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Abstract. In this paper, we study a semi-discrete sine-Gordon (sd-SG) equation and compute various
types of solutions analytically. We apply Darboux transformation to the associated spectral problem and
construct N -soliton solutions of sd-SG equation in terms of ratio of ordinary determinants. In addition, we
also construct explicit expressions of discrete one-kink, two-kink, kink-antikink, breather and degenerate
soliton solutions of sd-SG equation in zero background.

1 Introduction

The sine-Gordon (SG) equation is an important example of two-dimensional non-linear field theory (see, for exam-
ple, [1–4]). The SG equation is an integrable equation and can be solved using inverse scattering transform (IST)
method [5] and also owns all miraculous properties such as existence of soliton and breather solutions, Hamiltonian
structure, existence of an infinite sequence of conserved quantities, etc. [6–11]. The SG equation is given by

sxt = sin s, s = s(x, t), (1)

here subscripts denote partial derivative with respect to the indicated variable. The SG equation (1) can also be
written as consistency condition of the following matrix-valued linear equation (also known as Lax pair):

Θx = Ξ1Θ, Θt = Ξ2Θ, (2)

where the matrices Ξ1 and Ξ2 are given by

Ξ1 (x, t;λ) =

⎛
⎜⎜⎝

isx

2
λ

λ − isx

2

⎞
⎟⎟⎠ , (3)

Ξ2 (x, t;λ) =
1
4λ

(
0 eis

e−is 0

)
. (4)

The consistency condition (that is, Θxt = Θtx) of linear spectral problem (2) becomes a zero-curvature condition
(ZCC), i.e., Ξ1t − Ξ2x + [Ξ1, Ξ2] = 0, which gives (1).

The SG equation appeared in the study of differential geometry [12]. The SG equation has a wide history and many
applications in different branches of sciences and engineering [13]. The SG equation describes oscillations of coupled
pendulum [3], propagation of magnetic-flux on Josephson array [14], dynamics of crystal dislocation [15], motion of
Bloch wall in magnetic crystals [16] and so on. The SG equation also describes many interesting phenomena of life
sciences, for example, it describes the dynamics of DNA (deoxyribonucleic acid) double-helix molecule [17]. There has
been an increasing interest in the study of SG equation due to its importance in different areas such as mathematics,
sciences (physical and life) and engineering.

a e-mail: yasir pmc@yahoo.com
b e-mail: usman physics@yahoo.com



Page 2 of 9 Eur. Phys. J. Plus (2019) 134: 200

In recent past, significant interest has been developed in the study of discrete integrable systems in the light
of early fundamental work of Ablowitz and Ladik [18,19] and Hirota [20,21]. In nature there exists a wide range of
physical phenomena that are governed by discrete equations or systems of equations [22,23]. The discrete systems have
multiple applications in different fields, such as fluid mechanics, nonlinear optics, plasma physics, quantum gravity,
field theories, mathematical biology and economics. The discrete integrable equations also share various interesting
properties, such as exactly solvable by IST method, existence of conservation laws and multi-soliton solutions and so
on [24–27]. A large number of discrete integrable equations have been solved by using IST method and have obtained
discrete soliton solutions. The discrete soliton solution can also be computed by using Hirota bilinearization, dressing
method, Bäcklund transformation, Darboux-Crum transformation [28–30] and generalized Cauchy matrix method [31,
32]. Integrability of discrete sine-Gordon equation has been studied [33–39].

All above-mentioned applications of SG equations motivated us to investigate different solutions like kink so-
lutions, kink-kink interaction, kink-antikink interaction, breather solution and degenerate solutions of semi-discrete
sine-Gordon (sd-SG) equation. Our work is organized as follows. In sect. 2, a semi-discrete sine-Gordon (sd-SG) equa-
tion and its linearization are presented. In sect. 3, we use Darboux transformation, and multi-soliton solutions have
been constructed in terms of ratio of ordinary determinants. In sect. 4, we compute explicit expressions of one-kink,
two-kink solution, kink-antikink interaction, breather solution and degenerate solutions of sd-SG equation. Finally we
illustrate our results by plotting the obtained solution for different values of spectral parameters.

