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Abstract. Junctions or portions of blood vessels may sometimes develop weak spots because of certain
factors like high blood pressure, head trauma, and infection. With time, these weak spots result in bulging or
ballooning out or filling with blood creating some sac-like structures known as aneurysm. These structures
can burst by leaking blood into the nearby tissues as a result of artery spam known as the subarachnoid
hemorrhage, which leads to potential stroke and even death. In this regard, patients’ outcome is treated
before the ruptured detection during the setting up of the aneurysm process. It is considered as a much
better approach than the treatment after the aneurysm process. Neurosurgeons prefer two treatment
options that are clipping and coiling, which demand sufficient detection of cerebral aneurysm. To facilitate
expert neurosurgeons, we propose a novel method to determine an automatic cerebral aneurysm in the
domain of digital subtraction angiography. It is processed by using the sub-band morphological operation in
the wavelet domain. Simulation results have demonstrated the proposed method in order to prove efficiency
in terms of accurate detection with impartial location, definite size, and firm type of aneurysm.

1 Introduction

Due to infection, trauma, and high blood pressure the walls of blood vessels may weaken, causing abnormal swelling
called an aneurysm [1]. With the increase in blood pressure, weak spots of blood vessels balloon are exploding. The
occurrence of this aneurysm in brain vessels is termed as cerebral aneurysm (CA). This is a kind of neurological
disorder of cerebral arteries [2]. CAs can be unevenly classified into terminal, lateral, and bifurcation aneurysms.
Their classification depends upon their relation to their parent artery [3]. The wall of blood vessels weakens the net
results in ballooning out of the vessel that fills with blood. These swallowed portions of blood vessels in brain can
rupture and this risk varies with size, location, and type depending upon the condition of the aneurysms. This rupture
results in blood leakage around vessels causing life threatening subarachnoid hemorrhage (SAH). About 3% of the
population has more than one cerebral aneurysms [4]. The relative distribution of patients upon admission according
to the method of [5] is shown in tables.

The death rate due to pathological occurrences is recorded to be almost 50%, while the remaining 46% of survivors
get long term disability [6]. Aneurysm rupture can be prevented through angiographic imageries by using medical
imaging methodologies to increase the visual observation with passage of time [7–10].

SAH mainly happens because of congenital defects braced by other hazardous situations like head trauma,
high blood pressure, infection, and atherosclerosis. Aneurysm detection before rupture is much better than post-
treatment [11]. Proper detection of CA is the most crucial task for most neurologists. Angiography is mostly used
for the detection and diagnosis of cerebral aneurysm. Angiograms also help in detecting the size and location of
aneurysms besides providing accurate visual information [12]. This information from angiograms provides the basis for
the presented paper. Appropriate detection of aneurysms proved very beneficial in their prediction [13–15]. Substantial
complications in precise detection of aneurysms from angiographic images are intensity-based inhomogeneity and poor
contrast of blood vessels [16–19].

CA detection is used from different image modalities in order to find out the novel realm and is abundant to be
discovered according to high accuracy and perfection results [20–24]. The most commonly used image modalities for the
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Fig. 1. Stages of the proposed methodology.

detection of CA are considered in magnetic resonance angiography (MRA), 2D digital subtraction angiography (2D-
DSA), computed tomography angiography (CTA), and 3D X-ray rotational angiography (3D-RA) [25]. One detection
algorithm that works for images acquired through datasets of the above techniques is initially anticipated [26–28].
However, that combination of 3D-RA with DSA is considered as the most subtle method for aneurysm detection [29].
However, the work presented by [30] claims that DSA is a feasible choice for countries that are still under development.
Therefore, we use a global thresholding with peak trekking Hough transform approach for measuring CA using the
DSA method. The proposed method does not only provide the salient information about the size of CA but also
provides the sufficient category of CA to estimate the rupturing state.

Only limited approaches have been presented for the detection of CA in medical imageries [31]. Mostly all the
presented methods rely on basic two-step strategies that first detect the possible areas based on segmented vasculature.
For early findings of CA, three different approaches are used, which include: skeleton-based, shaped-base, and image
difference-based methods, respectively [32–34]. For shape-based approaches a writhe numeral is used to discover
irregularities in vasculature that could perhaps expose to aneurysms [35]. Skeleton-based approaches discover abnormal
regions of arteries by subtracting normal image from ground truth dataset. Techniques based on image-difference
used a subtraction of a normal model image from ground truth dataset to discover abnormal regions [36–39]. The
other types of approaches are hybrid methods that use the combination of two or more techniques [40]. Most of the
presented methods worked with MRA datasets, while few implemented the multi-model approach using CTA and
3D-RA imaging [41,42].

