
DOI 10.1140/epjp/i2019-12451-3

Regular Article

Eur. Phys. J. Plus (2019) 134: 90 THE EUROPEAN
PHYSICAL JOURNAL PLUS

Analytical solutions of the Klein-Gordon equation for the
deformed generalized Deng-Fan potential plus deformed Eckart
potential

N. Hatamia, J. Naji, and M. Pananeh

Department of Physics, Ilam University, Ilam, Iran

Received: 29 August 2018 / Revised: 22 November 2018
Published online: 7 March 2019
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Abstract. In this paper, we study approximate analytical solutions of the Klein-Gordon equation with
arbitrary l state for the deformed generalized Deng-Fan potential plus deformed Eckart potential using the
Nikiforov-Uvarov method and employing the approximation scheme for the centrifugal term. We obtain
the energy eigenvalue equation and corresponding wave functions. Also, we discuss nonrelativistic limit of
the energy equation. Finally, some numerical results are presented and show that these results are in good
agreement with those obtained previously by other methods.

1 Introduction

The solutions of the wave equations for both relativistic and nonrelativistic cases have become an important area of
research in different branches of physics. Thus, in recent years, there has been increased attention to investigate the
analytical solutions of the wave equations with exactly solvable potentials such as the Woods-Saxon potential [1,2], the
Eckart potential [3–5], the Pöschl-Teller potential [6,7], The Deng-Fan potential [8], The Manning-Rosen potential [9–
12], Hulthén potential [13,14], the Scarf potential [15,16], the Morse potential [17–19], etc. So far, many methods have
been developed to obtain the exact and approximate solutions of the quantum mechanics systems. These methods
include the asymptotic iteration method (AIM) [20,21], supersymmetry quantum mechanics [22,23], Nikiforov-Uvarov
(NU) method [24–27], group theoretical approach [28, 29], Laplace transformation [30], quantization rules [31] and
others. The Deng-Fan potential [32] has been one of the most useful and convenient potential models to study diatomic
molecular energy spectra and electromagnetic transitions [33]. This potential model can be used to describe the motion
of the nucleons in the mean field produced by the interactions between nuclei [34]. It has been widely used in the
chemical physics, molecular spectroscopy, molecular physics, and related fields. The Eckart potential [35], introduced
by Eckart in 1930, is a diatomic molecular potential model. Due to its importance in physics and chemical physics,
the bound state solutions of the wave equations for this potential have been carried out [3–5]. Thus, it is worth to
investigate the solution of the Klein-Gordon equation for the deformed generalized Deng-Fan potential plus deformed
Eckart potential. This potential was studied in [36] for the Schrödinger equation. The deformed generalized Deng-Fan
potential plus deformed Eckart potential can be given as

V (r) = V0

(
c − be−αr

1 − qe−αr

)2

− V1e
−αr

1 − qe−αr
+

V2e
−αr

(1 − qe−αr)2
, (1)

with
b = e−αre − 1,

where the parameters V0, V1 and V2 are potential depths and q is the deformation parameter. c, α and b are adjustable
constant, range of the potential and the position of the minimum re (re is equilibrium inter-nuclear distance), respec-
tively. When q = c = 1 and V1 = V2 = 0, the above potential reduce to the Deng-Fan potential and with V0 = 0 we
obtain the Eckart potential. For most potentials, the analytical solutions of the wave equations are possible only in
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Fig. 1. Comparison between 1/r2 and the approximation scheme as functions of r for ω = 5.00, q = 1 and various values of
α = 1.0, 0.8, 0.6, 0.4 and 0.2 fm−1.

