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Abstract. In this article we analytically studied the complex nonlinear Schrödinger equation with Kerr law
nonlinearity using the auxiliary equation mapping method, as a result, we found a series of more general
and new families of exact solutions, which are more powerful in the development of soliton dynamics,
quantum plasma, adiabatic parameter dynamics, biomedical problems, fluid dynamics, industrial studies,
nonlinear optics and many other fields. The calculations demonstrate that this method is more reliable,
straightforward and effective to analytically study other nonlinear complicated physical problems mod-
eled by complex nonlinear partial differential equations arising in mathematical physics, hydrodynamics,
fluid mechanics, mathematical biology, plasma physics, engineering disciplines, chemistry and many other
natural sciences. We have also expressed our solutions graphically with the help of Mathematica 10.4 to
physically understand the behavior of different shapes of solutions including kink-type, anti-kink-type,
half-bright and dark solitons.

1 Introduction and problem formulation

It is well known that a large variety of nonlinear wave problems arising in physics, chemistry, biomedical problems, fluid
dynamics and in many other natural sciences are governed by nonlinear partial differential equations (NLPDEs) [1–42].
The analytical study of nonlinear partial differential equations is one of the most fascinating and exciting areas of
research for many researchers in recent years. The development of new mathematical techniques to find out a more
compact and general form of exact solutions is one of the most important tasks to understand the complete dynamical
process modeled by complex nonlinear partial differential equations from the past few decades. Extracting exact
solutions of nonlinear partial differential equations is also important to check the stability of numerical solutions as well
as to develop a wide range of new mathematical solvers to simplify the routine calculation. In recent time, an abundance
of new more powerful and effective methods have been developed with the help of different computer softwares like
Mathematica, Maple and Matlab, such as the Kudryashov method [1, 2], the truncated expansion method [3, 4], the
Bäcklund transform method [5, 6], the inverse scattering method [7], the extended Fan sub-equation method [8], the
homogeneous balance method [9], the Jacobi elliptic function method [10], the tanh-function method [11], and many
more in several theoretical works about solitons and their applications [12–19].

It is well known that the propagation of ultrashort pulses in fibers is governed by the higher-order nonlinear
Schrödinger equation (HONLSE). Nowadays the propagation of ultrashort pulses plays an important role to fulfill
the increased demand of high rate data transmission in optical communication systems. To study the propagation of
ultrashort pulses is practically important in various areas of research; these are studied in plasma physics, nuclear
physics, mathematical physics, nonlinear optics, and many other physical sciences [20,21]. So, to extract optical solitons
and understand the dynamics of ultrashort pulses completely has received a great attention of researchers in recent
time. The present work has been motivated to study analytically the cubic nonlinear Schrödinger equation with Kerr
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law nonlinearity, which is obtained from the HONLSE. The higher order nonlinear Schrödinger equation (HONLSE)
in dimensionless form is given as [22]

iφt −
β2

2
φxx + γ1φ|φ|2 = i

β3

6
φxxx +

β4

24
φxxxx − γ2φ|φ|4 + iα1(φ|φ|2)x + iα2φ(|φ|2)x. (1)

Here φ(x, t) is a complex wave function, where βi, i = 2, 3, 4 are dispersion coefficients, β2 is the group velocity
dispersion (GVD), β3 is the third-order dispersion (TOD), and β4 is the fourth-order dispersion (FOD), respectively,
while γ1 is the coefficient of cubic nonlinearity, γ2 is the coefficient of quintic nonlinearity, α1, α2 are related to
self-steeping (SS) and self-frequency shift coefficients. The standard nonlinear Schrödinger equation, given as

iφt −
β2

2
φxx + γ1φ|φ|2 = 0, (2)

is obtained by setting β3 = β4 = γ2 = α1 = α2 = 0. The exact solutions of (1) by considering β4 = γ2 = 0 has been
studied, called as the perturbed nonlinear Schrödinger equation using the extended Fan sub-equation method given as

iφt −
β2

2
φxx + γ1φ|φ|2 = i

β3

6
φxxx + iα1(φ|φ|2)x + iα2φ(|φ|2)x. (3)

Many mathematicians and physicists have studied the HONSLE extensively with some special choices of parameters to
find out exact solutions using different methods [15–20], like [26] studied with β3 = α2 = 0 [24], with α2 = 0, and [25]
studied with β3 = α1 = α2 = 0. Our focus is to study (3) by setting β3 = α1 = α2 = 0 with Kerr law nonlinearity
given as [43]

iφt − φxx + 2φ|φ|2 − 2σ2
0φ = 0. (4)

The main outline of the paper is as follow. In sect. 1 a brief introduction of the model is given. In sect. 2 we applied
the auxiliary equation mapping method, the detailed description of the method is given in ref. [21], on the complex
nonlinear Schrödinger equation with Kerr law nonlinearity. In sect. 3 a graphical representation and discussion of the
solutions is given. In sect. 4 the concluding remarks are given.

