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Abstract. This paper studies the effects of inhomogeneous fluid configurations on the evolution of rela-
tivistic spheres within the context of electromagnetic field and fourth order gravity. We assume a compact
distribution of spherical structure that evolves due to the curvature influences coming from f(R) grav-
ity model and non-ideal matter source. After calculating the corresponding f(R) equations of motion,
an explicit formulation among Weyl scalar, dark dynamical scalars and material variables is developed.
With f(R) curvature and charged fluid terms, all the non-zero dynamical variables are presented from
the orthogonal decomposition the Riemann curvature tensor. The Raychaudhuri, Weyl scalar and shear-
ing equations are formulated through modified scalar functions with and without varying Ricci scalar for
perfect and imperfect spherical systems.

1 Introduction

The theory of general relativity (GR) has been found to be one of the most significant gravitational theories, as
it has unveiled many hidden aspects of our universe. Due to the advent of recent observational outcomes of modern
cosmology, like Supernovae Type Ia, large scale structures, cosmic microwave background radiations, it is asserted that
our cosmos is in the phase of accelerating expansion [1,2]. In this scenario, the dark energy (DE) has to be supplemented
to understand the cosmological acceleration, while the contribution of baryonic matter may need to include through
dark matter (DM) in order to provide acceptable representation of rotating galaxies’ motion, orbital motion of galaxy
clustering, large scale systems and the temperature scalar field of hot fluid in galaxies and their clusters. Recently,
Qadir et al. [3] described that the consideration of modified versions of GR could be helpful to explore dark matter
problem and quantum effects. Furthermore, the problems of nonrenormalizability and nonunitarity have been observed
in the gravitational interaction provided by the GR action. These grounds have motivated researchers to modify GR
at high energies and to use alternative cosmological approaches.

The “modified theories of gravity” (MTG) has become a standard terminology for the models explaining gravita-
tional effects that differ from the most conventional general theory of relativity (GR). Among these MTGs, a great
attention has been given to f(R), f(R, T ) (T is the trace of energy momentum tensor) and f(R, T,RμνTμν) and
f(R,�R, T ) gravity by theoretical astrophysicists. These theories could provide an effective tool to study accelerating
expansion of the cosmos. The gravitational laws are being modified on large scales in MTGs, therefore, these could
led some captivating observational signatures like, cosmic microwave background, modified spectrum in the cluster of
galaxies, weak lensing, etc. (for details, please see [4–9]).

Nojiri and Odintsov [8] presented few MTG models and claimed that these would describe inflationary and late-
time cosmic evolution in an appropriate way. The f(R) gravity is a simplest, but fourth order gravity (FOG) MTG,
in which a generic function of the Ricci scalar (R) is inserted in the usual GR action. The theoretical modeling
of wormholes alongwith few exact cosmological solutions are being discussed in [10,11]. Herrera et al. explored the
problem of cylindrical [12] and spherical [13] fate of collapse with the help of matching conditions. Buchdahl [14]
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discussed phenomenological aspects of this theory, whose results were then put forward by many peoples working
in relativistic astrophysicists [15–19]. Bamba et al. [20,21] studied the effects of modified exponential model on the
viability bounds of cosmic evolutions. conditions.

Oikonomou [22] analyzed few generic properties of exponential f(R) model in an Einstein reference frame. He
also related his results with that of Jordan frame. Bamba et al. [23] investigated the effects of few f(R) models in
order to describe early and late time cosmic evolution altogether. In the similar fashion Yousaf et al. studied another
gravitational alternatives for the discussion of dark source terms in the relativistic system through f(R,�R, T ) [24]
and f(R, T,RγδT

γδ) [25–27] gravity. Recently, Elizalde et al. [28] presented a viable exponential f(R) version that
would lead to sketch the clear picture of both the late and early time cosmic evolution in a unified way. The effects of
the slight modification to this model has also being checked and is found to be non-singular and stable. Odintsov et
al. [29] introduced logarithmic terms in the usual R squared gravity to analyze reheating cosmic eras. The discussion
on the possible existence of observationally consistent solutions has also been made.

Extra curvature modified gravity terms in the GR gravitational interaction could provide significant results on the
study of gravitational collapse. The system experiences the state of collapse, once it enters into the phase of inhomo-
geneous energy density (InED) over the universe. The theoretical examination in this direction has been performed by
Penrose and Hawking [30] by making mathematical correspondence among Weyl tensor and fluid variables. Herrera
et al. [31] studied the role of pressure anisotropy on the appearance of naked singularity (NS) and formulated the
corresponding InED factors. Virbhadra et al. [32,33] proposed the a generic mathematical expression to study the
physical features of NS and the black hole structures.

