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Abstract. We solved the Dirac equation using the modified factorization method with the shifted Tietz-
Wei potential model. Relativistic and non-relativistic ro-vibrational energy spectra were obtained as well
as numerical solutions for different diatomic molecules (H2(X

1P+
g ), N2(X

1P+
g ), and O2(X

3P−
g )). The

eigenfunction for this potential has been obtained in terms of hypergeometric function. The energy vari-
ations were discussed graphically for different parameters of the shifted Tietz-Wei potential. Our results
are in good agreement with the ones available in the literature.

1 Introduction

Researchers over the years have studied the relativistic and non-relativistic systems with various physical poten-
tials [1–9]. Recently, this drive has led to the calculation of relativistic rotation-vibrational energy spectra for diatomic
molecules and dimers. As such, various relativistic effects have been considered using quantum mechanical methods;
this in turn has helped achieving accurate rotation-vibrational energy spectra [10]. Shui and Jia [11] noted that there
exists a slight difference between the relativistic and the non-relativistic treatment, arising from the relativistic cor-
rections of the rotation-vibrational energy. Such effects so far observed include a decrease in the vibrational energies
for the X2

∑+ state of the CP molecule, the X1
∑+ state of the SiF+ molecule, [12–15] etc.

Tietz diatomic molecule potential energy function was first proposed in 1963 [16] as

UT = De +
De(a + b)e−2αr

(1 + qe−αr)2
, (1)

where De is the dissociation energy, a, b, q and α are spectroscopic parameters which can be determined.
Recently, a more convenient form of eq. (1) has been proposed [17]:

UT = De

[

1 − eαre + q

eαr + q

]2

, (2)

where re is the equilibrium bond length, and q is a parameter.
Replacing q with 0, +1 and −1 in eq. (2) results in the Morse potential [18], Rosen-Morse potential [19] and

Manning-Rosen potential [20]. Further research has shown that several other potentials are equivalent to the Tietz
potential model [21–24].

In describing a suitable molecular potential for diatomic molecules, a modification for Tietz-Wei potential (called
the shifted Tietz-Wei potential) was suggested as [25]

UsTWp(r) = V0

(
Ae−bh(r−re) − Be−2bh(r−re)

(1 − che−bh(r−re))2

)

, (3)

where A = 2(ch − 1), B = (c2
h − 1), bh = γ(1− ch), V0 is the potential well depth, re is the molecular bond length, ch

is the optimization parameter, γ is the Morse constant, and r is the inter-nuclear distance. The Morse potential is a
a e-mail: uduakobongokorie@aksu.edu.ng



Page 2 of 10 Eur. Phys. J. Plus (2018) 133: 433

special case of the shifted Tietz-Wei potential, when ch → 0. The similarities between the shifted Tietz-Wei potential
and the traditional Morse potential, and their relevance over the original Tietz-Wei potential was described in ref. [25].

To the best of our knowledge, a relativistic consideration has not been given to a shifted Tietz-Wei potential; hence
our motivation to examine the relativistic correction of the rotation-vibrational energy spectra for the X1

∑+
g , X1

∑+
g

and X3
∑−

g states of hydrogen, nitrogen and oxygen molecules, respectively.
We seek to investigate the bound state solution of the Dirac equation with the shifted Tietz-Wei potential energy

model within the framework of spin symmetry, using the modified factorization method analytically and numerically.
We also explore the relativistic effects of the rotation-vibrational energy spectra for the diatomic molecules under
consideration.

2 Bound state solutions of the Dirac equation

The Dirac equation with both scalar potential S(r) and vector potential V (r) can be written as
{
c�α · �p + β

[
μc2 + S(r)

]}
Ψ(r, θ, ϕ) = [E − V (r)]Ψ(r, θ, ϕ), (4)

�p = −ih̄∇, �α =
[

0 σi

σi 0

]

, β =
(

I 0
0 −I

)

, (5)

σ1 =
(

0 1
1 0

)

, σ2 =
(

0 −i

i 0

)

, σ1 =
(

1 0
0 −1

)

, (6)

where i =
√
−1, h̄ = h

2π . In eq. (4) to eq. (6), E is the relativistic energy of the system, μ is the reduced mass of the
system, c is the speed of light, h is the Planck constant, �p is the momentum operator, S(r) is the scalar potential, V (r)
is the vector potential, �α and β are the 4× 4 Dirac matrices, I is the 2× 2 unit matrix, and σ1, σ2, σ3 are three-vector
Pauli matrices.