Aneurysms are categorized into different types depending upon their size, for example if the aneurysm size exceeds
25mm diameter, such aneurysm is termed as giant or large aneurysm. Apart from single aneurysms, multiple aneurysms
also exist in practical situations with an incidence rate of 20–30% [43].

The walls of blood vessel branches are weaker as compared to other areas, so mostly aneurysm develops in these
sections. The weakness in artery walls might be by birth, hypertension, high blood pressure, and arteriosclerosis [44].
Diagnosis of CA comprises of CT-scan, MRI, cerebral angiograms, and cerebrospinal fluid test. SAH can be prevented
at initial stages if detected earlier by controlling the cholesterol level and high blood pressure.

A clear vision of blood vessels and arteries from the background of dense soft and bony tissues is obtained through
controlled management of radio-opaque regions [41]. This technique is termed as Digital Subtraction Angiography
(DSA). It deducts post-opacification image from a pre-opacification image. DSA not only detects aneurysms, it also
detects the presence of fatty plaque and blood clots that increase the risk of stroke and other malformations [32].

The paper has been arranged as follows: Section 2 describes the mathematical modeling of the proposed auto-
thresholding algorithm and the entire technique is summarized. Parameter optimization is also discussed in the same
section. Performance and simulation results of the proposed method are shown in sect. 3 followed by some conclusive
remarks in sect. 4.

2 Mathematical modeling

We present a novel algorithm of sub-band morphological operation for retrieving salient information and auto-
thresholding is used with the peak trekking (MHCT-PT) scheme in the Hough transform domain. CA classification is
based on its severity state. The entire procedure is demonstrated in fig. 1.
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Consider a patient having anatomic thickness of θt, vessel artery thickness of θl, and a coefficient of linear atten-
uation of δt. Formerly, the intensity of post-opacification also known as “live” and pre-opacification also known as
“mask” is assumed as Im, and II , correspondingly,

Im = I0ξ
−δtθt , (1)

II = I0ξ
−(δtθt+(δIθI). (2)

In the above equation, I0 signifies the photon fluency without using any opacification. The digital subtracted image is
then gained by subtracting the logarithmic function [25] of the live image from the mask image. The subtracted image
is hence described as

Slog = ln I ′m − ln I ′I ,

Slog = [−δtθt] − [−(δtθt + (δIθI)],
Slog = (δIθI). (3)

In the given equation, Slog represents the logarithmically subtracted image.

2.1 RGB DICOM to gray scale conversion

The DICOM image data follows the standard format to meet the demands of electronic media. This standard ensures
the global intra-operability of the medical instrumentation [43].

The basics colors are defined by three components of the RGB system with receptive system ci(∂i) for i ∈ {R,G,B},
such that R represents red, G green, B blue colors, respectively. The ci(∂i) is used for enhancing the angiogram
information of the given data. Through the estimation of the luminance of the colored image, it is converted into a
gray scale image ci using eq. (4).

A three-dimensional volume is defined by handling the component values as conventional Cartesian coordinates
in Euclidean space. This model is represented by a cube using non-negative values in a range of {0 − 1}. The three-
dimensional coordinates of the given color are shown as the 3D structure edges. This approach permits computations
of the color likeness of two given RGB structures by computing the distance between them in order to maintain the
separation boundaries while preserving matching similarity among similar pixels,

d(∂) = c1(∂)R + c2(∂)G + c3(∂)B,

Y =
∫

R

ci(∂i)dλ, (4)

where τR = H(∂i)+1
H(∂R) , τG = H(∂i)+1

H(∂G) , and τB = H(∂i)+1
H(∂B) . The entropy H estimates the point by point data content in

the imageries. Higher estimations of H contain more extravagant points of interest and solid edges. The entropy H is
characterized using

H = −
N−1∑
i=0

∂i log2(∂i), (5)

where N = 2n(n = 8bit) are diverse shades of the gray pixel values, while ∂i is the likelihood of the dark scale i, and
the coefficient predicts color perceptions.