The very definition of structure scalars (SS) and their detailed analysis have been elaborated by Herrera et al. [34].
Such quantities are found to be very effective in the study of InED for relativistic systems. Herrera and his col-
leagues [35] explored InED factors and studied their contribution in the evolution of compact stars. They also studied
the role of expansion scalar in the maintenance of anisotropic InED of the stellar bodies [36]. The conformally flat
state of the system can be obtained by assigning null value to the Weyl scalar in the both shear-free [37,38] and
expansion-free [39,40,6] self-gravitating systems. Bhatti and Yousaf [41,42] calculated few InED parameters in terms
of structure scalars for the stellar system in modified gravity. Yousaf et al. [43] discussed the collapsing states of titled
spherical expansion-free systems and found that modified gravity terms tends to induce stability in the anisotropic
matter content. Herrera et al. [44] identified eight different scalar variables involved in the dynamical features of
cylindrical systems and concluded that all the possible solutions can be well discussed through these variables. Later
on, their results are being extended by including electric charge [45], f(R) and f(R)-Maxwell theories of gravity [46].
Herrera et al. [47] explored the influences of cosmological constant on the maintenance of InED for the anisotropic
spherical systems. Sharif and Yousaf [48,49] studied the effects of R+ εRn terms on the definition of irregularity factor
for the spherical systems. Recently, Capozziello et al. [50] considered generalized form of the n-dimensional universe
model and analyzed the modeling of the f(R) extra degrees of freedom in the gravitational sourcing of the equations
of motion. They rigorously found very important result which assert that any f(R) model can be recasted as an ideal
cosmological fluid.

In this work, we have constructed structure scalar in the presence of f(R) gravity models and electromagnetic
field. We have also studied their importance in the Raychaudhuri, shear and Weyl differential equations. The paper is
formatted as follows. The coming section will explain the basic equations of motion for f(R)-Maxwell gravity along
with the spherical distribution of shearing locally anisotropic systems. The corresponding mass function and its relation
with Weyl scalar are also mentioned. In sect. 3 will formulate structure scalars and their role in the modeling spherical
systems with Maxwell-f(R) corrections. Section 4 is devoted to describe dark dynamical variables with electric charge
and current Ricci scalar background. Finally, the conclusions are mentioned in the last section.

2 Maxwell-f(R) gravity and spherical viscous system

The generalized Einstein Hilbert action for the case of Maxwell-f(R) gravity can be mentioned as

Sf(R)+M =
1
2

∫
d4x

√
−g

(
f(R)

κ
− F

2π

)
, (1)

where F , SM , κ are the Maxwell scalar, matter action and coupling constant, respectively. Its variation with the metric
tensor gives

fRRαβ − 1
2
fgαβ −∇α∇βfR + gαβ�fR = κ(Tαβ + Eαβ), (2)

in which subscript R indicates the partial differentiation of the corresponding quantity with respect to R, while the
d’Alembertian operator � through covariant derivation ∇μ can be written as � ≡ ∇μ∇μ. The matter Lagrangian,
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LM can be used to to define the usual energy momentum tensor T
(M)
αβ as

T
(M)
αβ = − 2√−g

δLM

δgαβ
,

which, in the configurations of the Einstein tensor Gμν , can be rewritten as

Gαβ =
κ

fR

(
(D)

Tαβ + T
(M)
αβ + Eαβ

)
, (3)

where
(D)

Tαβ =
1
κ

{
∇α∇βfR + (f − RfR)

gαβ

2
− �fRgαβ

}

and Eαβ describes the electromagnetic stress energy tensor as

Eγδ =
1
4π

(
Fμ

γFδμ − 1
4
FμνFμνgγδ

)
, (4)

where the Maxwell field tensor is represented by Fγδ and is defined through four potential (φα) as Fαβ = Φβ,α −Φα,β .

