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Abstract. In the present work, wave propagation characteristics of circular cylindrical nanoshells made
of functionally graded materials are investigated. Material properties of the nanoshells are graded in the
thickness direction according to the power-law distribution. The Flügge shell theory together with the
nonlocal elasticity theory is employed to model the present system. The wave dispersion relations with
respect to the wave number in the longitudinal and circumferential directions are derived. In addition, a
parametric study is carried out to highlight the influences of the power-law exponent, the wave number,
the nonlocal parameter and the radius-to-thickness ratio. The results indicate that these parameters have a
significant effect on the wave propagation characteristics of functionally graded material (FGM) cylindrical
nanoshells.

1 Introduction

Since the concept of functionally graded materials (FGMs) was first proposed by Japanese material scientists in
1984 [1], this type of materials has attracted extensive attention from research and engineering communities [2–8].
FGMs are inhomogeneous composite materials made of two or more materials, in which the material properties exhibit
a graded variation from one surface to the other. Such unique design can impart the mechanical properties of component
materials to the integrations. For example, FGMs typically containing the specific metallic and ceramic constituents
have the advantages of both materials. On the one hand, the ceramic constituent, owing to its low thermoconductivity,
supplies high temperature resistance; on the other hand, the metal component provides good toughness and ductility
which can prevent fracture [9].

Due to their excellent designability and mechanical property, FGMs have shown immense potential and application
future in shape memory alloys [10], and microelectromechanical systems (MEMS) and nanoelectromechanical systems
(NEMS) [11–13]. For instance, the FGM shape memory alloy micro/nano-films with new surface properties, namely,
wear, corrosion resistant and biocompatibility, can fulfill the tribological and orthodontic applications [14]. The double-
sided FGM nanobridges are regarded as very good candidates for miniature electrodes in NEMS [15]. FGM poly-SiGe
multilayers were proposed as a promising MEMS device for the integrated circuit [16]. FGM poly-SiGe electrodes
could be applied to the fabrication of monolithic integration [17].

FGM cylindrical nanoshells are prevalent FGM nanostructures in practical engineering applications. Therefore,
the mechanical properties of FGM cylindrical nanoshells have attracted a sight of interests. Using the first-order
shear deformation (FSD) theory, Arefi and Zenkour [18] presented a two-dimensional thermoelastic analysis of FGM
cylindrical nanoshells via the nonlocal elasticity theory. Mohammadi et al. [19] investigated the vibrational behavior of
FGM cylindrical nanoshells with the consideration of simply supported and clamped-clamped boundary conditions. Zhu
et al. [20] studied the effect of surface energy on the torsional buckling behavior of FGM cylindrical nanoshells covered
with piezoelectric nanolayers. Sahmani and Aghdam [21] dealt with the nonlinear instability of FG multilayer graphene
platelet-reinforced nanoshells under axially compressive load by using the nonlocal strain gradient theory. Based on
the hyperbolic shear deformation shell theory, Sahmani and Aghdam [22] carried out the radial postbuckling analysis
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of FG multilayer graphene platelet-reinforced nanoshells subjected to hydrostatic pressure including nonlocal elastic
and strain gradient stress fields. Sun et al. [23] presented analytical solutions for the buckling of carbon nanotubes and
FGM cylindrical nanoshells under compressive and thermal loads via Reddy’s higher-order shear deformation theory.
Using the generalized differential quadrature method to obtain the governing equations associated with boundary
conditions, Shojaeefard et al. [24] investigated the buckling and vibration of FGM piezomagnetic nanoshells embedded
in viscoelastic media. Zeighampour and Shojaeian [25] studied vibration of FGM sandwich cylindrical nanoshells
by employing the FSD theory and the couple stress theory. Fang et al. [26] carried out the nonlinear buckling and
postbuckling analyses of FGM piezoelectric cylindrical nanoshells with the consideration of surface energy effect.