2.2 Retrieving salient information

The wavelet transform (WT) is used as a great tool in contemporary mathematical advancement in order to treat
the time domain and frequency domain signals, concurrently. Therefore, it is particularly beneficial for perceiving the
significant changes in patterns with respect to time. For the detection of signal singularities, WT is considered as one
of the best tools available in order to locate the singularity point. It is conceded using the help of local maxima [45].
On the contrary, WT allows approximation in terms of low frequencies and time details in terms of high frequencies,
respectively. WT has been extensively used in the area of fault localization, specially detecting fault in shafts, gears,
bearings, and beams [1,3,8]. WT has also been widely used as a crack indicator [46]. The amplitude standards of
critical peaks and sub-critical peaks are utilized to provision the Artificial Neural Network (ANN), which in return
diagnose the position and depth of cracks or faults in detection systems [26].

WT has additionally been used to analyze indented rotors in terms of transverse open split [45]. They contemplated
the capability of the framework for the detection of joined faults of unbalance and shaft cracks. However, the main
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concept of the WT usage in existing applications (e.g., machinery crack and fault diagnosis) is still very rare. This is
because of the fact that it is difficult to interpret visual results of WT, however, efforts are made to attain the desired
features [10]. The symmetric wavelet is observed to maintain the influential effect in the analysis of singularity systems,
for instance, it was additionally found to perform well on anti-symmetric wavelet with a narrow pulse-like approach:
Daubechies family with higher-order, e.g., db10 [27]. In particular, the maximum usage of cross-correlation coefficients
in crack detection is computed by analyzing the fault signal and the various wavelet functions by considering the
library of the optimal wavelets [46]. The Daubechies family, particularly the six-order Daubechies wavelet was utilized
for crack recognition because of its demanding effect in that particular area [46].

In general, we can categorize WT into orthogonal, biorthogonal, and non-orthogonal. In spite of the fact that these
wavelets share some common properties, where every wavelet decomposes a unique image and the inverse wavelet
is used as a reconstruction technique have shown results in huge difference, amongst the wavelet fusion strategies.
The desired wavelets from the above three general classes Daubechies (orthogonal), spline (orthogonal), and trous
(non-orthogonal) are chosen as the scientific models to execute wavelet fusion strategies. Our goal is to take advantage
of the orthogonality of WT to get a deeper understanding of the effect of proximal boundaries of brain vessels blobs
while investigating the possibility of optimizing shrinkage-thresholding functions for better performance in order to
impose sparsity constraints [46,47]. To that end, we consider a most relevant biorthogonal wavelet system (bior4.4) to
evaluate the efficiency of the brain vessel image signal at high scale variation.

A biorthogonal wavelet system (bior4.4) is used to investigate the present high scale deviation of aneurysm data [45,
46]. The crucial information of aneurysm might be lost during the retrieving stage of salient information. This is
performed by using a sub-band replacement morphological operation of the given Y in the wavelet domain: W(Y ) =
{Y ll, Y hl, Y lh, Y hh}. In fact, the direct manipulation of Y using the morphological operation is leaded to develop
ringing artifacts and causes to mislead the required information [27].

To retrieve precise information, the wavelet transform is applied to two of the morphological disks given as:
W(Ym1) = {Y (ll)

m1 , Y
(hl)
m1 , Y

(lh)
m1 , Y

(hh)
m1 }, and W(Ym2) = {Y (ll)

m2 , Y
(hl)
m2 , Y

(lh)
m2 , Y

(hh)
m2 }. Where, Ym1 and Ym2 are two mor-

phological operations that are employed on input image Y . However, the processed image W(Ym1) inclines a useful
information of high frequency data but its low frequency information may be declined. Therefore, the decomposition
of W(Ym1), the concept of low frequency information has been replaced with the Y . Only Y

(ll)
m1 is replaced by Y ll. Its

output yields the processed image W(Ỹm1) in the wavelet transform with Y ll, Y
(hl)
m1 , Y

(lh)
m1 , and Y

(hh)
m1 using the inverse

wavelet transform (W−1).
Similarly, the image Ym2 leads to determine the lower frequency data, and its high frequency data may be corrupted

through NLM operation [22] by oversharpening of the high frequency data. Therefore, the wavelet transform of Ym2,
the higher information data have been replaced to the high frequency Y . Technically, W(Ỹm2) describes the four
information sets given by Y

(ll)
m2 , Y

(hl)
m2 , Y

(lh)
m2 , and Y

(hh)
m2 . The last three information sets encompassed the high frequency

information and they are substituted by the Y hl, Y lh, and Y hh, respectively. In output the processed information in
wavelet transform with subbands Y

(ll)
m2 , Y hl, Y lh, and Y hh are reconstructed using the inverse wavelet transform.