The term
(D)

Tαβ will turn out to be zero under GR limit, i.e., f(R) → R.
We describe a relativistic spherically symmetric geometry with the help of a non-static diagonal spacetime as under

ds2 = −B2dr2 − C2(dθ2 + sin2 θ dφ2) + A2dt2, (5)

where the metric co-efficients of the above spacetime depend on r and t only. This geometry is assumed to be coupled
with dissipative locally anisotropic matter content having the following energy momentum tensor:

T
(M)
αβ = (μ + P⊥)VαVβ + εlαlβ + Vαqβ + (Pr − P⊥)χαχβ − P⊥gαβ + qαVβ − 2ησαβ , (6)

where P⊥, Pr, are tangential and radial pressure components, μ is the energy density, qβ is a heat conducting vector,
σαβ is a shear tensor, while its coefficient is represented by η and radiation density of the fluid is expressed with
the term ε. Under comoving coordinate system, the four vectors V β = δβ

0 /A, χβ = δβ
1 /B, lβ = δβ

0 /A + δβ
1 /B and

conduction vector qβ = q(t, r)χβ obey the relations

V αVα = −1, χαχα = 1, χαVα = 0,

V αqα = 0, lαVα = −1, lαlα = 0.

Let our system evolve in the presence of electromagnetic field, then the corresponding electric current (J β) and
its potential (Φβ) in the four vector formalism are defined by

J β = ξV β ,

Φβ = Φδβ
0 ,

in which ξ and Φ are the density of the charge and scalar potential, respectively. Both of these are the functions of t
and r. The equation of motion for the charged medium can be given as

Fαβ
;β = μ0J α,

F[αβ;γ] = 0, (7)

where μ0 is controlling the effects of magnetic permeability. Equation (7) after using eq. (5) turns out to be

Φ′′ − (ACB′ + BCA′ − 2ABC ′)
Φ′

ABC
= 4πμ0B

2A, (8)

Φ̇′ − (ACḂB + BCȦA − 2ABĊC)
Φ′

ABC
= 0, (9)
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where ′ ≡ ∂/∂r and · ≡ ∂/∂t. The solution of the differential equation (11) has been found to be

Φ′ =
AsB

C2
,

in which

s(r) = 2π
∫ r

0

μ0BC2dr (10)

is the amount of charge within the relativistic sphere of radius r. The corresponding electric field intensity can be
defined as follows:

E(t, r) =
s

4πC2
. (11)

The general formula to calculate the shear tensor for the locally anisotropic fluid distribution can be written as

σαβ = V(α;β) −
Θ

3
(gαβ + VαVβ) + a(αVβ), (12)

where the covariant derivative of the four velocity gives expansion scalar with the definition

Θ = V α
;α, (13)

and its product with four velocity gives four acceleration as aα = Vα;βV β . Equation (12) has three non-zero components
that can be expressed through shear scalar σ as

σ11 =
2σ

3
B2 ,

σ22 = −σ

3
C2 =

σ33

sin2 θ
,

σ2 =
3
2
σαβσαβ .

The quantity Θ has been found for the spherical systems as

Θ =
1
A

(
2Ċ
C

+
Ḃ

B

)
.

Depending upon the selection on the formulations of f(R) models, one could consider this gravity as a viable and
observationally well-consistent gravitational theory. We consider a specific combination of f(R) gravity as follows [51]

f(R) = R − βRE

(
1 − e−R/RE

)
, (14)

where RE and β are constants. The above model can be written alternatively as

l(R, b) = 1 − eR/Λb, (15)

where Λ is a cosmological constant and l(R, b) controls the impact of deviations from GR. The influence of f(R)
modification can be examined with the help of some suitable distortion in the parametric value of b. The results of
eq. (14) coincides with that of ΛCDM under the constraints RE → 0, β → ∞ with REβ → 2Λ.
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The non-zero components of f(R)-Maxwell equations of motion for the radiating and dissipative spherical are

G00 =
κ

1 − βe−R/RE

[
μA2 + εA2 +

s2A2

8πC4
+

A2

κ

{
− β

2
RE +

β

2
e−R/RE (R + RE)

−
(

Ḃ

B
+

2Ċ
C

)
β

A2RE
e−R/RE Ṙ −

(
B′

B
− 2C ′

C

)
β

B2RE
e−R/RE R′ +

β

B2RE
e−R/RE

×
(

R′′ − R′2

RE

) }]
, (16)

G01 =
κ

1 − βe−R/RE

[
qBA + εBA − 1

κ

{
β

RE
e−R/RE

(
Ṙ′ − ṘR′

RE

)
− β

RE
e−R/RE

× ḂR′

B
− β

RE
e−R/RE

A′Ṙ

A

}]
, (17)