Fig. 2. Comparison between 1/r2 and the approximation scheme as functions of r for ω = 5.00, q = −1 and various values of
α = 10, 9 and 8 fm−1.

the s-wave case with the angular momentum l = 0. However, when l �= 0, we have to use a suitable approximation
scheme for the centrifugal term. Here, the q-deformed version of the approximation scheme proposed in [37] will be
used to the centrifugal term, that is,

1
r2

≈ α2

[
ωe−αr

1 − qe−αr
+

e−2αr

(1 − qe−αr)2

]
. (2)

In order to show the validity of such an approximation scheme, the plots of the centrifugal term 1/r2 and the approx-
imation scheme to it (eq. (2)), as functions of the variable r with different potential range parameter α are displayed
in figs. 1 and 2, for q = 1,−1, respectively.

This paper is organized as follows: In sect. 2, we give a brief review of the NU method. In sect. 3, the l-wave bound
state solutions and the radial wave functions the Klein-Gordon equation for the deformed generalized Deng-Fan
potential plus deformed Eckart potential are derived by apply the NU method and also, we derive the nonrelativistic
energy eigenvalue equation from the relativistic energy eigenvalue equation. In sect. 4, we study several special cases
of this model. We have found that our results for the energy spectra of these special cases are in complete agreement
with those obtained previously. In sect. 5 some numerical results are presented. Finally a brief conclusion is given in
sect. 6.
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2 Review of Nikiforov-Uvarov method

The differential equations whose solutions are special functions of hypergeometric type can be studied by us-
ing the Nikiforov-Uvarov (NU) method which has been developed by Nikiforov and Uvarov [24]. In this method,
the Schrödinger and Schrödinger-like equations are transformed into a second-order differential equation with
an appropriate coordinate transformation, s = s(r), of the form

d2ψ(s)
ds2

+
τ̃(s)
σ(s)

dψ(s)
ds

+
σ̃(s)
σ2(s)

ψ(s) = 0, (3)

where σ(s), σ̃(s) are at most second-degree polynomials and τ̃(s) is a first-degree polynomial. In order to find the
exact solution of eq. (3), we set the wave function as

ψ(s) = ϕ(s)yn(s). (4)

So, eq. (3) reduces to an equation of hypergeometric type,

σ(s)
d2yn

ds2
+ τ(s)

dyn

ds
+ λyn = 0, (5)

and the wave function ϕ(s) is defined as
ϕ(s)
ϕ′(s)

=
σ(s)
π(s)

. (6)

Also, the hypergeometric function yn(s) has polynomial solutions given by the Rodrigues relation,

yn(s) =
Bn

ρ(s)
dn

dsn
[σn(s)ρ(s)], (7)

where Bn being the normalization constant and ρ(s) is the weight function, which should satisfy the following condition:

[σ(s)ρ(s)]′ = τ(s)ρ(s), (8)

with
τ(s) = τ̃(s) + 2π(s), (9)

where the derivative of τ(s) with respect to s should be negative.
In order to obtain the eigenfunctions and the eigenvalues, we need to define the function π(s) and the parameter

λ as

π(s) =
σ′ − τ̃

2
±

√(
σ′ − τ̃

2

)2

− σ̃ + tσ (10)

and
λ = t + π′(s), (11)

respectively. On the other hand, the value of t is simply defined by setting the discriminant of the square root equal
to zero. The values of t can be used for calculation of energy eigenvalues using the following equation:

λ = t + π′(s) = −nτ ′(s) − n(n − 1)
2

σ′′(s). (12)

3 Bound-state solutions

As is well known, the Klein-Gordon equation is the equation of motion of a quantum scalar or pseudoscalar field.
For a spinless relativistic quantum particle under a scalar and a vector potential S(r) and V (r), respectively, the
time-independent Klein-Gordon equation is given by[

−∇2 + (M + S(r))2
]
Ψnlm(r, θ, ϕ) = (E − V (r))2 Ψnlm(r, θ, ϕ), (13)

where E is the energy and Ψ is the wavefunction of the particle, and M denotes the mass of the particle (we shall
assume � = c = 1 throughout this paper).