2 NLSE with Kerr law nonlinearity

Here our focus is to apply the auxiliary equation mapping method [21] on the complex nonlinear Schrödinger equation
(CNLSE) with Kerr law nonlinearity [21]

iφt − φxx + 2φ|φ|2 − 2σ2
0φ = 0. (5)

Here φ(x, t) describes the complex wave function with σ0 as a constant and x, t represents the partial derivatives.
The perturbed NLSE has been studied by many researchers [32–37] but our focus is to extract the exact traveling
wave solutions of (5) with Kerr law nonlinearity by the implementation of the auxiliary equation mapping method in
a unified manner. It is important to mention here that by the choice of σ0 = 0, eq. (5) reduces to NLSE with non-Kerr
law nonlinearity given as

iφt − φxx + 2φ|φ|2 = 0. (6)

To convert eq. (5) into NLODE consider the following wave transformation:

φ(x, t) = W (ξ)ei(γx+αt), ξ = κ(x + 2γt), (7)

then eq. (5) becomes in the following form:

−κ2

(
∂2W (ξ)

∂ξ2

)
+ 2W 3(ξ) + (γ2 − 2σ2

0 − α)W (ξ) = 0, (8)

where γ, α and κ are arbitrary constants to be determined later. Balancing W 3 and W ′′ in eq. (8), we obtain m = 1,
by the auxiliary equation mapping method eq. (8) admits the general solution in the form of a series as

W (ξ) =
m∑

j=0

ajF
j(ξ) +

−m∑
j=−1

b−jF
j(ξ) +

m∑
j=2

cjF
j−2(ξ)F ′(ξ) +

−m∑
j=−1

d−jF
j(ξ)F ′(ξ), (9)
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where the aj , bj , cj , dj are constants to be determined later, and F (ξ) satisfies the following auxiliary ordinary
differential equation with its derivatives:

F ′2 =
(

dF

dξ

)2

= pF 2(ξ) + qF 3(ξ) + rF 4(ξ), (10)

F ′′(ξ) = pF (ξ) +
3
2
qF 2(ξ) + 2rF 3(ξ), (11)

F ′′′(ξ) = (p + 3qF (ξ) + 6rF 2(ξ))F ′(ξ). (12)

For m = 1, the general solution of eq. (8) has the following form:

W (ξ) = a0 + a1F (ξ) +
b1

F (ξ)
+ d1

F ′(ξ)
F (ξ)

. (13)

Substituting eq. (13) with the help of auxiliary ordinary differential equation (10) into (8), collecting all coefficients of
F ′k(ξ)F j(ξ) (k = 0, 1, j = 0, 1, 2, 3, . . . , n) and setting them equal to zero, we obtain a system of algebraic equations,
by solving this system with the help of Maple or Mathematica softwares, different sets of values of constants aj , bj ,
cj , dj and frequency are obtained, by substituting them in eq. (13) different more general and new families of exact
solutions of eq. (5) are obtained as mentioned below.

– Family 1:

a0 = ±
√

1
2
(α − γ2) + σ2

0 , b1 = d1 = 0, p =
2(α − γ2 + 2σ2

0)
κ2

a1 = ± qκ2

2
√

2
√

α − γ2 + 2σ2
0

, r =
q2κ2

8(α − γ2 + 2σ2
0)

. (14)

Then, substituting these values into eq. (13) and with the mentioned solutions of eq. (10) in ref. [21] using the
auxiliary equation mapping method, the following solutions of eq. (5) are obtained in this family:

q1 =

(
2(α − γ2 + 2σ2

0)
2
√

2(α − γ2 + 2σ2
0)

− pκ2

2
√

2(α − γ2 + 2σ2
0)

(
1 + s tanh

(√
p

2
(κ(x + 2γt)) + ξ0

)))
ei(γx+αt), (15)

q2 =

(
4(α − γ2 + 2σ2

0)
4
√

2(α − γ2 + 2σ2
0)

+
qκ2

√
p
r

4
√

2(α − γ2 + 2σ2
0)