G11 =
κ

1 − βe−R/RE

[
PrB

2 − 4
3
ησB2 +

s2B2

8πC4
+ εB2 − B2

κ

{
− β

2
RE +

β

2

× e−R/RE (R + RE) +

(
Ȧ

A
− 2Ċ

C

)
β

A2RE
e−R/RE Ṙ +

(
A′

A
+

2C ′

C

)
β

B2RE
e−R/RE

× R′ − β

A2RE
e−R/RE

(
R̈ − Ṙ2

RE

) }]
, (18)

G22 =
κ

1 − βe−R/RE

[
P⊥C2 +

2
3
ησC2 +

s2

8πC2
− C2

κ

{
− β

2
RE +

β

2
e−R/RE (R

+ RE) − β

A2RE
e−R/RE

(
R̈ − Ṙ2

RE

)
+

(
Ȧ

A
− Ḃ

B
+

Ċ

C

)
β

A2RE
e−R/RE Ṙ

+
β

RE
e−R/RE

(
R′′ − R′2

RE

)
+

(
C ′

C
− B′

B
+

A′

A

)
β

B2RE
e−R/RE R′

}]
, (19)

where Gii are the components of the Einstein tensor. Misner and Sharp [52] proposed a formula to calculate the total
mass of the sphere. This formula in an environment of electromagnetic field for the system equation (5) provides

m(t, r) =
C

2
(1 − gαβC,αC,β) =

⎧⎨
⎩1 +

(
Ċ

A

)2

−
(

C ′

B

)2
⎫⎬
⎭

C

2
+

s2

2C
, (20)

which can be re-expressed as

E ≡ C ′

B
=

[
1 + U2 +

s2

C2
− 2m(t, r)

C

]1/2

. (21)

Here, we have used U as the velocity of the fluid, which through the operator DT ≡ A−1 ∂
∂t has the form

U = DT C =
Ċ

A
. (22)

For the case of a collapsing star, U would be less than zero. The variations in the spherical mass can be obtained from
eqs. (16), (17) and (20) as

DCm =
κ

2fR

{
μ̂ +

s2

8πC4
− β

2κ
RE +

β

2κ
e−R/RE (R + RE) +

ψμ

A2
+

(
q̂ − ψq

AB

)
U

E

}
C2

+ 2πs

[
8π

C

(
s′ − 2sC ′

C

)
+

3sC ′

4πC2

]
, (23)
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where

ψμ

A2
=

1
κ

{
−

(
Ḃ

B
+

2Ċ
C

)
β

A2RE
e−R/RE Ṙ −

(
B′

B
− 2C ′

C

)
β

B2RE
e−R/RE R′

+
β

B2RE
e−R/RE

(
R′′ − R′2

RE

)}
, (24)

ψq

AB
= − 1

κ

{
β

RE
e−R/RE

(
Ṙ′ − ṘR′

RE

)
− β

RE
e−R/RE

ḂR′

B
− β

RE
e−R/RE

A′Ṙ

A

}
, (25)

and DC = 1
C′

∂
∂r and over hat means the combination of the corresponding quantity with ε. Equation (23) yields

3m

C3
=

3κ

2C3

∫ r

0

[
1

(1 − βe−R/RE )

{
μ̂ +

s2

8πC4
− β

2κ
RE +

β

2κ
e−R/RE (R + RE)

+
ψμ

A2
+

(
q̂ − ψq

AB

)
U

E

}
C2C ′ +

3s2

2C4

]
dr. (26)

This relation has developed a correspondence among mass function with the other structural variables of the spherical
system. Further one can see the role of FOG gravity and dissipative terms in the presence of electric charge terms on the
formulations of mass function. It is pertinent to mention that the tensorial quantity involved in the study of irregular
phases of initially homogeneous spheres is the Weyl tensor. This tensor can be decomposed after using comoving
orthogonal reference coordinates into its two parts. These can be conventionally called its electric and magnetic parts.
The former can be expressed via four vectors as

Eαβ = E
[
χαχβ − 1

3
(gαβ + VαVβ)

]
,

in which

E =

[
C̈

C
+

(
Ċ

C
+

Ȧ

A

) (
Ḃ

B
− Ċ

C

)
− B̈

B

]
1

2A2
− 1

2C2

−
[
C ′′

C
−

(
C ′

C
+

B′

B

)(
A′

A
− C ′

C

)
− A′′

A

]
1

2B2
(27)

is a Weyl scalar. Equation (27) is the geometrical expression of the Weyl scalar. Now, this can be expressed through
matter variables, charged and dark source terms as under