It should be noted that the wave propagation characteristics of nanoscale shells has been one of the most interesting
research topics in academic and industrial groups. Hu et al. [27] performed the torsional and transverse wave propa-
gation analysis of single- and double-walled carbon nanotubes; they found that the results of the nonlocal cylindrical
shell theory have good agreement with those of molecular dynamics simulations. On the basis of the nonlocal strain
gradient theory, Zeighampour et al. [28] investigated the wave propagation in fluid-conveying double-walled carbon
nanotubes. Later, Zeighampour et al. [29] utilized the nonlocal strain gradient theory to study the wave propagation in
viscoelastic thin cylindrical nanoshells resting on a visco-Pasternak foundation. The wave propagation characteristics
of magneto-electro-elastic nanoshells was studied in the work of Ma et al. [30] by using the nonlocal strain gradi-
ent theory, where the Kirchhoff-Love and first-order shear deformation shell models were employed. Considering the
small-scale effect, Wang and Varadan [31] investigated the wave propagation characteristics of carbon nanotubes on
the basis of Eringen’s nonlocal elasticity theory.

A literature survey shows that no study has been conducted on wave propagation characteristics in nanoscale shells
made of FGMs. In this context, the present paper aims to give an analytical study on this problem. The Flügge shell
theory in conjuction with the nonlocal elasticity theory is employed for deriving the theoretical formulations of the
present model. Additionally, the wave propagation characteristics of FGM cylindrical nanoshells under various system
parameters are shown in detail.

2 Material properties of FGM circular cylindrical nanoshells

For FGM nanoshells, material properties Pi of constituent materials are functions of temperature [32]:

Pi = P0

(
P−1T

−1 + 1 + P1T + P2T
2 + P3T

3
)
, (1)

where T is the Kelvin temperature; P−1, P0, P1, P2 and P3 are the temperature coefficients and unique to the
constituent materials.

The general material properties P of FGMs are determined by individual material properties Pi and volume
fractions Vfi of the constituent materials [3]:

P =
N∑

i=1

PiVfi. (2)

The summation of volume fractions of all the constituent materials should be one, namely,
N∑

i=1

Vfi = 1. (3)

For a cylindrical nanoshell with the uniform thickness h, suppose that the reference surface is at the middle surface;
hence, the volume fraction is [4,33]

Vf =
(

z

h
+

1
2

)p

, (4)

where p (0 ≤ p < ∞) is the power-law exponent; z (−h/2 ≤ z ≤ h/2) is the radial distance from the middle surface
in the thickness direction.

Suppose that an FGM circular cylindrical nanoshell is made of metal (nickel) and ceramic (Al2O3); and the inner
and outer surfaces are pure metal and pure ceramic, respectively. Based on the rule of mixture, Young’s modulus E(z),
mass density ρ(z), and Poisson’s ratio μ(z) of the FGM nanoshell can be described as [34]

E(z) = (Ec − Eni)
(

z

h
+

1
2

)p

+ Eni, (5)

ρ(z) = (ρc − ρni)
(

z

h
+

1
2

)p

+ ρni, (6)

μ(z) = (μc − μni)
(

z

h
+

1
2

)p

+ μni. (7)
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Clearly, when z = −h/2, the general material properties correspond to those of pure nickel, i.e., E(z) = Eni,
ρ(z) = ρni, and μ(z) = μni; when z = h/2, the general material properties correspond to those of pure ceramic,
namely, E(z) = Ec, ρ(z) = ρc, and μ(z) = μc.

3 Nonlocal continuum model of FGM circular cylindrical nanoshells

The theory of nonlocal elasticity [35] assumes that the stresses at reference point x is a function of the strain field
at every point in the body. The most general form of the constitutive relation in the nonlocal elasticity relates to
the integral over the entire area. The integral contains a nonlocal kernel function, which describes the corresponding
effects of the strains at different locations on the stresses at a given location.

The constitutive relationships for nonlocal elasticity are given by [36]

σij,j = 0, (8)

σij(x) =
∫

V

α(|x − x′|, τ)σc
ij (x′) dV (x′) , (9)

σc
ij (x′) = Cijklεkl (x′) , (10)

εij =
1
2

(ui,j + uj,i) , (11)

in which σij , εij and ui are stress tensor, strain tensor and displacement vector, respectively; σc
ij(x

′) and Cijkl are
the classical stress tensor and elastic modulus tensor in classical elasticity, respectively; α(|x − x′|, τ) is a nonlocal
modulus or attenuation function, which incorporates the nonlocal effects at the reference point x that are produced
by local strain at the source x′ into the constitutive relations. |x − x′| is Euclidean distance; τ = e0a/l [35], where e0

is a constant corresponding to each material, a is an internal characteristic length and l is an external characteristic
length. The value of e0 needs to be determined experimentally or by matching the dispersion curves of plane waves
with those of atomic lattice dynamics.