The primary image Ỹm1 and Ỹm2 must be fused with the provided image Y for matching the relevant data that
may have been knocked out in the additional technique. In the following section, a fusion process is introduced for
attaining the salient detail information of Y for keeping the significant detail data of Y by mixing up the Ỹm1 and Ỹm2.

2.3 Edge enhancement

Let us develop the combination of Ỹm1 and Y by

Ψ1 := μm1−1 × Ỹm1 + μm1−2Y, (6)

where the weights μm1−1 and μm1−2 are chosen per (Shanon) entropy value of H and observed the given noise standard
deviation σ̂ of Y . The H of |∇Ỹm1| and the |∇Ỹm1| is based on the gradient of the Sobel edge filter. The H determines
the significant information in an image. The improved values of H prove richer in significant information [21]. If the
H is high, Ỹm1 is developed with technical data. Thus, a large value of the weight μm1−1 has been assigned to Ỹm1. If
σ̂ is minimized, Y shows a large value of the weight μm1−2. This leads to the weights value as follows:

μ1G̃ =
2Hlog2(σ̂ + 1)

M
, and μ2G̃ = 1 − μ1G̃, such that 0 ≤ μ1G̃, μ2G̃ ≤ 1.

Technically, by considering the combination of Ỹm2 and Y using

Ψ2 := μm2−1 × Ỹm2 + μm2−2Y, (7)

the weights μm2−1 and μm2−2 are well defined in terms of Ỹm2 and the noise standard has been deviated σ̂ as in
eq. (7).
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Fig. 2. Test images 1–4 (a) original image (true image); (b) Sauvola’s threshold method; (c) Otsu’s threshold method; (d)
Jubin et al.; (e) proposed method.

We consider the given images Ψ1 and Ψ2 in processed data at second stage. Finally, in the pre-processed image
Y , the NLM operation is employed to Ψ1 and Ψ2, respectively, in order to refine the images Ψ̃1 and Ψ̃2 followed by a
fusion process:

Φ := Ψ̃1 + Ψ̃2. (8)

A trade-off has been considered between Ψ̃1 and Ψ̃2, where μ1G̃ and μ2G̃ are calculated using the terms Φ̃ and Ψ̃ .
The Φ is the final stage processed in order to be used as an input in the process of second step thresholding. The
radius of the blood vessel is predicted through deviation of smoothing Gaussian kernel. It is regarded as the most vital
preprocessing phase for enhancement as it eliminates the background noise and highlights the vessel structure [48].

2.4 Auto-thresholding

The threshold for the image is estimated as follows:

Δ(α, β) =

{
Iλ F (α, β) < λ,

Iλ : F (α, β) ≥ λ,
(9)

where λ is evaluated as
λ = min

[
∀

(α,β)∈(X×Y )F (α, β)
]

+ max
[

∀
(α,β)∈(X×Y )ω(α, β)

]
.

Auto-thresholding is applied on the binary images obtained from the grayscale DICOM imageries. This hasperceived
that the proposed method clearly extracts the clear region of interest in comparison with the listed methods.
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Figure 2 shows the qualitative results of the proposed algorithm with the listed methods. The auto-threshold
image [49] is compared with the most extensively used thresholding algorithms like Sauvola’s threshold [34], Otsu’s
threshold [38], and Jubin et al. [9] methods. Sauvola’s edge is generally referred to as a thresholding as locally adaptive
with nearby binarization benchmark approach of 94.9%. Moreover, Otsu’s method has been referred to widely to
consider the global thresholding system.