E =
κ

2fR

(
μ̂ − Π̂ +

3s2

8πC4
+ 2ησ − β

2κ
RE +

β

2κ
e−R/RE (R + RE) +

ψμ

A2
− ψPr

B2
+

ψP⊥

C2

)

− 3κ

2C3

∫ r

0

[
1
fR

{
μ̂ +

s2

8πC4

ψμ

A2
+

(
q̂ − ψq

AB

)
U

E

}
C2C ′ − 3s2

2C4

]
dr, (28)

where Π̂ can be obtained by subtracting P⊥ from P̂r and where ψPr
and ψP⊥ indicate the dark source terms corre-

sponding to 11 and 22 components of field equations. Their values are

ψPr

B2
= − 1

κ

{(
Ȧ

A
− 2Ċ

C

)
β

A2RE
e−R/RE Ṙ +

(
A′

A
+

2C ′

C

)
β

B2RE
e−R/RE

×R′ − β

A2RE
e−R/RE

(
R̈ − Ṙ2

RE

)}
, (29)

ψP⊥

C2
= − 1

κ

{
− β

A2RE
e−R/RE

(
R̈ − Ṙ2

RE

)
+

(
Ȧ

A
− Ḃ

B
+

Ċ

C

)
β

A2RE
e−R/RE Ṙ

+
β

RE
e−R/RE

(
R′′ − R′2

RE

)
+

(
C ′

C
− B′

B
+

A′

A

)
β

B2RE
e−R/RE R′

}
. (30)

Equation (28) is an explicit expression of the Weyl scalar in terms of extra curvature f(R)-Maxwell corrections and
radiating shear terms.
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3 FOG model and dark dynamical variables

This section is devoted to study the effects of MTGs terms and electric charge on the formulation of SS for the
anisotropic spherical system. We shall also check their roles on the Raychaudhuri equation (RE), shear differential
equation (SDE) and Weyl scalar equation (WSE). Like the decomposition of Weyl tensor, the Riemann tensor can be
disintegrated with the aid of comoving coordinate system. It is worthy to note that this comoving coordinates system
exists orthogonally to each other, therefore one can call this decomposition of Riemann tensor to be orthogonal. One
can get SS from this splitting by evaluating the trace and trace-free of the corresponding equations. Thus, SS are being
found to be very interesting tool to understand various geometric behavior of collapsing and non-collapsing stellar
systems in gravitational physics [53,54]. Our work is aimed to develop such relations in the environment of a specific
f(R) model and electromagnetic field. Following the technique of Herrera [34], the Riemann tensor gives

Xαβ = †R†
αγβδV

γV δ =
1
2
ηερ

αγR†
ερβδV

γV δ, Yαβ = RαγβδV
γV δ, (31)

where the dagger sign at the right, left and both sides of the term indicates the right, left and second dual of the
tensor with their definitions as follows:

†Rαβγδ ≡ 1
2
ηαβερR

ερ
γδ, R†

αβγδ ≡ 1
2
ηεργδR

ερ
αβ , †R†

αβγδ ≡ 1
2
η ερ

αβ R†
εργδ.

The tensors mentioned in eq. (31) can be rewritten as follows:

Xαβ =
1
3
XT hαβ + XTF

(
χαχβ − 1

3
hαβ

)
, (32)

Yαβ =
1
3
YT hαβ + YTF

(
χαχβ − 1

3
hαβ

)
, (33)

in which Yαβ encapsulates the effects of Weyl tensor electric part, while Xαβ comes from the second dual of Rαβγδ and
hγδ ≡ gγδ + VγVδ. The subscripts T and TF stand for trace and trace-free components of the subsequent quantities.
By using f(R)-Maxwell equations, (32) and (33), the SS can be given through charged fluid profiles as

XT =
κ

1 − βe−R/RE

(
μ̂ +

s2

8πC4
− β

2κ
RE +

β

2κ
e−R/RE (R + RE) +

ψμ

A2

)
, (34)

XTF = −E − κ

1 − βe−R/RE

(
Π̂ − 2ση − s2

4πC4
+

ψPr

B2
− ψP⊥

C2

)
, (35)

YT =
κ

2(1 − βe−R/RE )