The integral-partial differential equations of the above linear nonlocal elasticity are reduced to singular partial
differential equations of a special class of physically admissible kernel [36]. So, Hook’s law for the stress and strain
relations takes the form of

[
1 − (e0a)2∇2

]
σx =

E(z)
1 − μ(z)2

[εx + μ(z)εθ] , (12)

[
1 − (e0a)2∇2

]
σθ =

E(z)
1 − μ(z)2

[εθ + μ(z)εx] , (13)

[
1 − (e0a)2∇2

]
τxθ =

E(z)
2[1 + μ(z)]

γxθ, (14)

[
1 − (e0a)2∇2

]
τθx =

E(z)
2[1 + μ(z)]

γxθ, (15)

where x and θ are longitudinal and angular circumferential coordinates, respectively; σx, σθ, τxθ and τθx are normal
and shear stresses; εx, εθ and γxθ are normal and shear strains; the Laplace operator is expressed as

∇2 =
∂2

∂x2
+

∂2

r2∂θ2
, (16)

where r is the middle-surface radius.

4 Wave propagation via nonlocal Flügge shell theory

Figure 1 shows an FGM circular cylindrical nanoshell with thickness h and middle-surface radius r. It is assumed that
the cylindrical coordinate system (x, θ, z) is fixed at the midplane of the nanoshell.

Based on the Flügge shell theory [37], the displacements of an arbitrary point in the shell along the x-, θ-, z-axes,
denoted by ux(x, θ, z, t), vθ(x, θ, z, t) and wz(x, θ, z, t), respectively, are

ux(x, θ, z, t) = u(x, θ, t) − z
∂w(x, θ, t)

∂x
, (17)

vθ(x, θ, z, t) =
r + z

r
v(x, θ, t) − z

r

∂w(x, θ, t)
∂θ

, (18)

wz(x, θ, z, t) = w(x, θ, t), (19)

where t is time; u(x, θ, t), v(x, θ, t) and w(x, θ, t) denote the displacements of a point at the midplane.
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Fig. 1. Schematic diagram of FGM circular cylindrical nanoshell.

The relations between strains and displacements can be expressed as

εx =
∂u

∂x
− z

∂2w

∂x2
, (20)

εθ =
1
r

∂v

∂θ
− z

r(r + z)
∂2w

∂θ2
+

1
r + z

w, (21)

γxθ =
1

r + z

∂u

∂θ
+

r + z

r

∂v

∂x
−

(
z

r
+

z

r + z

)
∂2w

∂x∂θ
. (22)

The resultant forces and bending moments can be given as follows:

Nx =
∫ h/2

−h/2

σx

(
1 +

z

r

)
dz, (23)

Nθ =
∫ h/2

−h/2

σθdz, (24)

Nxθ =
∫ h/2

−h/2

τxθ

(
1 +

z

r

)
dz, (25)

Nθx =
∫ h/2

−h/2

τθxdz, (26)

Mx = −
∫ h/2

−h/2

σx

(
1 +

z

r

)
z dz, (27)

Mθ = −
∫ h/2

−h/2

σθz dz, (28)

Mxθ = −
∫ h/2

−h/2

τxθ

(
1 +

z

r

)
z dz, (29)

Mθx = −
∫ h/2

−h/2

τθxz dz. (30)

From eqs. (12)–(15) and (20)–(30), we obtain

[
1 − (e0a)2∇2

]
Nx = B11

∂u

∂x
− B12

∂2w

∂x2
+ B13

1
r

∂v

∂θ
− B14

1
r

∂2w

∂θ2
+ B15w, (31)

[
1 − (e0a)2∇2

]
Nθ = A21

1
r

∂v

∂θ
− A22

1
r

∂2w

∂θ2
+ A23w + A24

∂u

∂x
− A25

∂2w

∂x2
, (32)
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[
1 − (e0a)2∇2

]
Nxθ = B31

∂u

∂θ
+ B32

1
r

(
∂v

∂x
− ∂2w

∂x∂θ

)
+ B33

∂v

∂x
− B34

∂2w

∂x∂θ
, (33)

[
1 − (e0a)2∇2

]
Nθx = A31

∂u

∂θ
+ A32

1
r

(
∂v

∂x
− ∂2w

∂x∂θ

)
+ A33

∂v

∂x
− A34

∂2w

∂x∂θ
, (34)