2.5 Space discretization to precise detection

The importance of the midpoint circle algorithm is proven to be one of the effective methods for calculating the
position of pixels that are around a circular path. These pixels are centered at coordinates (0, 0) having a radius
r. The engendered circle is shifted to the appropriate position of the screen by moving its center to (rc, yc). The
computed circular section is broken down into eight point’s symmetric regions, because of its regularity in nature. The
key concept of the slope of the curve varies from 0 to 1 in the first octant of the given circular region. So, over this
octant, unit steps can be taken in the direction of positive x-axis location and the decision parameters are predicted
to the closeness of two possible y positions of the circular path. In this connection, a circular function fcircle(α, β) is
defined as

fcircle(α, β) = α2 + β2 − γ2. (10)

To find the relative location of any point (x, y) with key concept to the circular boundary has been determined by
considering the polarity function. If fcircle(α, β) > 0 it has been shown that (α, β) is inside the circlular boundary,
fcircle(α, β) = 0 shows that (α, β) is on the circle boundary, and if fcircle(α, β) < 0 it shows that (α, β) is outside
the circle boundary. Let us assume that pixel (xk, yk), is plotted, the next position pixels are plotted followed by the
parameter (pk), with the position of the pixels, i.e., (αk + 1, βk) and (αk + 1, βk − 1). This decision about the given
parameter (pk) is evaluated for the circular function between these pixels as

pk = fcircle

(
(αk + 1)2, (βk − 1

2
)2 − r2

)
. (11)

The next pixel to be selected (xk+1, yk+1) depends on the pk sign as

βk+1 =

{
βk−1 when pk ≤ 0,

βk when pk < 0.
(12)

Successive decision parameters (pk+1) can easily be attained through incremental calculations by assessing the circle
function repeatedly. A recursive expression of the next decision parameter from the current one is

pk + 1 = fcircle

(
αk+1 + 1, βk+1 −

1
2

)
,

=

(
((αk + 1) + 1)2 +

(
βk+1 −

1
2

)2

− γ2

)
,

= pk + 2(αk + 1) +
(
β2

k+1 − β2
k

)
− (βk+1 − βk) + 1. (13)

The decision parameters at initial stage are selected by assessing the circular function at initial location (α0, β0) ≡ (0, γ)
given as

p0 = fcircle

(
1, γ − 1

2

)
,

= 1 +
(

γ − 1
2

)2

− γ2. (14)

Some mathematical notations should be introduced before presenting the Hough hierarchy:

fr
circle(x − xc, y − yc) = (x − xc)2 + (y − yc)2 − r2, (15)

where fr
circle(x− xc, y − yc) represents the circle function with the center at point (xc, yc) with radius r. Points which

lie on the interior of the annular region confined by radius r1 and r2, respectively, are assumed as

δΩr(xc, yc) = {(x, y) ∈ (X × Y ) : fr
circle(x − xc, y − yc) = 0} . (16)
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Given that {0 ≤ r1 ≤ r2}, in order to map the required pixels of a binary image Δ to a 3D parameter space the
mapping function for the modified space discretization algorithm is well defined as

v(α, β) =
ρ∑

r=1

⌈
|δΩr(α, β) ∩ Δ|

δΩr(α, β)

⌉
. (17)

In the above equation, operator || represents the set cardinality that is obtained to obtain the desired number of pixels,
while �·	 is used as a ceiling operator. Hough hierarchy H has been generated by casted votes. This adjustment for all
the pixel positions is noticed within the provided image, by the relation

ρ =
{
(α, β) ∈ (X × Y ) : ∪∀(α,β)v(α, β)

}
. (18)

The co-domain of the function v(x, y) and upper limit of the relation ρ is demonstrated through eqs. (27) and (28),
respectively, as

V = {0, 1, 2, . . . ,H}, where as v(α, β) ∈ V, (19)
max(ρ) = {(α, β) ∈ (X × Y ), v(α, β) ∈ ρ : max[v(α, β)]} . (20)

The graph developed of ρ, has a ternary combination among X, Y and V , as will be shown in eq. (30):

ρ : X × Y →V, (21)
X × Y × V = {(α, β, v(α, β)) : α ∈ X ∧ β ∈ Y ∧ v(α, β) ∈ V } . (22)

2.6 Peak trekking

The key concept of the Hough hierarchy is followed the 3D parameter space that looks like a mountain range, so it
should be discovered like an excursion hence, termed as peak trekking. The 3D local mountain from the mountain
range (3D parameter space) is performed to detected the regions of the binary image [45]. The very first step for the
detection of aneurysms is to get the location of the utmost peak and to store the first position of array C1,