(
μ̂ +

s2

4πC4
+

ψPr

B2
+

β

κ
RE − β

κ
e−R/RE (R + RE) +

2ψP⊥

C2
+ 3P̂r +

ψμ

A2
− 2Π̂

)
, (36)

YTF = E − κ

2(1 − βe−R/RE )

(
Π̂ − s2

4πC4
− 2ησ +

ψPr

B2
− ψP⊥

C2

)
. (37)

Another form of the trace-free electric part of the curvature tensor can be expressed after using eq. (37) as

YTF =
κ

2(1 − βe−R/RE )

(
μ̂ +

5s2

8πC4
− 2Π̂ + 4ησ +

ψμ

A2
− 2ψPr

B2
+

2ψP⊥

C2

)

− 3κ

2C3

∫ r

0

[
1

1 − βe−R/RE

{
μ̂ +

s2

8πC4
+

ψμ

A2
+

(
q̂ − ψq

AB

)
U

E

}
C2C ′

]
dr. (38)

One can see the clear aspects of dark dynamical SS, even in the charged and dark medium, if we have some effective
configurations of fluid contents. Therefore, we define them as under

μeff = μ̂ +
s2

8πC4
+

ψμ

A2
, P eff

r = P̂r −
s2

8πC4
− 4

3
ησ +

ψPr

B2
,

P eff
⊥ = P⊥ +

s2

8πC4
+

2
3
ησ +

2ψP⊥

C2
,

Πeff = P eff
r − P eff

⊥ = Π − 2ησ +
ψPr

B2
− ψP⊥

C2
− s2

4πC4
.
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These effective variables has the combined effects of viscosity, electromagnetic field, radiations as well as FOG correc-
tions. In the form of above relations, the dark dynamical SS can be written as

XTF =
3κ

2C3

∫ r

0

[
1

1 − βe−R/RE

{
μeff − β

2κ
RE +

β

2κ
e−R/RE (R + RE) +

(
q̂ − ψq

AB

)
U

E

}
C2C ′

]
dr

− κ

2(1 − βe−R/RE )

(
μeff − β

2κ
RE +

β

2κ
e−R/RE (R + RE)

)
+

3s2

2C4
, (39)

YTF =
κ

2(1 − βe−R/RE )

(
μeff − 2Πeff +

3β

2κ
RE − 3β

2κ
e−R/RE (R + RE) +

4ψPr

B2

)

− 3κ

2C3

∫ r

0

[
1

1 − βe−R/RE

{
μeff − β

2κ
RE +

β

2κ
e−R/RE (R + RE) +

(
q̂ − ψq

AB

)
U

E

}
C2C ′

]
dr − 3s2

2C4
, (40)

YT =
κ

2(1 − βe−R/RE )

(
μeff + 3P eff

r − 2Πeff +
β

κ
RE − β

κ
e−R/RE (R + RE)

)
, (41)

XT =
κ

(1 − βe−R/RE )

(
μeff − β

2κ
RE +

β

2κ
e−R/RE (R + RE)

)
. (42)

These relations describe the role of fluid parameters, tidal forces, electromagnetic field and FOG terms in the math-
ematical modeling of SS. The usual GR scalars can be recovered from the above relations by using f(R) → R limit.
Next, we shall describe the importance of these scalars in the field of relativity and gravitational physics. Its have been
noted from the literature that above mentioned scalar variables have major roles in the study of dynamical properties
of collapsing bodies. The stability regimes of spherical, planar and axially symmetric geometries [55,56,49] can be
well discussed with the aid of above SS. The well-known RE occupied fundamental importance in finding the exact
solutions of differentia equations. We have seen, after making some mathematical manipulations, that such kind of
equation can be expressed through one of the charged f(R) SS as

−YT = V αΘ;α +
2
3
σαβσαβ +

Θ2

3
− aα

;α. (43)

This equation is apparently same as obtained by Herrera et al. in the realm of GR. However, if we did deep analysis,
one can say that this equation contains f(R) dark source and charged terms. Equation (43) is equal to the SS YT and
the expression of YT can be seen from eq. (41). So, by making comparison between eqs. (41) and (43), many attractive
phenomenon of the Raychaudhuri can be unveiled. Thus, the physics of the Penrose-Hawking singularity theorems can
be dealt with the help of YT . In other words, we say that the contribution of RE can be seen by taking a deep analysis
of YT . Using eqs. (12), (13) and (16)–(19), we have