Taking cognisance of the Dirac Hamiltonian commutation that exists between total angular momentum operator �J

and the spin-orbit coupling operator K = −β(�σ · �L+1), where �L is the orbital angular momentum, and the regularity
conditions that are satisfied by the lower and upper spinor components under spin symmetry as documented in ref. [12],
we adopt the following second-order Schrodinger-like equation:
(

−h̄2c2 d2

dr2
+

κ(κ + 1)h̄2c2

r2
+

(
μc2 + Evκ − Cs

)
(

V (r)
2

+
S(r)

2

))

Fvκ(r) =
(
E2

vκ − μ2c4 + Cs

(
μc2 − Evκ

))
Fvκ(r),

(7)
where v is the vibrational quantum number, κ is the spin-orbit quantum number, Cs is a constant parameter. For
unaligned spin (j = J − 1

2 ), κ = J > 0; also for aligned spin (j = J + 1
2 ), κ = −(J + 1

2 ) < 0. Here, j and J denote
total angular momentum quantum number and rotational quantum number for the dimers, respectively.

For bound state solutions, the scalar potential is equated to the shifted Tietz-Wei potential (i.e. S(T ) = UsTWp(r))
and the vector potential V (r) = Cs + S(r) = Cs + UsTWp(r). Invoking this condition and substituting eq. (3) into
eq. (7), we obtain the following equation:

{

−h̄2c2 d2

dr2
+

(
μc2 + Evκ − Cs

)
(

Cs

2
+ V0

(
Ae−bh(r−re) − Be−2bh(r−re)

(1 − che−bh(r−re))2

))

+
κ(κ + 1)h̄2c2

r2

}

Fvκ(r) =
(
E2

vκ − μ2c4 + Cs

(
μc2 − Evκ

))
Fvκ(r). (8)

Exact solution of eq. (8) is only possible for J = 0, κ = −1 (s-wave). For l-wave (J �= 0), we apply a Pekeris-
approximation scheme [26] to take care of the centrifugal term as

1
r2

≈ 1
r2
e

(

D0 +
D1e

−αx

1 − che−αx
+

D2e
−2αx

(1 − che−αx)2

)

, (9)

where α = bhre, x = r−re

re
. Di is the parameter of the coefficients (i = 0, 1, 2) and α is the screening parameter. With

proper expansion of eq. (9) up to the x2 term and rearranging the terms, we obtain [9]

D0 = 1 +
1 − ch

α

[
3
α

(1 − ch) − (3 + ch)
]

, (10)

D1 =
2
α

(1 − ch)2
[

(2 + ch) − 3
α

(1 − ch)
]

, (11)

D2 =
(1 − ch)3

α

[
3
α

(1 − ch) − (1 + ch)
]

. (12)
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Substituting eq. (9) into eq. (8) gives

{

−̄h2c2 d2

dr2
+

(
μc2+Evκ−Cs

)
(

Cs

2
+V0

(
Ae−bh(r−re)−Be−2bh(r−re)

(1−che−bh(r−re))2

))

+
κ(κ+1)h̄2c2

r2
e

(

D0+
D1e

−bh(r−re)

1−che−bh(r−re)
+

D2e
−2bh(r−re)

(1−che−bh(r−re))2

)}

Fvκ(r) =
(
E2

vκ−μ2c4+Cs

(
μc2−Evκ

))
Fvκ(r). (13)

Equation (13) can be rewritten as

d2Fvκ(r)
dr2

+

[
ξ1e

−2bh(r−re)

(
1 − che−bh(r−rh)

)2 +
ξ2e

−bh(r−re)

(
1 − che−bh(r−rh)

)2 +
ξ3e

−bh(r−re)

(
1 − che−bh(r−rh)

)

]

Fvκ(r) = ẼvκFvκ(r), (14)

where ξ1, ξ2, ξ3, and Ẽ are defined as

ξ1 =
1

h̄2c2

[
(
μc2 + Evκ − Cs

)
V0B − κ(κ + 1)h̄2c2D2

r2
e

]

, (15)

ξ2 = − 1
h̄2c2

[(
μc2 + Evκ − Cs

)
V0A

]
, (16)

ξ3 = − 1
h̄2c2

[
κ(κ + 1)h̄2c2D1

r2
e

]

, (17)

Ẽvκ = − 1
h̄2c2

{
[
E2

vκ − μ2c4 + Cs

(
μc2 − Evκ

)]
−

(
μc2 + Evκ − Cs

) Cs

2
− κ(κ + 1)h̄2c2D0

r2
e

}

. (18)