2 Semi-discrete sine-Gordon equation

A semi-discrete sine-Gordon (sd-SG) equation is defined as

d
dt

(sn+1 − sn) = 4γ sin
1
2

(sn+1 + sn) , (5)

where γ be a real constant. The sd-SG equations (5) can also be expressed as

d
dt

Un + UnVn − Vn+1Un = O, (6)

which can be considered as a consistency condition of following linear difference-differential equations for an auxiliary
function Θn(t;λ):

LΘn = Θn+1 ≡ UnΘn = (λJ + Pn)Θn, (7)
d
dt

Θn ≡ VnΘn = λ−1QnΘn, (8)

where L denotes forward shift operator (that is Lfn = fn+1). The coefficient matrices J , Pn, Qn and the column
vector Θn are given as

J =
(

0 1
1 0

)
, Pn =

⎛
⎜⎜⎜⎝

(
ωn

ωn+1

)1/2

0

0
(

ωn

ωn+1

)−1/2

⎞
⎟⎟⎟⎠ ,

Qn = γ

(
0 ω−1

n

ωn 0

)
, Θn =

(
ψn

φn

)
, (9)

here ωn = exp(isn). The linear difference-differential equations (7)-(8) are known as semi-discrete (sd) Lax pair [34],
whereas the condition (6) is known as semi-discrete zero-curvature condition (sd-ZCC).

3 Darboux transformation

The Darboux transformation (DT) is one of the renowned solution-generating technique among different techniques,
e.g., Hirota’s bilinear method, inverse scattering transform method, dressing method and Bäcklund transformation.
The Darboux transformation is a type of gauge transformation that maps a known (trivial) solution to a linear equation
into a non-trivial solution.
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The Lax pair (7)-(8) can also be written as

ψn+1 =
(

ωn

ωn+1

)1/2

ψn + λφn, φn+1 = λψn +
(

ωn

ωn+1

)−1/2

φn, (10)

d
dt

ψn = λ−1γω−1
n φn,

d
dt

φn = λ−1γωnψn. (11)

Let us define Darboux transformation as

ψn[1] = λφn − λ1φ
(1)
n

ψ
(1)
n

ψn, (12)

φn[1] = λψn − λ1ψ
(1)
n

φ
(1)
n

φn, (13)

where ψ
(1)
n , φ

(1)
n denote particular solution set to the Lax pair (10)-(11) at λ = λ1. The linear system (10)-(11) is

covariant under the action of Darboux transformation (12)-(13), that is

ψn+1[1] =
(

ωn[1]
ωn+1[1]

)1/2

ψn[1] + λφn[1],

φn+1[1] = λψn[1] +
(

ωn[1]
ωn+1[1]

)−1/2

φn[1], (14)

d
dt

ψn[1] = λ−1γω−1
n [1]φn[1],

d
dt

φn[1] = λ−1γωn[1]ψn[1]. (15)

On substitution of scalar functions ψn[1] and φn[1] from (12)-(13) in (14)-(15), we obtain

ωn[1] = ωn

(
ψ

(1)
n

φ
(1)
n

)2

. (16)

Using ωn = exp(isn) in eq. (16), we get a transformed solution to the sd-SG equation (5), that is

sn[1] = sn + 2i ln

(
φ

(1)
n

ψ
(1)
n

)
. (17)

Similarly, one can define two-fold Darboux transformation on scalar functions ψn, φn as

ψn[2] = λφn[1] − λ2
φ

(2)
n [1]

ψ
(2)
n [1]

ψn[1], (18)

φn[2] = λψn[1] − λ2
ψ

(2)
n [1]

φ
(2)
n [1]

φn[1], (19)

along with

ψ(2)
n [1] = λ2φ

(2)
n − λ1

φ
(1)
n

ψ
(1)
n

ψ(2)
n ,

φ(2)
n [1] = λ2ψ

(2)
n − λ1

ψ
(1)
n

φ
(1)
n

φ(2)
n , (20)
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where ψ
(2)
n , φ

(2)
n represent particular solutions to (10)-(11) at λ = λ2. We can reexpress equations (18) and (19) as

ratio of ordinary determinants:

ψn[2] =
Δ[3]
Δ[2]