C1 = {(α, β) ∈ (X × Y ) : ρ(α, β) ∩ max(ρ) ∧ |ρ(α, β) ∩ max(ρ)| = 1. (23)

The above equation shows that even if many points satisfy the condition, only one will be considered. A circular region
having center C1 with radius rout is drawn as

R1 =
{
(α, β) ∈ (X × Y ) : Ω−

rout
(C1)

}
. (24)

In Ω−
r , “−” sign indicates that points lie within the annular region instead of the exterior region. The very next step

is to find out pixels positions lying inside the annular region having center C1 bounded by the inner and outer radius
of rin − 1 and rout − 1, respectively. These positions once assessed are stored in the second position of array C. In this
situation, radii of boundary are abridged by 1, which specifies a unit level decrement along dimension V of parameter
space.

Equations (22) to (24) can be generalized using principle of mathematical induction, through recursive relation as
shown in eqs. (25) and (26). Except for level 1, where C1 is already defined by eq. (23),

Cn =

{
{(α, β) ∈ (X × Y ) : [rin − (n − 1)]Ω−

[rout−(n−1)](Cn−1)} : n > 1,

{(α, β) ∈ (X × Y ) : ρ(x, y) ∩ max(ρ) ∧ |ρ(α, β) ∩ max(ρ)| = 1 : n > 1,
(25)

Rn =
{
(α, β) ∈ (X × Y ) : 0Ω−

rout−1(Cn)
}

. (26)

In the given equation n defines the level number. From the given equation, n circular region is generated which
superimposed to give first detected regions. Detected region D1 is given demonstrated as

D1 = ∪max(ρ)−Θ
n=1 Rn. (27)

D1 represents the first detected region which is then subtracted from Hough hierarchy ρ from averting redundancy in
detected regions,

ρ = ρ ∩ D1. (28)

Region detection and subtraction is continuing to iterate until and unless the condition max(ρ) ≥ PeakDepth is
desecrated which is responsible for deciding the height of post processed ρ. 3D parameter space is considered enough
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Fig. 3. 1D plot information on test images: (a) Jubin et al. [9] and (b) the proposed method.

for regions called as mountains. Condition for max(ρ) ≥ PeakDepth is ρ = ρ ∩ Dnp
, in which the variable np denotes

the peak number, which acts like a filter for noisy shape. A unique ID for detecting, maintaining the index for such
regions. np is responsible for maintaining the FIFO principle for retaining hierarchy information. Thus, initial detected
regions can be seen as follows:

np ∈ Np, Np =
{
1, 2, ..nmax

p

}
, (29)

where nmax
p represents initially detected regions. Finally, accurate detected regions are given as follows:

D = {np ∈ Np : Dnp
}. (30)

Figure 3 shows the 1D plot information of the Jubin et al. [9] method and proposed methodology respectively.
Notice from fig. 3 that the graph peaks of the proposed method are shrinked with higher accuracy in order to localize
the affected position than that of the listed method. This happens because the proposed method follows the exactness
of the affective area to confine the computed region with much higher accuracy.
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Algorithm 1.

Input: DICOM Image (Y )

1. f – sub band morphological operation (Y )

2. ζ – Min (f )

3. Υ – Sobel (f )

4. σ – max (Υ )

5. λ(Thresholding) − (ζ + σ)

6. Get circle hierarchy δ − (λ, Hough Hierarchy(ρ))

7. Detect initial regions (δ)

Output: A = Aneurysm regions (δ)

2.7 Aneurysm detection

Neurologists suggest circular shape and diameter size as significant features for the detection of cerebral aneurysms.
Three features are considered for the detection of aneurysms: peak number, shape type, and compactness factor. The
peak number is represented as np and indicates the shape convexity. The area and the compactness factor of the
detected shape for a particular np is calculated by counting the number of pixels present within the shape as follows:

ADnp
=

∑
∀(x,y)

Dnp
, (31)

CDnp
=

4πADnp

P 2
Dnp

. (32)

In the given equation, ADnp
and PDnp

indicates the area and perimeter of the detected shape correspondingly, for a
specific peak number. If CDnp

is observed close to 1 then it is assumed to be circular, however if it is noticed close to 0
it designates a rectangular or tubular structure. This constraint has provided a very useful discrimination for normal
and aneurysms cells.

