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Abstract. In this article, the new black hole solutions to the Einstein-power-Maxwell-dilaton gravity the-
ory have been investigated in a three-dimensional space time. The coupled scalar, electromagnetic and
gravitational field equations have been solved in a spherically symmetric geometry and it has been shown
that the dilatonic potential, as the solution to the scalar field equation, can be written in the form of a
generalized Liouville potential. Also, two new classes of charged dilatonic BTZ black hole solutions, in
the presence of power-law nonlinear electrodynamics, have been constructed out which are asymptotically
non-flat and non-AdS. The conserved and thermodynamic quantities have been calculated from geomet-
rical and thermodynamical approaches, separately. The consistency of the results of these two alternative
approaches confirms the validity of the first law of black hole thermodynamics for both of the new black
hole solutions. The black holes stability or phase transitions have been studied, making use of the canonical
ensemble method. The points of type one and type two phase transitions as well as the ranges at which the
black holes are stable have been indicated by considering the heat capacity of the new black hole solutions.

1 Introduction

There are several motivations for studying the three-dimensional exact black hole solutions as one of the interesting
subjects for gravitational studies. The first comes from the fact that lower-dimensional space times are easier to study
and three-dimensional solutions can help us to find a profound insight in the fundamental theories such as black hole
physics and the quantum theory of gravity. The other arises from the AdS/CFT correspondence which relates the
properties of a realized four-dimensional black hole with those of a quantum field theory in three dimensions [1–3].
Due to these facts and some other issues, studies of the three-dimensional manifolds and their attractive properties
are still interesting objects.

The first studies on the three-dimensional black holes were done by Banados, Teitelboim, and Zanelli (BTZ). They
showed that Einstein’s field equations admit black hole solutions in (2 + 1)-dimensional space times with the negative
cosmological constant [4,5]. Also, Chan and Mann are the first authors who investigated the charged three-dimensional
black holes in the presence of a logarithmic dilaton field [6,7]. Although, the existence of the dilatonic black holes
violates the no-hair conjecture, which originally stated that a black hole should be characterized only by its mass,
angular momentum and electric charge [8,9], it has been shown by many authors that Einstein’s gravity theory with a
coupled scalar field admits exact hairy black hole solutions in three, four- and higher-dimensional space times [10–18].

The Maxwell theory of classical electrodynamics, as one of the successful theories of the twentieth century, is in
agreement with a large amount of experimental tests but it confronted with the problem of infinite electric field and
self-energy for the pointlike charged particles. A modification of Maxwell’s theory to nonlinear theories of electrody-
namics has been proposed originally to overcome these failures. Among the various proposed modifications are: the
Born-Infeld [19–21], the logarithmic [22,23], the exponential [15,23,24], etc. As it is shown in [24], the usual theory of
electrodynamics can be considered as the special case of the various proposed nonlinear theories. Also, they are less
singular in comparison to Maxwell’s theory of classical electrodynamics. Indeed, the nonlinear theories of electrody-
namics are functions of Maxwell’s invariant FμνFμν and they are useful when the electromagnetic fields are highly
strong such that the photon-photon interactions cannot be ignored. Even if the nonlinear theories of electrodynamics
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are proposed originally to remove the singularities of the classical theory of electrodynamics, nowadays they have pro-
vided useful instruments for studying the properties of the charged black holes. Investigation of the charged black hole
solutions in the presence of Born-Infeled, logarithmic exponential, quadratic and power-law nonlinear electrodynamics
has provided some new and interesting results in the context of geometrical physics and specially in the classical theory
of black holes [15,24–31].

From the classical point of view, black holes are perfect absorbers; they do not emit anything and their physical
temperature is absolute zero. It is well known that black holes can be considered as the thermodynamical systems with
a temperature proportional to the surface gravity and entropy equal to one-fourth of the horizon area. Black holes can
emit particles from the event horizon and the radiant spectrum is a pure thermal one. Since the radiation with a pure
thermal spectrum cannot be recovered after black holes have evaporated and disappeared completely, the so-called
information loss paradox, Hawking argued that the information could be preserved if the radiation spectrum were not
a pure thermal one [32–38]. Now, thermodynamics of black holes is one of the most interesting research topics. There
are several approaches for studying the black hole remnant or phase transition. Among them are thermodynamical
geometry, canonical ensemble, grand canonical ensemble, etc. In the thermodynamical geometry, the points of phase
transition can be determined by studying the divergence points of the thermodynamical Ricci scalar (see [39] and
references therein). The thermal stability or phase transition of the black holes can be investigated by considering
the behavior of the black hole heat capacity with the black hole charge as a constant [11,12,23,30,31]. In the grand
canonical ensemble approach the determinant of the Hessian metrics enables one to study the thermal stability of the
black holes [40–42].

The main goal of this work is to obtain the novel exact black hole solutions to the Einstein-power-Maxwell-dilaton
gravity theory and to investigate the physical and thermodynamic properties of the solutions. Also, to check the
validity of the thermodynamical first law as well as to perform a thermal stability or phase transition analysis for the
new black hole solutions.