=

∣∣∣∣∣∣

ψn λφn λ2ψn

ψ
(1)
n λ1φ

(1)
n λ2

1ψ
(1)
n

ψ
(2)
n λ2φ

(2)
n λ2

2ψ
(2)
n

∣∣∣∣∣∣
∣∣∣∣∣
ψ

(1)
n λ1φ

(1)
n

ψ
(2)
n λ2φ

(2)
n

∣∣∣∣∣

, (21)

φn[2] =
Ω[3]
Ω[2]

=

∣∣∣∣∣∣

φn λψn λ2φn

φ
(1)
n λ1ψ

(1)
n λ2

1φ
(1)
n

φ
(2)
n λ2ψ

(2)
n λ2

2φ
(2)
n

∣∣∣∣∣∣
∣∣∣∣∣
φ

(1)
n λ1ψ

(1)
n

φ
(2)
n λ2ψ

(2)
n

∣∣∣∣∣

. (22)

Similarly, we obtain two-fold transformations as

ωn[2] = ωn[1]

(
ψ

(2)
n [1]

φ
(2)
n [1]

)2

,

= ωn

(
λ2ψ

(1)
n φ

(2)
n − λ1ψ

(2)
n φ

(1)
n

λ2ψ
(2)
n φ

(1)
n − λ1ψ

(1)
n φ

(2)
n

)2

,

= ωn

(
Δ[2]
Ω[2]

)2

. (23)

Again using ωn = exp(isn) in eq. (23), we can have

sn[2] = sn + 2i ln

(
λ2ψ

(2)
n φ

(1)
n − λ1ψ

(1)
n φ

(2)
n

λ2ψ
(1)
n φ

(2)
n − λ1ψ

(2)
n φ

(1)
n

)
,

= sn + 2i ln
(

Ω[2]
Δ[2]

)
. (24)

The N -fold Darboux transformations are expressed as

ψn[N ] =
Δ[N + 1]

Δ[N ]
, (25)

φn[N ] =
Ω[N + 1]

Ω[N ]
, (26)

ωn[N ] = ωn

(
Δ[N ]
Ω[N ]

)2

, (27)

sn[2] = sn + 2i ln
(

Ω[N ]
Δ[N ]

)
, (28)

with

Δ[N + 1] =

∣∣∣∣∣∣∣∣∣∣∣

ψn λφn λ2ψn · · · λN−1φn λNXk
n

ψ
(1)
n λ1φ

(1)
n λ2

1ψ
(1)
n · · · λN−1

1 φ
(1)
n λN

1 X
(1),k
n

...
...

...
. . .

...
...

ψ
(N)
n λNφ

(N)
n λ2

Nψ
(N)
n · · · λN−1

N φ
(N)
n λN

NX
(N),k
n

∣∣∣∣∣∣∣∣∣∣∣

;
X

(N),2l−1
n = ψ

(N)
n ,

X
(N),2l
n = φ

(N)
n ,

Ω[N + 1] =

∣∣∣∣∣∣∣∣∣∣∣

φn λψn λ2φn · · · λN−1ψn λNY k
n

φ
(1)
n λ1ψ

(1)
n λ2

1φ
(1)
n · · · λN−1

1 ψ
(1)
n λN

1 Y
(1),k
n

...
...

...
. . .

...
...

φ
(N)
n λNψ

(N)
n λ2

Nφ
(N)
n · · · λN−1

N ψ
(N)
n λN

NY
(N)
n

∣∣∣∣∣∣∣∣∣∣∣

;
Y

(N),2l−1
n = φ

(N)
n ,

Y
(N),2l
n = ψ

(N)
n .
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and

Δ[N ] =

∣∣∣∣∣∣∣∣∣∣∣∣

ψ
(1)
n λ1φ

(1)
n λ2

1ψ
(1)
n · · · λN−1

1 X
(1),k
n

ψ
(2)
n λ2φ

(2)
n λ2

2ψ
(2)
n · · · λN−1

2 X
(2),k
n

...
...

...
. . .

...

ψ
(N)
n λNφ

(N)
n λ2

Nψ
(N)
n · · · λN−1

N X
(N),k
n

∣∣∣∣∣∣∣∣∣∣∣∣

;
X

(N),2l−1
n = ψ

(N)
n ,

X
(N),2l
n = φ

(N)
n ,

Ω[N ] =

∣∣∣∣∣∣∣∣∣∣∣∣

φ
(1)
n λ1ψ

(1)
n λ2

1φ
(1)
n · · · λN−1

1 Y
(1),k
n

φ
(2)
n λ2ψ

(2)
n λ2

2φ
(2)
n · · · λN−1

2 Y
(2),k
n,l

...
...