(
1 +

s sinh(
√

p(κ(x + 2γt)))
ρ + cosh(

√
p(κ(x + 2γt)))

))
ei(γx+αt), (16)

q3 =

(
2(α − γ2 + 2σ2

0)
2
√

2(α − γ2 + 2σ2
0)

− pκ2

2
√

2(α − γ2 + 2σ2
0)

(
1 +

s(ρ
√

1 + σ2 + cosh(
√

p(κ(x + 2γt))))
σ + sinh(

√
p(κ(x + 2γt)))

))
ei(γx+αt). (17)

– Family 2:

a0 = ±
√

α − γ2 + 2σ2
0

2
√

2
, b1 = a1 = 0, p =

−α + γ2 − 2σ2
0

κ2
, q = r = 0, d1 = − i κ

2
√

2
. (18)

Then, substituting these values into eq. (13) and with the mentioned solutions of eq. (10) in ref. [21] using the
auxiliary equation mapping method, the following solutions of eq. (5) are obtained in this family:

q4 =

(
2
√

α − γ2 + 2σ2
0

4
√

2
−

i
√

pκ s sech(
√

p

2 (κ(x + 2γt)) + ξ0)2

4
√

2(1 + s tanh(
√

p

2 (κ(x + 2γt)) + ξ0))

)
ei(γx+αt) p < 0, (19)
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q5 =

(√
α − γ2 + 2σ2

0

2
√

2

− iκ
√

ps(1 + ρ cosh(
√

p(κ(x + 2γt))))

2
√

2(ρ + cosh(
√

p(κ(x + 2γt))))(ρ + cosh(
√

p(κ(x + 2γt))) + s sinh(
√

p(κ(x + 2γt))))

)
ei(γx+αt) p < 0,

(20)

q6 =

(√
α − γ2 + 2σ2

0

2
√

2

+
i κ

√
ps(1 + ρ

√
1 + σ2 cosh(

√
p(κ(x + 2γt))) − σ sinh(

√
p(κ(x + 2γt))))

2
√

2(σ + sinh(
√

p(κ(x + 2γt))))(σ + s ρ
√

1 + σ2 + s cosh(
√

p(κ(x + 2γt))) + sinh(
√

p(κ(x + 2γt))))

)

× ei(γx+αt) p < 0. (21)

– Family 3:

a1 =
√

rκ

2
, d1 =

κ

2
, b1 = a0 = 0, p =

2(α − γ2 + 2σ2
0)

κ2
, q = r = 0. (22)

Then, substituting these values into eq. (13) and with the mentioned solutions of eq. (10) in ref. [21] using the
auxiliary equation mapping method, the following solutions of eq. (5) are obtained in this family:

q7 =

(
−

p
√

rκ(1 + s tanh(
√

p(κ(x+2γt))

2 + ξ0))
2q

+
√

pκ s sech(
√

p(κ(x+2γt))

2 + ξ0)2

4(1 + s tanh(
√

p(κ(x+2γt))

2 + ξ0))

)
ei(γx+αt), (23)

q8 =
(

κ

4

(
2
√

ps(1 + ρ cosh(
√

p(κ(x + 2γt))))
(ρ + cosh(

√
p(κ(x + 2γt)))(ρ + cosh(

√
p(κ(x + 2γt))) + s sinh(

√
pκ(x + 2γt))

)

+
√

p

r

√
r

(
1 +

s sinh(
√

pκ(x + 2γt))
ρ + cosh(

√
pκ(x + 2γt))

))
ei(γx+αt) p > 0, r > 0, ρ > 0, (24)

q9 =

(
s
√

pκ(−1 − ρ
√

1 + σ2 cosh(
√

pκ(x + 2γt)) + σ sinh(
√

pκ(x + 2γt)))

2(σ + sinh(
√

pκ(x + 2γt)))(σ + sρ
√

1 + σ2 + s cosh(
√

pκ(x + 2γt)) + sinh(
√

pκ(x + 2γt)))

− pκ
√

r(σ + sρ
√

1 + σ2 + s cosh(
√

pκ(x + 2γt)) + sinh(
√

pκ(x + 2γt)))2

2q(σ + sinh(
√

pκ(x + 2γt)))(σ + sρ
√

1 + σ2 + s cosh(
√

pκ(x + 2γt)) + sinh(
√

pκ(x + 2γt)))

)
ei(γx+αt).