Defining Ψnlm(r, θ, ϕ) = r−1Unl(r)Ylm(θ, ϕ), the radial Klein-Gordon equation is given by

d2Unl(r)
dr2

+
[
E2 − M2 − 2 (MS(r) + EV (r)) + V 2(r) − S2(r) − l(l + 1)

r2

]
Unl(r) = 0, (14)

where n and l are the radial quantum number and the orbital angular momentum quantum number, respectively.
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Obviously, eq. (14) cannot be solved analytically with l �= 0, due to the centrifugal term. In order to solve the
above equation with nonzero angular momentum, we evaluate the centrifugal term in this equation using the mentioned
approximation scheme in eq. (2). Hence, in the case of equal scalar and vector deformed generalized Deng-Fan potential
plus deformed Eckart potential equation (14) becomes

d2Unl(r)
dr2

+

[
E2 − M2 − 2(M + E)

(
V0

(
c − be−αr

1 − qe−αr

)2

− V1e
−αr

1 − qe−αr
+

V2e
−αr

(1 − qe−αr)2

)

− l(l + 1)α2

[
ωe−αr

1 − qe−αr
+

e−2αr

(1 − qe−αr)2

] ]
Unl(r) = 0. (15)

By using the following coordinate transformation,

s = e−αr, (16)

we obtain the following equation:

d2Unl

ds2
+

1 − qs

s(1 − qs)
dUnl

ds
+

1
s2(1 − qs)2

[(
−ε2q2 − γ − νq

)
s2 + (2ε2q − β + ν)s − ε2

]
Unl(s) = 0, (17)

where

−ε2 =
E2 − M2 − 2(M + E)V0c

2

α2
,

γ =
2(M + E)V0b

2

α2
+ l(l + 1),

β =
2(M + E)V2

α2
,

ν =
2(M + E)(2V0bc + V1)

α2
− l(l + 1)ω. (18)

In this form of the above equation, we can use the Nikiforov-Uvarov method to evaluate the solution of the relevant
second-order differential equation. Thus, we compare the above equation with the generalized hypergeometric type,
eq. (3), we have,

τ̃(s) = 1 − qs, σ(s) = s(1 − qs),

σ̃(s) = −
(
ε2q2 + γ + νq

)
s2 +

(
2ε2q − β + ν

)
s − ε2.

When these polynomials are substituted into eq. (10), we get the π(s) as follows:

π(s) = −qs

2
± 1

2
[(

q2 + 4q2ε2 + 4qν + 4γ − 4qt
)
s2 + 4(t − 2qε2 + β − ν)s + 4ε2

] 1
2 . (19)

Further, according to this method, the discriminant of the square root has to be zero and, due to π(s), is at most a
first-degree polynomial. Thus, the constant t can be determined as

t = ν − β ± ε
√

q2 + 4βq + 4γ, (20)

which yields

π(s) = −qs

2
± 1

2

[(
−2qε ±

√
q2 + 4βq + 4γ

)
s + 2ε

]
. (21)

In the NU method, the derivative of the polynomial τ(s) with respect to s must be negative. To do this, we can take
the t = ν − β − ε

√
q2 + 4βq + 4γ and, then, we have

π(s) = −qs

2
+

1
2

[(
−2qε −

√
q2 + 4βq + 4γ

)
s + 2ε

]
. (22)

τ(s) is obtained as
τ = 1 − 2qs −

[(
2qε +

√
q2 + 4βq + 4γ

)
s + 2ε

]
. (23)
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Using eq. (12) we can consequently find the following energy eigenvalue equation:

εq
nl =

ν − β − n2q − n
√

q2 + 4βq + 4γ

q(2n + 1) +
√

q2 + 4βq + 4γ
− 1

2
. (24)

Let us now find the corresponding wave functions.
By substituting π(s), σ(s) into eq. (6), and solving the first-order differential equation we obtain

ϕ = sε(1 − qs)
1
2+ 1

2

q

1+ 4β
q + 4γ

q2 . (25)