...
. . .

...

φ
(N)
n λNψ

(N)
n λ2

Nφ
(N)
n · · · λN−1

N Y
(N),k
n

∣∣∣∣∣∣∣∣∣∣∣∣

;
Y

(N),2l−1
n = φ

(N)
n ,

Y
(N),2l
n = ψ

(N)
n .

Formulas (25)-(28) allow us to compute multi-soliton solution of sd-SG equation (5). In the next section, we will
calculate explicit expressions of single- and double-soliton solutions.

4 Explicit solution in zero background

In this section, we shall compute explicit soliton solutions for the sd-SG equation by using Darboux transformation.
For this, we take a simple trivial solution to the solution to sd-SG equation (5), i.e. sn = 0, the linear system of
difference-differential equations (10)-(11) becomes

ψn+1 = λφn + ψn, φn+1 = λψn + φn, (29)
d
dt

ψn = λ−1γφn,
d
dt

φn = λ−1γψn. (30)

The solution to the linear difference-differential equations (29)-(30) is given by

ψn = A (1 + λ)n exp
(γ

λ
t
)

+ B (1 − λ)n exp
(
−γ

λ
t
)

, (31)

φn = A (1 + λ)n exp
(γ

λ
t
)
− B (1 − λ)n exp

(
−γ

λ
t
)

, (32)

where A and B are constants.
In order to obtain an explicit expression of one-soliton, we have

ψ(1)
n = A1 (1 + λ1)

n exp
(

γ

λ1
t

)
+ B1 (1 − λ1)

n exp
(
− γ

λ1
t

)
, (33)

φ(1)
n = A1 (1 + λ1)

n exp
(

γ

λ1
t

)
− B1 (1 − λ1)

n exp
(
− γ

λ1
t

)
, (34)

substituting ψ
(1)
n and φ

(1)
n from eqs. (33)-(34) in expression (17), we obtain

sn[1] = 2i ln
A1(1 + λ1)n − B1(1 − λ1)n exp(−2γ

λ1
t)

A1(1 + λ1)n + B1(1 − λ1)n exp(−2γ
λ1

t)
. (35)

For the choice A1 = 1, B1 = i, above expression reduces to [39]

sn[1] = 2i ln
ψ

(1)∗
n

ψ
(1)
n

= 4 tan−1

[(
1 + λ1

1 − λ1

)n

exp
(

2γ

λ1
t

)]
, (36)

which represents a single-kink solution and its profile is presented in fig. 1 for λ1 = 0.2 and γ = 0.25. In what follows,
we would like to study dynamics of one-kink soliton solution of sd-SG equation. The one-kink soliton (36) has wave
span of 2π as shown in fig. 1 with moving inflexion point trace given by

n(t) =
γt

λ1 tanh−1(λ1)
. (37)
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Fig. 1. The snapshot (at t = 0) and time-evolution of one-kink solution (35) is shown on left- and right-hand side of figure,
respectively.

Fig. 2. The snapshot (at t = 0) and time-evolution of two-kink solution.

The value of sn[1] and slope at inflexion point are π and 4 arctan( 1+λ1
1−λ1

) respectively. For further details on dynamics
of such soliton solutions see refs. [39,40].

In order to obtain an explicit expression of two-soliton solution, we recall eq. (24)

sn[2] ≡ 2i ln

⎛
⎜⎜⎜⎜⎝

det

(
φ

(1)
n λ1ψ

(1)
n

φ
(2)
n λ2ψ

(2)
n

)

det

(
ψ

(1)
n λ1φ

(1)
n

ψ
(2)
n λ2φ

(2)
n

)

⎞
⎟⎟⎟⎟⎠

, (38)

along with

ψ(k)
n = Ak (1 + λk)n exp

(
γ

λk
t

)
+ Bk (1 − λk)n exp

(
− γ

λk
t

)
,

φ(k)
n = Ak (1 + λk)n exp

(
γ

λk
t

)
− Bk (1 − λk)n exp

(
− γ

λk
t

)
,

where k = 1, 2. Furthermore, if we take A1 = A2 = 1 and B1 = B2 = i the expression of two-soliton solution (38)
reduces to

sn[2] = 4 cot−1

⎛
⎜⎜⎝

(λ1 − λ2)
(

β+
n eγ

(
1

λ1
+ 1

λ2

)
t + β−

n e−γ
(

1
λ1

+ 1
λ2

)
t

)