[
1 − (e0a)2∇2

]
Mx = −D11

∂u

∂x
+ D12

∂2w

∂x2
− D13

1
r

∂v

∂θ
+ D14

1
r

∂2w

∂θ2
− D15w, (35)

[
1 − (e0a)2∇2

]
Mθ = −C21

1
r

∂v

∂θ
+ C22

1
r

∂2w

∂θ2
− C23w − C24

∂u

∂x
+ C25

∂2w

∂x2
, (36)

[
1 − (e0a)2∇2

]
Mxθ = −D31

∂u

∂θ
− D32

1
r

(
∂v

∂x
− ∂2w

∂x∂θ

)
− D33

∂v

∂x
+ D34

∂2w

∂x∂θ
, (37)

[
1 − (e0a)2∇2

]
Mθx = −C31

∂u

∂θ
− C32

1
r

(
∂v

∂x
− ∂2w

∂x∂θ

)
− C33

∂v

∂x
+ C34

∂2w

∂x∂θ
, (38)

where the parameters Aij , Bij , Cij and Dij (i, j = 1, 2, . . . , 5) are given in appendix A, from which one can obtain
the analytical computation results of the integrals.

The equilibriums of resultant forces and bending moments of the FGM cylindrical nanoshell can be expressed
as [37]

r
∂Nx

∂x
+

∂Nθx

∂θ
+ Ir

∂2u

∂t2
= 0, (39)

r
∂Nθ

∂θ
+ r2 ∂Nxθ

∂x
− ∂Mθ

∂θ
− r

∂Mxθ

∂x
+ Ir2 ∂2v

∂t2
= 0, (40)

∂2Mθ

∂θ2
+ r

∂2Mxθ

∂x∂θ
+ r

∂2Mθx

∂x∂θ
+ r2 ∂2Mx

∂x2
+ rNθ − Ir2 ∂2w

∂t2
= 0, (41)

where the coefficient I takes the form of

I =
∫ h/2

−h/2

ρ(z)dz. (42)

By substituting eqs. (31)–(38) into eqs. (39)–(41), the governing equations can be obtained as

B11r
2 ∂2u

∂x2
+ A31r

∂2u

∂θ2
+ [A32 + (A33 + B13) r]

∂2v

∂x∂θ
+ B15r

2 ∂w

∂x
− B12r

2 ∂3w

∂x3

− [A32 + (A34 + B14)r]
∂3w

∂x∂θ2
+ Ir2

[
1 − (e0a)2∇2

] ∂2u

∂t2
= 0, (43)

[
C24r + (D31 + A24)r2 + B31r

3
] ∂2u

∂x∂θ
+

[
D32r + (B32 + D33) r2 + B33r

3
] ∂2v

∂x2

+ (C21 + A21r)
∂2v

∂θ2
+

(
C23r + A23r

2
) ∂w

∂θ
− (C22 + A22r)

∂3w

∂θ3

−
[
(C25 + D32)r + (A25 + B32 + D34)r2 + B34r

3
] ∂3w

∂x2∂θ
+ Ir3

[
1 − (e0a)2∇2

] ∂2v

∂t2
= 0, (44)

D11r
3 ∂3u

∂x3
− A24r

2 ∂u

∂x
+

[
C24r + (C31 + D31)r2

] ∂3u

∂x∂θ2

+
[
(C32 + D32)r + (C33 + D13 + D33)r2

] ∂3v

∂x2∂θ
+ C21

∂3v

∂θ3
− A21r

∂v

∂θ
− D12r

3 ∂4w

∂x4

+ (A25r
2 + D15r

3)
∂2w

∂x2
−

[
(C25 + C32 + D32)r + (C34 + D14 + D34)r2

] ∂4w

∂x2∂θ2

+ (A22 + C23)r
∂2w

∂θ2
− C22

∂4w

∂θ4
− A23r

2w + Ir3
[
1 − (e0a)2∇2

] ∂2w

∂t2
= 0. (45)
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The wave propagation solution of eqs. (43)–(45) can be written as

u(x, θ, t) = Uei(kx+nθ−ωt), (46)

v(x, θ, t) = V ei(kx+nθ−ωt), (47)

w(x, θ, t) = Wei(kx+nθ−ωt), (48)

where U , V and W are the amplitudes of wave motion; ω is the frequency of wave motion; k and n are the wave
number in the longitudinal and circumferential directions, respectively.