YTF = a2 + χαa;α − aC ′

BC
− 2

3
Θσ − V ασ;α − 1

3
σ2. (44)

This is a well-known SDE. The implosion rate of shearing viscous massive objects can be seen from YTF . The simulta-
neous use of mass variation equation, Weyl scalar, field equation would provide Ellis equations. These Ellis equations
after few manipulations gives a peculiar link among Weyl scalar and charged material variables in the form of a WDE
as under [

XTF +
κ

2(1 − βe−R/RE )

(
μeff − β

2κ
RE +

β

2κ
e−R/RE (R + RE)

)]′
=

− XTF
3C ′

C
+

κ(Θ − σ)
2(1 − βe−R/RE )

(
q̂B − ψq

A

)
. (45)

This equation could help to describe the emergence of InED for the radiating spherical self-gravitating systems in
the presence of electromagnetic field. In the above WDE, the XTF is an InED factor. One can easily notice this, by
considering following scenarios:

1) If a system evolve in such a way that the effects of expansion (or contraction) of the spacetime are equal to the
shearing motion of the spherical structure. In that case, we take Θ = σ, then the above equation boils down to

[
XTF +

κ

2(1 − βe−R/RE )

(
μeff − β

2κ
RE +

β

2κ
e−R/RE (R + RE)

)]′
= −XTF

3C ′

C
, (46)

which shows that the system will be in the conformally flat state if and only if one of the charged modified SS
XTF has zero value along with β = 0. In that state, the spherical structure will be in regular mode having uniform
distribution of energy density.
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2) There have been many fascinating outcomes from the expansion-free state of the collapsing system. It was seen
by Skripkin [57] that zero expansion condition in the dynamical equations compels the system to develop a
Minkowskian core at radius r = 0. Then there will be two different types of hypersurfaces on the evolution of
collapsing stars. The inner one will separate the vacuum core from the outer shearing viscous anisotropic fluid.
The formation of such cores has been seen in the formation of cosmological voids. Voids are cosmological stellar
structures that have long and thin ends. For the expansion-free systems, the factors that halt the working of XTF

are shear scalar and dark source terms coming from f(R) gravity (as seen from eq. (45)). Thus, our results in-
dicate that XTF will be a inhomogeneity factor for those expansion-free systems (possibly voids) that experience
shear-free motion.

3) If the contribution of the heat radiations are equal to the tr diagonal dark sources terms coming from the f(R)
models, then again the system will be in the homogeneous phase (if XTF = 0 = β). This can only be possible
if the repulsive effects of the dark source are counterbalanced by the heat radiations of the relativistic spherical
structures. Thus, there could be some states of stellar bodies under which q̂ = ψq, then again the system will have
homogeneous distribution of energy density if and only if XTF = 0 = β.

4) It could be interesting to study scenario of dust cloud ball with the present values of Ricci scalar terms. Such
conditions will nullify all types of radiations with R = R̃ (tilde shows the present value of the Ricci scalar) in our
subsequent equations. This selection could be helpful to study the role of XTF . In the following, we shall study
this case.

4 Non-interacting particles and present Ricci scalar

In this section, we shall consider the dynamics of the dust cloud in the presence of constant Ricci scalar. The corre-
sponding mass function in terms of energy density and dark source terms becomes

m =
κ

2(1 − βe−R̃/RE )

∫ r

0

μC2C ′dr − 1
4(1 − βe−R̃/RE )

(
− β

2κ
RE +

β

2κ
e−R̃/RE (R̃ + RE)

)
. (47)

Equations (26) and (28) provide

3m

C3
=

κ

2(1 − βe−R̃/RE )

(
μ − 1

C3

∫ r

0

μ′C3dr

)
− 1

4(1 − βe−R̃/RE )

(
− β

2κ
RE

+
β

2κ
e−R̃/RE (R̃ + RE)

)
, (48)

E =
κ

2C3(1 − βe−R̃/RE )

∫ r

0

μ′C3dr, (49)

whereas the SS (in f(R) gravity) for the collection of non-interacting particles ar found as follows:

ỸT =
κ

2(1 − βe−R̃/RE )

(
μ +

β

κ
RE − β

κ
e−R̃/RE (R̃ + RE)

)
, −X̃TF = ỸTF = E , (50)

X̃T =
κ

(1 − βe−R̃/RE )

(
μ − β

2κ
RE +

β

2κ
e−R̃/RE (R̃ + RE)

)
. (51)