Introducing a new variable Z = (1− che−bh(r−re))−1, and making the transformation Fvκ(Z) = Z−q(1−Z)−pfvκ(Z),
we rewrite eq. (14) as

Z(1 − Z)
d2fvκ(Z)

dZ2
+ [1 − 2q − (2 − 2q − 2p)Z]

dfvκ(Z)
dZ

−
[

(q + p)2 + (q + p) +
(

ξ1

b2
hc2

h

+
ξ2

b2
hch

)]

fvκ(Z)

+

⎡

⎣
q2 + ξ1

b2hc2
h
− ξ3

b2hch
− Ẽvκ

b2h

Z(1 − Z)
+

p2 − q2 − ξ1
b2hc2

h
+ ξ3

b2hch

(1 − Z)

⎤

⎦ fvκ(Z) = 0. (19)

Equation (19) can be reduced to a Gauss hypergeometric equation if and only if the following two equations exist:

q2 +
ξ1

b2
hc2

h

− ξ3

b2
hch

− Ẽvκ

b2
h

= 0, (20)

p2 − q2 − ξ1

b2
hc2

h

+
ξ3

b2
hch

= 0. (21)

Solving eqs. (20) and (21) gives

Ẽvκ = b2
hp2. (22)

We impose the termination condition of eqs. (20) and (21) in eq. (19) to have

Z(1 − Z)
d2fvκ(Z)

dZ2
+ [1 − 2q − (2 − 2q − 2p)Z]

dfvκ(Z)
dZ

−
[(

q + p +
1
2

+

√
1
4
− γ

)

+

(

q + p +
1
2
−

√
1
4
− γ

)]

fvκ(Z) = 0, (23)

where

γ =
ξ1

b2
hc2

h

+
ξ2

b2
hch

. (24)
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The solution of eq. (23) can be expressed in Gauss hypergeometric form as

fvκ(Z) = 2F1

(

q + p +
1
2
−

√
1
4
− γ, q + p +

1
2

+

√
1
4
− γ; 1 − 2p;Z

)

=
Γ (1 − 2p)

Γ
(
q + p + 1

2 −
√

1
4 − γ

)
Γ

(
q + p + 1

2 +
√

1
2 − γ

)

×
∞∑

n=0

Γ
(
q + p + 1

2 −
√

1
4 − γ + n

)
Γ

(
q + p + 1

2 +
√

1
4 − γ + n

)

Γ (1 − 2p + n)
Zn

n!
, (25)

where n is an integer and Γ is a Gamma function.
The wave function fvκ(Z) is likely to vanish under certain conditions if eq. (25) reduces to a polynomial of degree

n when either q + p + 1
2 −

√
1
4 − γ = −n or q + p + 1

2 +
√

1
4 − γ = −n.

Using the quantization condition, q + p + 1
2 −

√
1
4 − γ = −n, n = 0, 1, 2, 3, . . ., eq. (25) can be expressed as

fvκ(Z) = 2F1

(

−n, n + 2q + 2p + 1; 1 − 2p;
1 − (1 − 2Z)

2

)

. (26)

Therefore we can write eq. (26) as

fvκ(Z) =
Γ (2q)Γ (n)
Γ (n + 2q)

P (2q,2p)
n (1 − 2Z), (27)

where P
(2q,2p)
n (1 − 2Z) is the n-th Jacobi polynomial.

By re-transforming eq. (27) from the new variable Z to its original variable r, we obtain the wave function Fvκ(r)
in terms of the Jacobi Polymomial as

Fvκ(r) =
Γ (2q)Γ (n)
Γ (n + 2q)

(
1 − che−bh(r−re)

)(q+p) (
−che−bh(r−re)

)−p

P (2q,2p)
n

(

−1 + che−bh(r−re)

1 − che−bh(r−re)

)

. (28)

From eq. (21), we have

(p + q)(p − q) =
ξ1

b2
hc2

h

− ξ3

b2
hch

. (29)

Combining the quantization condition, (q + p + 1
2 −

√
1
4 − γ = −n) and eq. (29), we have

−(q + p) = n +
1
2
−

√
1
4
− γ, (30)

−(q − p) =
ξ3

b2hch
− ξ1

b2hc2
h

n + 1
2 −

√
1
4 − γ

. (31)

The following expressions can be obtained by solving eqs. (30) and (31):

q = −1
2

⎡

⎣n +
1
2
−

√
1
4
− γ +

ξ3
b2hch

− ξ1
b2hc2

h

n + 1
2 −

√
1
4 − γ

⎤

⎦ , (32)

p = −1
2

⎡

⎣n +
1
2
−

√
1
4
− γ −

ξ3
b2hch

− ξ1
b2hc2

h

n + 1
2 −

√
1
4 − γ

⎤

⎦ . (33)
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Table 1. Spectroscopic parameters of the molecules used in this work.