(λ1 + λ2)
(

δ+
n eγ

(
1

λ1
− 1

λ2

)
t − δ−n e−γ

(
1

λ1
− 1

λ2

)
t

)

⎞
⎟⎟⎠ , (39)

along with β±
n = (1 ± λ1)n(1 ± λ2)n, δ±n = (1 ± λ1)n(1 ∓ λ2)n. The dynamics of two-soliton solutions is presented in

fig. 2 for λ1 = 0.14, λ2 = −0.15 and γ = 0.25. Similarly kink and antikink interaction is shown in fig. 3 for λ1 = 0.14,
λ2 = 0.15.
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Fig. 3. The snapshot (at t = 0) and time-evolution of interaction of kink and antikink solution.

Fig. 4. A breather soliton solution for sd-SG equation.

Fig. 5. Degenerate soliton solution (41).

One can easily obtain explicit expression of breather soliton solution for sd-SG equation, for this take λ2 = λ∗
1, we

obtain

sn[2] = 4i coth−1

⎛
⎜⎜⎝

�(λ1)
(

ε+
n e

(
2γ�(λ1)
|λ1|2

)
t + ε−n e

(
−2γ�(λ1)

|λ1|2

)
t
)

�(λ1)
(

ρ+
n e

(
2iγ�(λ1)

|λ1|2

)
t − ρ−n e

(
−2iγ�(λ1)

|λ1|2

)
t
)

⎞
⎟⎟⎠ , (40)

where ε±n = (1 ± 2�(λ1) + |λ1|2)n, ρ±n = (1 ∓ 2i�(λ1) − |λ1|2)n. A snapshot (at t = 0) and space-time evolution of
breather solution (40) are shown in fig. 4 for λ1 = 0.1 + 0.3i. Under the limit, that is, λ2 −→ λ1, eq. (39) yields

sn[2] = 4 tanh−1

⎛
⎝ 4(1 − λ2

1)
n−1(λ2

1n − γt(1 − λ2
1))

λ1

(
(1 + λ1)2ne

2γt
λ1 + (1 − λ1)2ne

−2γt
λ1

)
⎞
⎠ . (41)

The above expression is known as degenerate soliton solution [41,42] and depicted in fig. 5 for λ1 = 0.2 and t = 1.
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In a similar manner we can also compute higher-order degenerate soliton solutions. Similarly, if we take limit λ2 −→
1/λ1 in eq. (40), we obtain another representation of breather solution:

sn[2] = −4 cot−1

⎛
⎜⎜⎝

(
λ2

1 − 1
λ2

1 + 1

)
(

(1 + λ1)2neγ
(

1+λ2
1

λ1

)
t + (−1)n(1 − λ1)2ne−γ

(
1+λ2

1
λ1

)
t

)

(
(1 − λ2

1)ne−γ
(

1−λ2
1

λ1

)
t − (−1)n(1 − λ2

1)neγ
(

1−λ2
1

λ1

)
t

)

⎞
⎟⎟⎠ . (42)

Similarly, one can construct two-breather solution and two-degenerate-breather solutions of sd-SG equation. All ex-
pressions of explicit solutions for sd-SG equation reduce to the already known solutions of continuous SG equation
under continuum limit.

5 Conclusions

In this paper we have investigated the construction of multi-soliton solutions of sd-SG equation by using Darboux
transformation. We obtained a determinant representation of multi-soliton solution of sd-SG equation. We derived
explicit expressions of one- and two-soliton solutions by expanding the determinant formula. We also computed explicit
expressions of discrete kink, two-kink, breather and degenerate solutions of sd-SG equation. Finally we illustrated
results obtained in this article by plotting our results. The results obtained in this paper may be useful in other fields
like string theory, theory of condensed-matter physics and biological science. For future work we would like to study
Darboux transformation for fully discrete sine-Gordon equation.

Publisher’s Note The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional
affiliations.
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