Considering eq. (8), ρ(s) is obtained as

ρ = s2ε(1 − qs)
q

1+ 4β
q + 4γ

q2 , (26)

and, then, we get yn given by the Rodrigues relation, eq. (7), as

yn = Bns−2ε(1 − qs)−
q

1+ 4β
q + 4γ

q2 dn

dsn

[
s2ε+n(1 − qs)

q

1+ 4β
q + 4γ

q2 +n
]

. (27)

On the other hand, the Jacobi polynomials are defined [38] as

P (a,b)
n (s) =

(−1)n

n!2n(1 − s)a(1 + s)b

dn

dsn

[
(1 − s)a+n(1 + s)b+n

]

and

P (a,b)
n (1 − 2s) =

(
n + a

n

)
2F1 (−n, a + b + n + 1; a + 1, s) .

Therefore, yn(s) can be expressed in terms of the hypergeometric function as follows:

yn = Nn 2F1

(
−n, 2ε +

√
1 +

4β

q
+

4γ

q2
+ n + 1; 2ε + 1, qs

)
, (28)

where Nn is a new normalization constant. Finally, the corresponding radial wave function is obtained as

Unl(r) = Nn e−αrε(1 − qe−αr)
1
2+ 1

2

q

1+ 4β
q + 4γ

q2
2F1

(
−n, 2ε +

√
1 +

4β

q
+

4γ

q2
+ n + 1; 2ε + 1, qe−αr

)
. (29)

The above results are new and, to our knowledge, have not been reported in the literature.
Setting V (r) → V (r)

2 , E + M → 2μ
�2 , and E − M → E, we can obtain the energy eigenvalue equation for the

deformed generalized Deng-Fan potential plus deformed Eckart potential in the nonrelativistic limit. In this conditions,
the nonrelativistic limit of our result in eq. (24) reduces to

E = − �
2α2

2μq2(2n + 1 + η)2

[
2μ(2V0bc + V1 − V2)

�2α2
− q

(
n2 + n +

1
2

)
− l(l + 1)ω − q

(
n +

1
2

)
η

]2

+ V0c
2, (30)

with

η =

√
1 +

8μ

q2�2α2
(V0b2 + V2q) +

4l(l + 1)
q2

.

By making the parameter replacements used by Awoga et al. [36] as follows:

ϕ =
2μb2V0

�2α2
, β =

2μV2

�2α2
, σq =

1
2

+
1
2

√
1 +

4
q2

(ϕ + qβ) ,

eq. (30), for l = 0, is identical to eq. (53) of [36].

4 Special cases

In this section, we consider some special cases of eq. (1), like that of Awoga et al. [36]. Indeed, by an appropriate
adjustment of constants which appear in the difinition of the potential in eq. (1), one could hold the following cases.
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4.1 Woods-Saxon potential

The potential given in eq. (1) can be converted to the Woods-Saxon potential by replacing V0 = V2 = 0 and q = −1.
Under these conditions, we obtain the Woods-Saxon potential as

V (r) = − V1e
−αr

1 + e−αr
. (31)

Hence, we can find the eigenvalue equation for the Woods-Saxon potential from eq. (24) as

εnl =
2(M + E)V1/α2 − l(l + 1)ω + n2 − n

√
1 + 4l(l + 1)

−(2n + 1) +
√

1 + 4l(l + 1)
− 1

2
, (32)

which is in full agreement with the result obtained by Hamzavi et al. [39]. To see whether this agrees with relation (26)
in [39], we use the following transformations of parameters in [39]:

S0 = V0 → V1, a2 → 1
α2

,
a2

R0
2 → 1

and, also,
D0 = 0, D1 = ω, D2 = 1.

4.2 Hulthén potential

If V0 = V2 = 0 and q = 1, the potential in eq. (1) turns to the Hulthén potential,

V (r) = − V1e
−αr

1 − e−αr
. (33)

Then, we obtain the corresponding eigenvalue equation from eq. (24) as

εnl =
2(M + E)V1/α2 − l(l + 1)ω − n2 − n

√
1 + 4l(l + 1)

2n + 1 +
√

1 + 4l(l + 1)
− 1

2
. (34)

When we make the following transformations of parameters, we note that the above equation agrees with the bound
state solutions of the s-wave Klein-Gordon equation with equally mixed scalar and vector S(r) = V (r) for Hulthén
potential derived in [40],

α → 1
a

, V1 → V0.