The queue of generated shapes may contain different size aneurysms, arteries, vessels, and background noises [9].
Consequently, it is crucial to separate these portions from other detected shapes. Aneurysms detection depends on
three conditions, such: ADnp

≥ Minimum area, while the minimum area is demonstrated as follows:

Minimum area = 100 ×
⌊

AD1

100 × k

⌋
. (33)

In the above given equation AD1 represents shape area (D1), that is produced by peak number 1, i.e. (np = 1),
condition 2 represents optimized weights, and condition 3 is true for shape Dnp

. If condition 1, 2, and 3 are estimated
to be true for shape Dnp

− 1. In this situation, condition 1 and 2 are essential for the detection of cerebral aneurysms.
However, condition 3 is most crucial and enough for the proposed algorithm.

The adjustable parameters of the presented algorithm include: hierarchy height, neighborhood depth, peak depth,
C, and k. Multiparameter optimization is a problem here, so the significant parameter turns out to be a neighborhood
depth. For performance evaluation of the algorithm, segmentation results were compared to a ground truth image
using three performance metrics which are: sensitivity, accuracy and specificity. In practical situations, the segmented
image based on the manual approach is leaded to error on applying the skilled human observation and interpretation
of the given pixels [45,46,50]. Most appropriate detection will have values of sensitivity and specificity equal to one,
while most algorithms fall short of ideal. The optimum value for sensitivity and specificity is observed to be 1.

The aim of this research is to precisely detect the aneurysm regions in DICOM images obtained through DSA. A
metric for accuracy measurement of aneurysm detected regions is presented [30]. Manually segmented ground truth
regions δ are considered and their Euclidean distance transforms (Θ) are computed. Distance is normalized δξn and
with these segmented aneurysm regions A, the percentage of common pixels is computed.

δξ = Θ(δ),

δξn
=

δξ

max(δξ)
,

Accuracy (%) =
δξn

∧ A

δ
× 100.

In the above equation, ∧ is implemented using max operation. As thresholding safely measures aneurysm regions
maintain a safe boundary of these regions without affecting overall accuracy of detection, there is no need for the
measurement of overflow percentage.
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Table 1. Classification of patients with cerebral aneurysms at early diagnostic stage.

Grade Criteria Number of CA Deaths

I Minor headache 61 7

II Severe headache 88 23

III Drowsiness 79 29

IV Severe hemiparesis 35 25

V Deep coma 12 12

Table 2. Classification and detection for 1st test image.

Area Compactness factor Peak number Aneurysm? Diameter (mm) Type of aneurysm

793 0.64 1 True 19.07 Large

350 0.61 2 True 12.67 Medium

222 0.43 3 False 10.09 –

157 0.43 4 False 8.48 –

209 0.47 5 False 9.79 –

Table 3. Classification and detection for 2nd test image.

Area Compactness factor Peak number Aneurysm? Diameter (mm) Type of aneurysm

1496 0.64 1 True 17.46 Large

711 0.62 2 True 12.04 Medium

958 0.35 3 False 13.97 –

287 0.62 4 False 7.65 –

248 0.55 5 False 7.11 –

Table 4. Classification and detection for 3rd test image.

Area Compactness factor Peak number Aneurysm? Diameter (mm) Type of aneurysm

289 0.65 1 True 5.75 Small

315 0.68 2 True 6.01 Small

194 0.69 3 True 4.71 Small

584 0.36 4 False 8.18 –

348 0.45 5 False 6.31 –

Table 5. Classification and detection for 4th test image.

Area Compactness factor Peak number Aneurysm? Diameter (mm) Type of aneurysm

2587 0.60 1 True 34.44 Giant

168 0.52 2 False 8.78 –

Table 6. Performance analysis of the proposed technique.

Test image Sensitivity Specificity
Accurate match (%)

Jubin et al. [9] Proposed method

1st 100% 100% 99.0094 99.8173

2nd 100% 100% 95.9682 98.5273

3rd 100% 100% 93.9899 98.9435

4rth 100% 100% 98.0625 99.5806
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Fig. 4. Detection of cerebral aneurysms for test images 1–4.

Table 7. Comparison of the proposed method with the listed methods.