The relation between the phase velocity v and wave frequency ω can be expressed as follows [31]:

v = ω/k. (49)

Substituting eqs. (46)–(48) into eqs. (43)–(45) yields a generalized eigenvalue problem

(
L3×3 − ω2H3×3

)
⎧
⎨

⎩

U

V

W

⎫
⎬

⎭
= {0}, (50)

where the elements Lij and Hij (i, j = 1, 2, 3) in the matrix L3×3 and H3×3 are given in appendix B. The dispersion
relation derived from eq. (50) takes the form

Det
[
L3×3 − ω2H3×3

]
= 0. (51)

According to eq. (51), the analytical solutions of wave frequency are obtained by using the “Mathematica” software.
Since the analytical formulas of wave frequency are too long, they are not written here. If all parameters are substituted
in the analytical formulas, the frequency values can be obtained by using the “Mathematica” software.

Three cut-off frequencies can be obtained by setting the longitudinal wave number k = 0:

ω2
c1 =

A31n
2r

I[(e0a)2n2 + r2]
, (52)

ω2
c2 =

χ2

I[(e0a)2n2 + r2]
, (53)

ω2
c3 =

χ3

I[(e0a)2n2 + r2]
, (54)

where

χ2 =
1
2r

(ξ −
√

ζ), (55)

χ3 =
1
2r

(ξ +
√

ζ) (56)

and

ξ = A21n
2r + A22n

2r + A23r
2 + C21n

2 + C22n
4 + C23n

2r (57)

ζ = A2
21n

4r2 + A2
22n

4r2 + A2
23r

4 − 2A23C21n
2r2 + 4A23C21n

4r2 + C2
21n

4

+ 2A23C22n
4r2 + 2C21C22n

6 + C2
22n

8 + 2C23

(
A23r

2 + C21n
2 + C22n

4
)
n2r

+ C2
23n

4r2 + 2A22n
2r

[
−C21n

2 + n4(2C21 + C22) + r(A23r + C23n
2)

]

+ 2A21n
2r

[
A22n

2r + A23r
2 + 2C23r + (C21 + 2C22 − C22n

2 − C23r)n2
]
. (58)

5 Results and discussion

In order to examine the validity of the present analysis, we first make a comparison study for a homogeneous cylindrical
nanoshell. The mass density, Poisson’s ratio, thickness and radius of the cylindrical nanoshells are ρ = 2.27 g/cm3,
μ = 0.2, h = 0.34 nm and r = 5nm, respectively. The in-plane stiffness is Eh = 360 J/m2 and the bending rigidity is
D = 2 eV. In fig. 2, it can be seen that very good agreement between the present results and those in the literature
has been achieved, bespeaking the validity of the present analysis.
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Fig. 2. Comparisons of wave characteristics in a homogenous cylindrical nanoshell (k = 8× 106 m−1, e0a = 1 nm): (a) the first
mode; (b) the second mode; and (c) the third mode.

Table 1. Properties of materials [38].

Nickel Al2O3

E (Pa) ρ (kg/m3) μ E (Pa) ρ (kg/m3) μ

P−1 0 0 0 0 0 0

P0 205.098 × 109 8900 0.31 349.55 × 109 3950 0.26

P1 −2.794 × 10−4 0 0 −3.853 × 10−4 0 0

P2 −3.998 × 10−9 0 0 −4.027 × 10−7 0 0

P3 0 0 0 −1.673 × 10−10 0 0

T = 300 K 187.833 × 109 8900 0.31 294.898 × 109 3950 0.26

In what follows, wave propagation in the FGM circular cylindrical nanoshell shown in fig. 1 will be dealt with. The
FGM nanoshell is composed of metal (nickel) and ceramic (Al2O3); and the inner and outer surfaces are full metal
and full ceramic, respectively. The material properties are tabulated in table 1. If not specified, the room temperature
(T = 300K) is considered and the thickness and middle-surface radius of the cylindrical nanoshell are fixed as h = 1nm
and r = 50nm, respectively.

The cut-off frequencies versus circumferential wave number n are tabulated in table 2 for FGM nanoshells with
different power-law exponents, namely, p = 0, 1, 5, where e0a = 1nm. As can be observed, only one cut-off frequency
exists when n = 0 (axisymmetric motion). Moreover, when n = 1, two cut-off frequencies exist. Three cut-off frequencies
exist only when n ≥ 2. It is noted that the cut-off frequencies increase with increasing circumferential wave number
n. In addition, an increase in power-law exponent leads to a decrease in cut-off frequencies of the FGM nanoshells.