4.3 Manning-Rosen potential

Setting V1 = V2 = 0, c = 0 and q = 1 in eq. (1), we get the Manning-Rosen potential,

V (r) = b2V0

(
e−αr

1 − e−αr

)2

. (35)

In this case, Immediately the energy eigenvalue equation for the Manning-Rosen potential is obtain from eq. (24) as

εnl =
−l(l + 1)ω − n2 − n

√
1 + 8(M + E)V0b2/α2 + 4l(l + 1)

2n + 1 +
√

1 + 8(M + E)V0b2/α2 + 4l(l + 1)
− 1

2
. (36)

This expression just agrees with the relation (24) in [41], provided we take the following transformation [41]:

A → 0,
1
β

→ α,
α(α − 1)
2Mβ2

→ V0b
2 , λ → ε.
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Table 1. The relativistic energy eigenvalues in unit of fm−1 of the deformed generalized Deng-Fan potential plus deformed
Eckart potential as a function of parameter α for several states.

States α E

2p 0.05 4.41272

0.075 4.32729

0.1 4.31632

0.15 4.34548

0.2 4.39297

3p 0.05 8.69997

0.075 8.64742

0.1 8.66453

0.15 8.74691

0.2 8.84638

3d 0.05 5.9705

0.075 5.89972

0.1 5.89388

0.15 5.92674

0.2 5.97535

4p 0.05 11.7698

0.075 11.7515

0.1 11.7931

0.15 11.9177

0.2 12.0566

4d 0.005 9.60322

0.075 9.56137

0.1 9.58179

0.15 9.66552

0.2 9.76426

4f 0.05 7.60609

0.075 7.54961

0.1 7.55032

0.15 7.59081

0.2 7.6448

5 Numerical results

Some approximate numerical results of energy levels for various values of n, l and α are shown in table 1, for the Klein-
Gordon equation with deformed generalized Deng-Fan potential plus deformed Eckart potential, when the potential
parameters are chosen as V0 = 15, V1 = α, V2 = 0.0001, re = 0.4 and q,M, ω = 1.

Table 2 presents the results for eq. (30), that is, the nonrelativistic limit of eq. (24), for a set of selected values
parameter in table 1.

To check our analytical expressions, in tables 3 and 4, we list some energy eigenvalues in nonrelativistic limit for
the Deng-Fan potential and Eckart potential, respectively, and the comparison of calculation results with those of
other methods, has proven the success of the formalism.
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Table 2. The nonrelativistic energy eigenvalues of the deformed generalized Deng-Fan potential plus deformed Eckart potential
as a function of parameter α for several states in atomic units � = μ = 1.

States α E

2p 0.025 6.88007

0.05 6.88007

0.075 6.7104

0.1 6.74792

0.15 6.84231

3p 0.025 10.3374

0.05 10.3267

0.075 10.3982

0.1 10.4814

0.15 10.6542

3d 0.025 9.44239

0.05 9.41246

0.075 9.46784

0.1 9.53554

0.15 9.67775

4p 0.025 12.0073

0.05 12.065

0.075 12.1646

0.1 12.2687

0.15 12.4756

4d 0.025 11.5463

0.05 11.5968

0.075 11.6888

0.1 11.7857

0.15 11.979

4f 0.025 11.2213

0.05 11.2697

0.075 11.3562

0.1 11.4471

0.15 11.6286

6 Conclusion

In this work, we investigated the approximate bound state solutions of the Klein-Gordon equation with deformed
generalized Deng-Fan potential plus deformed Eckart potential within the framework of Nikiforov-Uvarov method by
approximating the centrifugal term. We obtained explicity the energy equation and the corresponding wave function.
By choosing appropriate parameters in the deformed generalized Deng-Fan potential plus deformed Eckart potential,
it can yield some special cases, such as the Woods-Saxon potential, Hulthén potential and Manning-Rosen potential.
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Table 3. The nonrelativistic energy eigenvalues of the Deng-Fan potential as a function of parameter α for several states in
atomic units � = μ = 1.