Molecule ch

bh re V0 μ/10−23 de

(Å−1) (Å) (cm−1) (g) (cm−1)

H2(X
1P+

g ) 0.170066 1.61890 0.741 38318 0.084 0.0465

N2(X
1P+

g ) −0.032325 2.78585 1.097 79885 1.171 5.737 × 10−6

O2(X
3P−

g ) 0.027262 2.59103 1.207 42041 1.337 4.760 × 10−6

Substituting eqs. (18) and (33) into eq. (22) and rearranging the terms, we obtain an expression of the form

E2
vκ−μ2c4 =

(
μc2+Evκ−Cs

) Cs

2
−

(
μc2−Evκ

)
Cs+

κ(κ+1)h̄2c2D0

r2
e

−b2
hh̄2c2

⎡

⎢
⎢
⎣

2n+1−
√

1− 4V0(μc2+Evκ−Cs)(B−chA)
b2hc2

hh̄2c2 + 4κ(κ+1)D2
b2hc2

hr2
e

4
+

(
(μc2+Evκ−Cs)V0B

b2hc2
hh̄2c2 + κ(κ+1)(chD1−D2)

b2hc2
hr2

e

)

2n+1−
√

1− 4V0(μc2+Evκ−Cs)(B−chA)
b2hc2

hh̄2c2 + 4κ(κ+1)D2
b2hc2

hr2
e

⎤

⎥
⎥
⎦

2

.

(34)

Equation (34) is the relativistic energy spectra with shifted Tietz-Wei potential model.

3 Discussion

We first of all consider the non-relativistic limit by carrying out the mapping μc2 +Evκ → 2μc2 and Evκ −μc2 → EvJ

in eq. (34). This results in exact symmetry condition (Cs = 0) of the form

EvJ =
J(J + 1)h̄2D0

2μr2
e

− b2
hh̄2

2μ

×

⎡

⎣
2v + 1 −

√
1 − 8μV0(B−chA)

b2hc2
hh̄2 + 4J(J+1)D2

b2hc2
hr2

e

4
+

(
2μV0B
b2hc2

hh̄2 + J(J+1)(chD1−D2)
b2hc2

hr2
e

)

2v + 1 −
√

1 − 8μV0(B−chA)
b2hc2

hh̄2 + 4J(J+1)D2
b2hc2

hr2
e

⎤

⎦

2

. (35)

Equation (35) is the non-relativistic rotation-vibrational energy spectra within the framework of shifted Tietz potential
energy model. Here, we have considered the case of an unaligned spin (κ = J) and also denoted Evκ by EvJ (with
n = v) in eq. (34). Our numerical computations is focused on non-relativistic ro-vibrational energy spectra with the
shifted Tietz-Wei potential, due to lack of literatures for comparison [27].

We have used the experimental data obtained from the ref. [28] as given in table 1 to calculate thero-vibrational
energies of H2(X1

∑+
g ), N2(X1

∑+
g ), and O2(X3

∑−
g ) numerically as shown in table 2, with the help of eq. (35).

The following conversion has been employed in our numerical calculation: 1 cm−1 = 1.239841875 × 10−4 eV. Our
computations have been compared with the work of Roy [27]. It is worthy to note here that de is the dissociation
energy.

The variation of energies with different parameters are also shown in figs. 1–7 for N2(X1
∑+

g ). Figure 1 indicates
that the potential well depth increases directly as the energy decreases. In fig. 2, there is a sharp decrease in energy
as the molecular bond length increase from zero to 0.1 Å; thereafter, the energy remains constant with increase in
molecular bond length for various vibrational quantum numbers. In fig. 3, maximum value of the energy is observed
when the value of A is approaching zero. As A moves away from zero, the energy begins to decrease abruptly. Figure 4
shows a steady state decrease in energy as the value of B increases. It is worthy to note here that A and B are functions
of the optimization parameter. Figure 5 shows an almost constant energy value for all values of the screening parameter.
The value of the energy here decreases as the vibrational quantum number increases. In fig. 6, there is a sharp increase in
energy as the value of bh increases for different values of vibrational quantum numbers. The variation of energy with the
optimization parameter is shown in fig. 7. As the optimization parameter increases, the energy decreases. The trend in
energy decrease strongly depends on the vibrational quantum number. As the vibrational quantum number increases,
the energy decreases more rapidly. The rotational quantum number is maintained at J = 1 throughout our plots.
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Table 2. Ro-vibrational energies for various values of v and J .