In figs. 3 and 4, the curves of phase velocity versus longitudinal wave number k for the first three modes are given
for n = 0 (axisymmetric motion) and n = 1 (asymmetric motion), respectively, where e0a = 1nm. The comparison
of figs. 3(a) and 4(a) shows that at small longitudinal wave number, the phase velocity for the first mode exhibits
an increasing-trend variation at n = 1, but the phase velocity is constant at n = 0. In figs. 3(c) and 4(c), at small
longitudinal wave number, the phase velocity for the third mode shows a decreasing-trend variation when n = 1; and
the phase velocity remains constant when n = 0. It is also noted that the circumferential wave number n has invisible
effect on the phase velocity for the second mode, as can be seen in figs. 3(b) and 4(b). The effect of the power-law
exponent on wave propagation characteristics in the FGM cylindrical nanoshell is also highlighted in these figures. It
is found that the increase of power-law exponent results in the decrease of the phase velocity.



Page 8 of 15 Eur. Phys. J. Plus (2019) 134: 233

Table 2. Cut-off frequencies (GHz) of FGM nanoshell (e0a = 1 nm).

n p = 0 p = 1 p = 5

0 179 127.8 105.8

1 253 108.8 180.8 76.5 149.7 62.6

2 399.9 2.8 217.5 285.8 2 152.9 236.6 1.7 125.1

3 564.9 7.8 326 403.9 5.5 229.1 334.3 4.7 187.4

4 735.5 15 434.1 525.9 10.6 305 435.3 9.1 249.5

5 908 24.2 541.6 649.2 17.1 380.6 537.4 14.6 311.4

6 1080.9 35.4 648.5 772.8 25.1 455.7 639.7 21.4 372.8

7 1253.3 48.6 754.7 896.1 34.4 530.3 741.7 29.4 433.8

8 1424.8 63.8 860 1018.7 45.2 604.3 843.2 38.6 494.4

9 1595 80.9 964.3 1140.5 57.2 677.6 944 48.9 554.3

10 1763.7 99.8 1067.5 1261.1 70.7 750.1 1043.8 60.3 613.7
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Fig. 3. Phase velocity versus longitudinal wave number k of FGM nanoshell (n = 0): (a) the first mode; (b) the second mode;
and (c) the third mode.

The dispersion relation between the phase velocity and circumferential wave number n is depicted in fig. 5 at
relative small longitudinal wave number k = 107 m−1, where e0a = 1nm. It can be seen that phase velocities of the
first and second modes increase with the circumferential wave number. As for the third mode, phase velocity decreases
initially and then increases with the circumferential wave number. It is found that the lowest phase velocity occurs at
n = 3.
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Fig. 4. Phase velocity versus longitudinal wave number k of FGM nanoshell (n = 1): (a) the first mode; (b) the second mode;
and (c) the third mode.

Figure 6 demonstrates the curves of phase velocity versus circumferential wave number n at relative large longitu-
dinal wave number k = 109 m−1, where the other parameters used are the same as fig. 5. It can be seen that the phase
velocities vary slightly with the circumferential wave number. This indicates that the circumferential wave number
has insignificant effect on the phase velocity of FGM nanoshells when the longitudinal wave number is large, which is
different from the case of small longitudinal wave number shown in fig. 5.

Figures 7 and 8 depict the effect of nonlocal parameter e0a on the dispersion relations of FGM cylindrical nanoshell
for n = 0 (axisymmetric motion) and n = 1 (asymmetric motion), respectively, where p = 1. It can be seen that when
longitudinal wave number k < 108 m−1, invisible difference of the phase velocities between the local and nonlocal
shell models is found, showing the applicability of the local (e0a = 0) Flügge shell theory when the longitudinal wave
number is small. However, when the longitudinal wave number k > 108 m−1, the phase velocity via the nonlocal shell
model is obviously different from that via the local model, indicating that the nonlocal shell model must be adopted
for large longitudinal wave number. Moreover, the phase velocities for the three modes decrease with the small scale
parameter. It is also noted from figs. 7(a) and (c) that, when the longitudinal wave number is small, the phase velocities
for the first and third modes remain constant at n = 0. When n = 1, however, the phase velocities for the first and
third modes exhibit nonuniform variation, as shown in figs. 8(a) and (c).