States α E(a) E(b) E(c)

2p 0.05 7.8606 7.8606 7.8628
0.1 7.95247 7.95247 7.95537
0.15 8.04322 8.04322 8.04724
0.2 8.13287 8.13287 8.13842

3p 0.05 10.9976 10.9976 10.9998
0.1 11.1617 11.1617 11.1647
0.15 11.3224 11.3224 11.32647
0.2 11.4795 11.4795 11.48513

3d 0.05 10.2154 10.2154 10.21651
0.1 10.351 10.351 10.35409
0.15 10.4837 10.4837 10.48992
0.2 10.6135 10.6135 10.62403

4p 0.05 12.4974 12.4974 12.4992
0.1 12.696 12.696 12.69851
0.15 12.8865 12.8865 12.8901
0.2 13.0689 13.0689 13.074

4d 0.05 12.0977 12.0977 12.0989
0.1 12.2825 12.2825 12.2857
0.15 12.4608 12.4608 12.46715
0.2 12.6326 12.6326 12.64324

4f 0.05 11.8195 11.8195 11.8209
0.1 11.993 11.993 11.9981
0.15 12.1604 12.1604 12.1718
0.2 12.3221 12.3221 12.3421

(a)
Our results.

(b)
Results obtained in [42].

(c)
Results obtained in [43].

Table 4. The nonrelativistic energy eigenvalues of the Eckart potential as a function of parameter α for several states in atomic
units � = μ = 1.

States α E(a) E(b) E(c)

2p 0.025 0.100888 0.1008358 0.1015944
0.05 0.0980434 0.0978358 0.098298
0.075 0.0888831 0.0884183 0.0885875
0.1 0.079206 0.0783854 0.0784035
0.15 0.0609141 0.0591059 0.059287

3p 0.025 0.0401768 0.040125 0.0403106
0.05 0.0324516 0.0322482 0.0323958
0.075 0.0239989 0.0235553 0.0237732
0.1 0.0166099 0.0158588 0.0162724
0.15 0.00580856 0.0044091 0.005434

3d 0.025 0.0415198 0.0413642 0.041479
0.05 0.032812 0.0321973 0.0321085
0.075 0.0241516 0.0227991 0.0229644
0.1 0.0166878 0.0143675 0.0152256
0.15 0.00583229 0.001365 0.0044524

4p 0.025 0.0185142 0.0184632 0.0185468
0.05 0.0109073 0.0107159 0.0108554
0.075 0.00488286 0.00445059 0.004792
0.1 0.0012129 0.0007212 0.00114

4d 0.025 0.0190752 0.0189216 0.0189774
0.05 0.0110422 0.0104603 0.0106863
0.075 0.00492932 0.0037658 0.0045048

4f 0.025 0.0193308 0.019022 0.0189461
0.05 0.011101 0.0099137 0.0102192
0.075 0.00494941 0.0025081 0.0039915

(a)
Our results.

(b)
Results obtained in [43].

(c)
Results obtained in [44].
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In order to test the accuracy of our results, we performed a comparison of our obtained energy spectrum in special
cases with those of obtained previously in the literatures. These results are found to be in perfect agreement with
the findings of other authors. Also, the other important result is that, in the nonrelativistic limit, the result that we
obtained for energy equation of the relativistic Klein-Gordon equation for deformed generalized Deng-Fan potential
plus deformed Eckart potential is coincide with that obtained in ref. [36] for nonrelativistic Schrödinger equation with
this potential.

Publisher’s Note The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional
affiliations.
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