummer’s function with a1 = 1/2 and
b1 = 1 and Bessel’s function, viz. M(1/2, 1, 2z) = ezJ0(z) and M(1/2, 1, 2iz) = eizJ0(z) (see, e.g., [15]), make eq. (35)
equivalent to J0(|y0|/2) = 0 in such way that one finds at least one solution when |S2

0 − V 2
0 | � (αj0,1)2.

5.2 Scattering states

As for the continuous spectrum, k is a real number so that |E| > m. From the second line of eq. (34), the asymptotic
form of u for large r clearly shows incoming and outgoing partial s-waves with amplitudes differing by factors related
to the phase shift:

u(r) ∼ e−ikr − M (+)(y0)
M (−)(y0)

e+ikr, (39)

in such a way that

e2iδ0 =
M(1/2 − κ + ik/α, 1 + 2ik/α, y0)
M(1/2 − κ − ik/α, 1 − 2ik/α, y0)

. (40)

Therefore, if one considers the analytic continuation for the entire complex k-plane M(1/2 − κ + ik/α, 1 + 2ik/α, y0)
is an analytic function of k, except for k = iαn/2 where n is a nonnegative integer. Hence, the partial scattering
amplitude for s-waves is analytical in the entire complex k-plane, except for isolated singularities related either to the
poles of M(1/2 − κ + ik/α, 1 + 2ik/α, y0) or to the zeros of M(1/2 − κ − ik/α, 1 − 2ik/α, y0). It is true that poles of
the partial scattering amplitude for s-waves give

u(r) ∼ e−|k|r, kr � 1, (41)

so that they could be related to bound states. However, poles of M(1/2− κ + ik/α, 1 + 2ik/α, y0) do not furnish licit
bound states because they make ν = −1,−2,−3, . . ., values already excluded from the general solution expressed by
eq. (16). There remains

M(1/2 − κ − ik/α, 1 − 2ik/α, y0) = 0. (42)
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6 Final remarks

In this work, we pointed out a misleading treatment in the literature regarding to bound-state solutions for the s-
wave KG equation with exponential scalar and vector potentials in a three-dimensional space. We showed a detailed
qualitative and quantitative analyses of continuum s-wave solutions of the KG equation for attractive or repulsive
exponential potentials with arbitrary mixing of vector and scalar couplings. The care needed in applying the proper
boundary conditions was emphasized. Using the proper boundary conditions at the origin and at infinity, we found
the quantization condition and constraints on the potential parameters for bound states. We obtained the possible
energy levels from the zeros of Bessel’s function of the first kind in the case of vector and scalar couplings with
equal magnitudes, or from the zeros of Kummer’s function in the case of vector and scalar couplings with unequal
magnitudes. Although the solutions in refs. [4–7] are licit when one considers the limiting form of Kummer’s function
as y0 → ∞ (either for a scalar coupling much stronger than a vector coupling or for large-range potentials), we showed
that there is no need for breaking off the series defining Kummer’s function in a more general circumstance. Never
mentioned in the literature, we showed that an effect related to the polarization of the charge density in the presence
of short-range exponential scalar and vector potentials manifests when S0 > |V0| even in the case of weak couplings.

We would like to point out that our results for s-wave bound-state solutions (eigenvalues and also eigenfunctions)
are exact, whereas the scattering amplitude is approximate. The poles of the scattering amplitude furnish results
coincident with the exact bound-state solutions, as it should be in a proper treatment. If one wants to treat the case
of arbitrary l one should appeal to approximation methods that is out of the scope of this article. It is important
to notice that our results have nothing to do with the class of multiparameter exponential-type potential studied in
the Schrödinger equation in [16] and in the KG equation with equal vector and scalar couplings in [17,18].This is
so because the class of multiparameter exponential-type potential studied in [16] and [17] does not reduce to a pure
exponential potential as that one studied in this paper, and that one studied in [18] does so only in an approximation
scheme.
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