Reference Sensitivity Specificity Accuracy User interaction Modality

Proposed method 1 1 99.2 Automatic DSA

[8] 1 1 96.9 Automatic DSA

[6] 0.99 1 99.4 User interactive DSA

[7] 0.99 1 99.5 User interactive DSA

[5] 0.974 0.9 95.8 Semi-automatic Multi section CT Angiography

[4] 0.95 – – Automatic 3D-RA, MRA, CTA

3 Results and discussion

We have tested our algorithm on text images of various types and size of aneurysms to exhibit the performance of the
proposed algorithm. Test images for experimental evaluation are taken from the benchmark database of Dr. Balaji
Anvekar’s neurology cases [42] and brain aneurysm foundations [43]. The simulations were performed on MATLAB
R2018a software. The results of the proposed algorithm for properly locating the position and size of the aneurysm
are shown in fig. 4. In each of these imageries, the actual input image obtained through DSA Image (Y ) is shown in
fig. 4(a). This gray scale image (Y ) is segmented into binary image (Δ) using the proposed auto-thresholding method
as shown in sub-figure (b). Detected regions (D) generated from peak trekking with increasing the peak number (np)
over the input image are shown in fig. 4(c). Figure 4(d) shows the aneurysms regions (A) are detected and classified
through detected regions (D). Detection and classification of aneurysm regions are shown in tables 1, 2 3, 4 and 5
using parameters: peak number, area, compactness factor, and diameter.
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It can be seen from both qualitative and quantitative analysis that the proposed algorithm has a descent ability to
detect and classify the affected regions. However, it does not contain only a single region but also multiple aneurysms.
It can be observed from the processed images as shown in fig. 4 and performance analysis is demonstrated in table 6.
This shows that the proposed algorithm is capable enough for finding the accurate type of the affected region and the
proper boundary of the detected aneurysm. Tables 2 to 5 present the detection and classification of single and multiple
aneurysms based on four parameters. The proposed algorithm is successful in detecting the type and proper location
of aneurysms with a much higher accuracy rate. We have compared our proposed approach with different state of the
art methods in the literature as shown in table 7. Inspired by the work of Jubin et al. [9] different parameters like
sensitivity, specificity, and accuracy have been used to evaluate the performance of the proposed system. The given
table shows that the proposed algorithm achieves a higher accuracy compared with the Jubin et al. [9] automatic
method. It was observed in Li et al. [7] and Villablanca et al. [8] about higher accuracy results; however in these
methods the sensitivity value was supposed less than 1 in order to maintain the tradeoff between sensitivity and
accuracy value.

The proposed method achieves higher accuracy as compared to earlier methods in terms of both specificity and
sensitivity. Optimum selection of these values can lead to accurate detection of any type of aneurysms and even
abnormal vessels. Moreover, the proposed method is very efficient in emphasizing the affected area with great accuracy.

4 Conclusion

Successful detection of cerebral aneurysms is achieved using the novel sub-band morphological operation method. Peak
trekking of the Hough hierarchy is calculated from these auto-thresholded grayscale images in order to observe the
weak spots in blood vessels. This helps to manage the critical situation of patients by observing the sac-like structures
in clear and in a short span of time. The proposed method using the morphological operation in the wavelet domain is
not only helpful to save precious human lives, it also decreases the time duration to locate the abnormal vessels. This
leads to an optimum selection of the problematic values for an accurate detection of types of aneurysms and abnormal
vessels.

List of abbreviations.

Acronym Definition
CA Cerebral aneurysm
CTA Computed tomography angiogram
DSA Digital subtraction angiography
SAH Subarachnoid hemorrhage
LDA Linear discriminant analysis
MRI Magnetic resonance imaging
DICOM Digital imaging and communications in medicine
ROI Region of interest
MHCT Modified hough circle transform
WT Wavelet transform
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47. M. Gómez, C. Castejón, J. Garćıa-Prada, Algorithms 9, 19 (2016).
48. Zahid Mahmood, Nazeer Muhammad, Nargis Bibi, Tausif Ali, Fractals 25, 1750025 (2017).
49. B. Mughal, N. Muhammad, M. Sharif, A. Rehman, T. Saba, BMC Cancer A 18, 778 (2018).
50. Nargis Bibi, A. Kleerekoper, Nazeer Muhammad, Berry Cheetham, SpringerPlus 5, 931 (2016).