(25)

– Family 4:

d1 =
κ

2
, b1 = a1 = a0 = 0, p =

2(α − γ2 + 2σ2
0)

κ2
, q = r = 0. (26)

Then, substituting these values into eq. (13) and with the mentioned solutions of eq. (10) in ref. [21] using the
auxiliary equation mapping method, the following solutions of eq. (5) are obtained in this family:

q10 =

( √
pκ s sech(

√
p(κ(x+2γt))

2 + ξ0)2

4(1 + s tanh(
√

p(κ(x+2γt))

2 + ξ0))

)
ei(γx+αt), (27)

q11 =
(

κ
√

ps(1 + ρ cosh(
√

p(κ(x + 2γt))))
2ρ + cosh(

√
p(κ(x + 2γt)))(ρ + cosh(

√
p(κ(x + 2γt))) + s sinh(

√
pκ(x + 2γt)))

)
ei(γx+αt), (28)

q12 =

(
s
√

pκ(−1 − ρ
√

1 + σ2 cosh(
√

pκ(x + 2γt)) + σ sinh(
√

pκ(x + 2γt)))

2(σ + sinh(
√

pκ(x + 2γt)))(σ + sρ
√

1 + σ2 + s cosh(
√

pκ(x + 2γt)) + sinh(
√

pκ(x + 2γt)))

)
ei(γx+αt).

(29)

– Family 5:

a0 = ±
√

α − γ2 + 2σ2
0

2
√

2
, b1 = a1 = 0, d1 = ± i

√
−α + γ2 − 2σ2

0

2
√

2
√

p
q = r = 0. (30)
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Fig. 1. Graphical representation of solitary wave solutions (15) and (16): (a) three-dimensional half-bright soliton of anti-kink-
type with ξ0 = −2, κ = 1, γ = .5, ρ = −1.8, s = 4, and α = 1.5; (b) three-dimensional graph of (16) as a dark soliton with
ξ0 = −2, κ = 1.1, γ = .5, ρ = −1.8, s = 4, and α = 1.5 in intervals (−10, 10), (0, 10).

Then, substituting these values into eq. (13) and with the mentioned solutions of eq. (10) in ref. [21] using the
auxiliary equation mapping method, the following solutions of eq. (5) are obtained in this family:

q13 =

(
2
√

α − γ2 + 2σ2
0

4
√

2
+

i
√

−α + γ2 − 2σ2
0 s sech(

√
p

2 (κ(x + 2γt)) + ξ0)2

4
√

2(1 + s tanh(
√

p

2 (κ(x + 2γt)) + ξ0))

)
ei(γx+αt) p < 0, (31)

q14 =

(√
α − γ2 + 2σ2

0

2
√

2

+
i
√

−α + γ2 − 2σ2
0s(1 + ρ cosh(

√
p(κ(x + 2γt))))

2
√

2(ρ + cosh(
√

p(κ(x + 2γt))))(ρ + cosh(
√

p(κ(x + 2γt))) + s sinh(
√

p(κ(x + 2γt))))

)

× ei(γx+αt) p < 0, (32)

q15 =

(√
α − γ2 + 2σ2

0

2
√

2

− i
√

−α + γ2 − 2σ2
0s(1 + ρ

√
1 + σ2 cosh(

√
p(κ(x + 2γt))) − σ sinh(

√
p(κ(x + 2γt))))

2
√

2(σ + sinh(
√

p(κ(x + 2γt))))(σ + s ρ
√

1 + σ2 + s cosh(
√

p(κ(x + 2γt))) + sinh(
√

p(κ(x + 2γt))))

)

× ei(γx+αt) p < 0. (33)

3 Graphical representation of the solutions

In this section we graphically present our new derived families of solutions, including rational functions, hyperbolic
functions and trigonometric functions with different shapes to understand the physical description of the NLSE using
Mathematica 10.4. See figs. 1–7.

Results and discussion

In this section our focus is to highlight the similarities and differences of our results with solutions already obtained
in the literature by applying different methods. We have obtained a collection of more general and new solutions, the
key point of this is the structure of our proposed solution (9), which has a different structure with the range of three
parameters, by obtaining different sets of values of constants aj , bj , cj , dj with the help of Mathematica, eq. (10)
has solutions of different types including rational, trigonometric, and hyperbolic functions. By this powerful method
we have obtained a collection of new families of solutions but still some of our results are similar to others. In the
following we made a comparison of our results with some other methods.
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Fig. 2. Graphical representation of solitary wave solutions of (19) and (20): (c) (19) as a dark soliton of different shape with
ξ0 = −2, κ = 1, γ = .5, ρ = −1.8, s = 4, and α = 1.5; (d) three-dimensional graph of (20) as a half-bright soliton of periodic
type with ξ0 = 2, κ = 1, γ = .5, ρ = −1.8, s = 4, and α = 1.5 in intervals (−10, 10), (0, 10).