Furthermore, the RE, SDE are found to be related with SS as

V αΘ;α +
2
3
σ2 +

Θ2

3
− aα

;α =
(

μ +
β

κ
RE − β

κ
e−R̃/RE (R̃ + RE)

)
= −ỸT , (52)

V ασ;α +
σ2

3
+

2
3
σΘ = −E = −ỸTF . (53)

Next, we have evaluated Ellis equation for the dust cloud and constant Ricci scalar correction. We have then used
eqs. (27) and (50) to produce WDE as follows:

[
X̃TF +

κ

2(1 − βe−R̃/RE )

(
μ − β

2κ
RE +

β

2κ
e−R̃/RE (R̃ + RE)

)]′
= −X̃TF

3C ′

C
. (54)

This equation clearly indicates that X̃TF is factor that control the appearance of irregularities over the homogenous
surface of dust cloud. Thus the system will be conformally flat when, X̃TF = 0.
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5 Summary

In this paper, we examined the influence of extra curvature terms of f(R) gravity as well as the electromagnetic effects
on the dynamical features of celestial objects. In this scenario, we have selected the relativistic spherical geometry
coupled with dissipative anisotropic viscous fluid configurations. We have considered one of the viable models of f(R)
gravity that could provide results compatible with ΛCDM model, under some constraints. The modified field equations
with electromagnetic field have been explored. The mass function is also calculated with the help of Misner Sharp
formalism. A relation among metric, matter, charged and dark source variables is developed after using Weyl scalar.
We have then express this equation in terms of mass function. Such kind of result is then used to calculate Ellis
equations.

By adopting the procedure developed by Herrera et al. [34], we have constructed modified form of SS for the
spherically symmetric spacetime. We have splitted orthogonally the Riemann tensor into two tensors. These tensors
are mentioned at eq. (31). These tensors are then expressed in terms of their trace and trace less parts as seen by
eqs. (32) and (33). After using field equations, the relations of SS are being written in term of matter variables. In
view of exploring their applications, effective variables are introduced and the previous relations are expressed through
these relations. These relations contain dark source terms coming from exponential f(R) model. Three well known
differential equations, named as RE, SDE and WDE are being expressed through f(R)-Maxwell SS. It seen that the
influence of RE is fully controlled by SS YT , whereas physics of SDE can be unveiled through the SS YTF . In other
words, the rate of expansion/contraction of the congruences, exact solutions of field equations, etc cab be dealt with
YT and the shearing viscous evolution of the spherical celestial object can be well-discussed via YTF .

The inhomogeneity factor has also been examined for the non-adiabatic spherical geometry. We have concluded
that dark source terms coming from exponential f(R) model tend to reduce the rate of appearance of InED as seen
from eq. (45). We have also studied the working of XTF in the presence and absence of heat radiation, expansion and
shear scalar. It is seen that expansion-free system (like voids) has regular energy density (if β = 0), either they have
shear free system or heat radiations are equal to the quantity ψq. Furthermore, if a system evolves in such a way that
it has expansion to be proportional to shear, then XTF will be inhomogeneity factor if and only if the effects of f(R)
models are negligible. Thus, the f(R) model is freezing the effects of XTF in controlling regular distributions of energy
density.

We have also studied these results for the dust cloud with constant Ricci scalar condition. and found the following
results:

– The SS, XT is directly governing the role of effective distributions of energy density for the collection of non-
interacting particles.

– The SS YTF and XTF are directly related in producing tidal forces on the regular environment of spherical
spacetime, as seen by eq. (50).

– The expansion motion of the non-interacting ball is influenced by the exponential Ricci scalar terms coming in RE
as described by eq. (43).

– The results of ref. [45] can be recovered, on putting β = 0.

When the lifespan of a stellar structure ends after experiencing the phenomenon of gravitational collapse, the black
hole, white dwarf or neutron star may be formed depending upon the initial mass of the self-gravitating system. This
phenomenon often happens when the gravitational pull overtakes the thermal pressure. Black hole acts as a black body
regardless of the fact that they would emit Hawking radiations. This interesting phenomenon can only happen when
the surface of the relativistic self-gravitating object undergoes in the irregular/inhomogeneous state. To understand
the different astrophysical aspects of the compact objects, the obtained InED factors, i.e., XTF and X̃TF would play
a significant role. The InED factor is a character of the splitting of Riemann tensor due to which the system would lie
in the stable/unstable regimes.
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