v J (EvJ − de) (eV) (EvJ − de) (eV) (EvJ − de) (eV)

H2(X
1P+

g ) N2(X
1P+

g ) O2(X
3P−

g )

Present Roy [28] Present Roy [28] Present Roy [28]

0 0 −4.749286824 −4.481579782 −9.901147431 −9.758805832 −5.210727503 −5.116322311

1 −4.782024241 −4.466980157 −9.862718246 −9.758315584 −5.243078227 −5.115978444

2 −4.805829976 −4.437915462 −9.834493625 −9.757335106 −5.266692953 −5.115290722

3 −4.829004636 −9.806761600 −5.289777766

4 −4.851875739 −9.779139125 −5.312655128

1 0 −4.749370234 −9.901161339 −5.210714723

1 −4.848448897 −9.786857362 −5.308809185

2 −4.920466391 −9.702457834 −5.379880085

3 −4.990890641 −9.619672476 −5.449473967

4 −5.060705238 −9.537353305 −5.518559120

2 0 −4.749194757 −9.901521691 −5.211026375

1 −4.915441390 −9.711872566 −5.375445371

2 −5.035669081 −9.571297577 −5.493971974

3 −5.153342476 −9.433458426 −5.610074702

4 −5.270100231 −9.296442707 −5.725367311

3 0 −4.749335694 −9.902122518 −5.211546044

1 −4.983004079 −9.637764780 −5.442987920

2 −5.151439508 −9.441013291 −5.608968968

3 −5.316360945 −9.248120058 −5.771580072

4 −5.480061313 −9.056407370 −5.933080026

4 0 −4.749570801 −9.902963820 −5.212273732

1 −5.051139358 −9.564535077 −5.511437833

2 −5.267778936 −9.311605684 −5.724871761

3 −5.479947163 −9.063657583 −5.933990771

4 −5.690589327 −8.817247640 −6.141697574

Recently, Falaye et al. [25] studied the Schrödinger equation with the shifted Tietz-Wei potential model for a set of
different diatomic molecules, using the exact quantization rule (EQR). In their studies, the eigenfunction, in addition
to the arbitrary values of n and l quantum numbers were obtained via formula method. Also, a similar potential called
Tietz-Hua potential was modified by Onate et al. [29], with the aim to evaluate Shannon entropy and information
energy under the modified Tietz-Hua potential. The shifted Tietz-Wei potential can effectively describe the vibrational
energy levels of diatomic molecules, hence our motivation for the study.
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Fig. 1. Energy variation with potential well depth for various vibrational quantum numbers for N2(X
1P+

g ).

Fig. 2. Energy variation with molecular bond length for various vibrational quantum numbers for N2(X
1P+

g ).

Fig. 3. Energy variation with A for various vibrational quantum numbers for N2(X
1P+

g ).
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Fig. 4. Energy variation with B for various vibrational quantum numbers for N2(X
1P+

g ).

Fig. 5. Energy variation with screening parameter for various vibrational quantum numbers for N2(X
1P+

g ).

Fig. 6. Energy variation with bh for various vibrational quantum numbers for N2(X
1P+

g ).
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Fig. 7. Energy variation with optimization parameter for various vibrational quantum numbers for N2(X
1P+

g ).

4 Conclusion

In this article, we have solved the Dirac equation using modified factorization method and suitable approximation to
replace the centrifugal term. We have also presented the relativistic and non-relativistic ro-vibrational energy spectra
with the shifted Tietz-Wei potential model for some diatomic molecules. Computation of energies have been done
numerically and the results discussed extensively using graphical relations. We have shown that there is an inverse
relationship between the ro-vibrational energy and the optimization parameter. This relation strongly depends on the
vibrational quantum number. Our results agree with those of Roy in ref. [27]. We found that the shifted Tietz-Wei
potential can effectively describe the vibrational energy levels of diatomic molecules. Finally, this study has many
applications in different areas of physics such as nuclear physics, particles physics and minimal length [30–33] among
others.

We wish to thank the kind referees for their useful comments and careful reading of this manuscript.
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