Fig. 3. Graphical representation of solitary wave solutions (24) and (25): (e) three-dimensional graph of (24) as a bright soliton
of different shape with ξ0 = −1, κ = 1.1, γ = .5, ρ = 1.8, s = 1.8, and α = 1; (f) three-dimensional graph of (25) as a bright
soliton of different shape with ξ0 = −1, κ = 1, γ = .5, ρ = −1.8, s = 1.8, and α = 1.7 in intervals (−10, 10), (0, 10).

Fig. 4. Graphical representation of solitary wave solutions (27) and (28): (g) three-dimensional graph of (27) as a bright soliton
with ξ0 = −1, κ = 1.1, γ = .5, ρ = 1.8, s = 1.8, and α = 1; (h) three-dimensional graph of (28) as a half-dark soliton of different
shape with ξ0 = 3, κ = 1, γ = .5, ρ = −1.8, s = 1.8, and α = 1.7 in intervals (−10, 10), (0, 10).
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Fig. 5. Graphical representation of the solitary wave solution (29): (j-a) two-dimensional graph of (29) as a periodic soliton
with ξ0 = 3, κ = 1.1, γ = 1.5, ρ = 1.8, s = 3, and α = 1.7; (j-b) three-dimensional periodic soliton of (29) in intervals (−10, 10),
(0, 10).

Fig. 6. Graphical representation of solitary wave solutions (31) and (32): (k) three-dimensional graph of (31) as a half-bright
soliton with ξ0 = 3, κ = 1, γ = .5, ρ = 1.8, s = .3, and α = 1.7; (m) three-dimensional graph of (32) as a bright soliton of
different shape with ξ0 = 3, κ = 1, γ = .5, ρ = 3, s = −3, and α = 1.7 in intervals (−10, 10), (0, 10).

Fig. 7. Graphical representation of the solitary wave solution (33): (n-a) two-dimensional periodic soliton (33) with ξ0 = 3,
κ = 1.1, γ = .5, ρ = 3, s = 3, and α = 1.7; (n-b) three-dimensional graph of periodic soliton of (33) in intervals (−10, 10),
(0, 10).
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Similarities with the results obtained by the modified extended direct algebraic method by considering λ = 1 and
σ2

0 = γ:

– Our solution (19) is approximately the same with the mentioned solution u13 in Case 1 of [43].
– Our solution (15) has similarity with the solution u21 mentioned in Case 2 of [43].

Results obtained by the extended Fan sub-equation method:

– Exact solitary wave solutions with ρ = σ0 obtained by the extended Fan sub-equation method in [43] are different
from our obtained results.

In the latter, it is important to note that the solutions obtained in [23], are for the perturbed NLSE while the solutions
obtained in the present work are for the NLSE which can be easily obtained by setting the coefficients of dispersion
terms and Raman scattering to zero, then the perturbed NLSE becomes NLSE with non-Kerr law nonlinearity which
is same as for σ0 = 0 in eq. (5). From the above comparison we can conclude that except some solutions (19) and (15)
our other obtained solutions are new and have not been formulated before, which shows that our method is more
helpful, effective, straightforward and reliable to analytically study other nonlinear complex models.

4 Conclusion

In this paper we analytically investigated the complex nonlinear Schrödinger equation with Kerr law nonlinearity
to construct its more general and new solitary wave solutions of different types including rational, trigonometric,
and hyperbolic functions. We applied the auxiliary equation mapping method to find a rich variety of new solutions
for the range of three parameters; calculations demonstrate that the method is more reliable, straightforward, and
effective to analytically study other nonlinear complicated physical problems modeled by complex nonlinear partial
differential equations arising in mathematical physics, hydrodynamics, fluid mechanics, mathematical biology, plasma
physics, engineering disciplines, chemistry and many other natural sciences. We also have graphically expressed our
obtained solutions with the aid of Mathematica 10.4, these combined solutions are more helpful in future in the
development of soliton dynamics, adiabatic parameter dynamics, biomedical problems, fluid dynamics, industrial
studies and many other fields, more importantly to make a comparison with numerical solutions in the development
of numerical techniques as well as to develop a wide range of new mathematical softwares, and to understand the
physical interpretation of complicated nonlinear wave problems.
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