In fig. 9, the nonlocal parameter effect on the dispersion relations between the phase velocity and circumferential
wave number n is shown, where p = 1, k = 107 m−1. Invisible difference of the phase velocities between the local and
nonlocal shell models is found when circumferential wave number n < 4, indicating the local Flügge shell theory is
acceptable for small circumferential wave number. When n > 4, however, an increase in the small scale parameter
leads to the decreasing phase velocity. It means that the local Flügge shell theory is not applicable to provide accurate
dispersion relations when the circumferential wave number n is large. In this case, the nonlocal Flügge shell theory
should be employed.

In fig. 10, the phase velocity ratio versus small scale parameter e0a is shown for the first mode at three different
power-law exponents, namely, p = 0.2, 1 and 5. The phase velocity ratio is defined by the phase velocity obtained
via the nonlocal Flügge shell model to that via the local model. It is clear that the phase velocity ratio is unit when
e0a = 0. In addition, an increase in the small scale parameter results in the decrease in the phase velocity ratio. It is
also found that the phase velocity ratio decreases with increasing longitudinal wave number.
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Fig. 5. Phase velocity versus circumferential wave number n of FGM nanoshell (k = 107 m−1): (a) the first mode; (b) the
second mode; and (c) the third mode.
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Fig. 6. Phase velocity versus circumferential wave number n of FGM nanoshell (k = 109 m−1): (a) the first mode; (b) the
second mode; and (c) the third mode.
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Fig. 7. Phase velocity versus longitudinal wave number k of FGM nanoshell (n = 0): (a) the first mode; (b) the second mode;
and (c) the third mode.

106 107 108 109 1010 1011
101

102

103

104

 yticolev esahP
v

)s/
m( 

Longitudinal wave number k (m-1)

 e0a=0
 e0a=0.5nm
 e0a=1nm
 e0a=2nm

 
106 107 108 109 1010 1011

102

103

104

105

106

 yticolev esahP
v

)s/
m( 

Longitudinal wave number k (m-1)

 e0a=0
 e0a=0.5nm
 e0a=1nm
 e0a=2nm

(a) (b) 

106 107 108 109 1010 1011
101

102

103

104

105

106

 yticolev esahP
v

)s/
m( 

Longitudinal wave number k (m-1)

 e0a=0
 e0a=0.5nm
 e0a=1nm
 e0a=2nm

 
(c) 

Fig. 8. Phase velocity versus longitudinal wave number k of FGM nanoshell (n = 1): (a) the first mode; (b) the second mode;
and (c) the third mode.
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Fig. 9. Phase velocity versus circumferential wave number n of FGM nanoshell: (a) the first mode; (b) the second mode; and
(c) the third mode.
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Fig. 10. The phase velocity ratio (vnonlocal/vlocal) for the first mode (n = 1).
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Fig. 11. Phase velocity versus radius-to-thickness ratio via nonlocal Flügge shell theory: (a) the first mode; (b) the second
mode; and (c) the third mode.

In fig. 11, the phase velocity versus radius-to-thickness ratio for the first three modes is given via the nonlocal Flügge
shell theory, where e0a = 1nm, k = 109 m−1 and n = 1. As can be observed, the phase velocity is insensitive to the
radius-to-thickness ratio of the FGM nanoshells. This is a distinct and interesting result since the radius-to-thickness
ratio has obvious effect on the vibration and buckling behavior of FGM nanoshells [39,40].

6 Concluding remarks

In this paper, wave propagation characteristics of FGM circular cylindrical nanoshells are investigated based on the
nonlocal elasticity theory and the Flügge shells theory. Detailed wave dispersion results with respect to the longitudinal
and circumferential wave numbers, the power-law exponent, the small scale parameter and the radius-to-thickness ratio
are explicitly analyzed. It is shown that the larger power-law exponent leads to the smaller phase velocity in the FGM
nanoshells. When the longitudinal or circumferential wave number is small, the small scale effect is negligible and the
local shell theory can be applied, whereas, at large longitudinal or circumferential wave number, the nonlocal effect
is significant and the nonlocal Flügge shell theory should be employed to provide more accurate wave solutions. The
results also show that the variation of the radius-to-thickness ratio has negligible effect on the wave propagation of
the FGM nanoshells.
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