The paper is structured based on the following order. In sect. 2, by starting from a suitable three-dimensional
Einstein dilatonic action coupled to a power-law nonlinear electrodynamics, we obtained the related field equations.
We have solved the equations of the scalar, electromagnetic and tensor fields in a static spherically symmetric geometry
and showed that the dilatonic potential can be written as the linear combination of two Liouville-type potentials.
Also, two new classes of the black hole solutions, as the exact solutions to the Einstein-power-Maxwell-dilaton gravity
theory have been constructed out, which are asymptotically non-flat and non-AdS. Section 3 is devoted to the study
of the thermodynamic properties of the new charged black hole solutions. The black hole total charge and mass, as
the conserved quantities, as well as the entropy and temperature associated with the black hole horizon have been
obtained. Also, the electric potential of the black holes, relative to a reference point located at infinity relative to
the horizon, has been obtained. In addition, through a Smarr-type mass formula, we have obtained the black hole
mass as a function of the extensive parameters, charge and entropy. The intensive parameters, temperature and
electric potential, conjugated to the extensive parameters, have been calculated from thermodynamical methods. The
compatibility of the results of geometrical and thermodynamical approaches confirms the validity of the first law of
black hole thermodynamics, for both classes of the new black hole solutions. Section 4 is dedicated to the investigation
of the stability or phase transition of the black holes. Making use of the canonical ensemble method and regarding the
black hole heat capacity, with the black hole charge as a constant, a black hole stability analysis has been performed
and the points of type one and type two phase transitions as well as the ranges at which the black holes are locally
stable have been determined, precisely. Some concluding results are summarized and discussed in sect. 5.

2 The field equations and the black hole solutions

We start with the action of the three-dimensional charged black holes in the Einstein gravity theory coupled to a
dilatonic potential. It can be written in the following general form [11,12,43,44]

I = − 1
16π

∫ √
−gd3x [R− V (φ) − 2gμν∇μφ∇νφ + L(F , φ)] . (1)

Here, R is the Ricci scalar. φ is the scalar field coupled to itself via the functional form V (φ). The last term is the
coupled scalar-electrodynamic Lagrangian. Making use of the power-law nonlinear electrodynamics and in terms of
the scalar-electromagnetic coupling constant α, it can be written in the following form [43,45–47]

L(F , φ) =
(
−Fe−2αφ

)p
, (2)

where, F = FμνFμν being the Maxwell invariant. In terms of the electromagnetic potential, Aμ, Fμν is defined as
Fμν = ∂μAν − ∂νAμ and power p is known as the nonlinearity parameter. It is expected that in the case p = 1 the
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results of this theory reduce to the Einstein-Maxwell-dilaton gravity theory. Now, by varying the action (1), we get
the following field equations:

Rμν = V (φ)gμν + 2∇μφ∇νφ − gμνL(F , φ) + 2LF (F , φ) (Fgμν − FμαF α
ν ) , (3)

∇μ [LF (F , φ)Fμν ] = 0, LF (F , φ) ≡ ∂

∂F L(F , φ), (4)

4�φ =
dV (φ)

dφ
+ 2αpL(F , φ), φ = φ(r), (5)

for the gravitational, electromagnetic and scalar field equations, respectively. Assuming as a function of r, the only
non-vanishing component of the electromagnetic field is Ftr = −E(r) = h′(r), and we have F = −2E2(r) = −2(h′(r))2.
Throughout this paper, prime means derivative with respect to the argument.

We consider the following ansatz as the three-dimensional spherically symmetric solution to the gravitational field
equations:

ds2 = −Ψ(r)dt2 +
1

Ψ(r)
dr2 + r2R2(r)dθ2. (6)

Making use of (6) in (3), we arrived at the following explicit form of the gravitational equations:

ett ≡ Ψ ′′(r) +
(

1
r

+
R′(r)
R(r)

)
Ψ ′(r) + 2V (φ) + 2(p − 1)L(F , φ) = 0, (7)

err ≡ ett + 2Ψ(r)
(

R′′(r)
R(r)

+
2R′(r)
rR(r)

+ 2φ′2(r)
)

= 0, (8)

eθθ ≡
(

1
r

+
R′(r)
R(r)

)
Ψ ′(r) +

(
R′′(r)
R(r)

+
2R′(r)
rR(r)

)
Ψ(r) + V (φ) + (2p − 1)L(F , φ) = 0, (9)

for tt, rr and θθ components, respectively. Noting eqs. (7) and (8) we obtain

R′′(r)
R(r)

+
2
r

R′(r)
R(r)

+ 2φ′2(r) = 0. (10)

The differential equation (10) can be written in the following form:

2
r

d
dr

ln R(r) +
d2

dr2
ln R(r) +

(
d
dr

ln R(r)
)2

+ 2φ′2(r) = 0. (11)

From eq. (11), one can argue that R(r) must be an exponential function of φ(r). Therefore, we can write R(r) = e2βφ(r)

in eq. (11), and show that φ = φ(r) satisfies the following differential equation:

βφ′′ + (1 + 2β2)φ′2 +
2β

r
φ′ = 0. (12)

It is easy to write the solution of eq. (12) in terms of a positive constant b as

φ(r) = γ ln
(

b

r

)
, with γ = β(1 + 2β2)−1. (13)

Here, we are interested in studying the effects of the exponential solution (i.e., R(r) = e2βφ(r)) with both β = α and
β �= α on the thermodynamics behavior of the three-dimensional nonlinearly charged dilatonic black hole solutions. The
cases of β = α and β �= α, with Maxwell’s electromagnetic theory, have been considered in [11] and [12], respectively.
Here, we are interested in extending this idea to the charged black hole solutions in the presence of power-law nonlinear
electrodynamics. To do so, we proceed to solve the field equations, making use of the scalar fields given by eq. (13).

Regarding these solutions together with eqs. (4) and (6), we have

[1 + 2γ(αp − β)]r2γ(αp−β)[h′(r)]2p−1 + (2p − 1)r1+2γ(αp−β)h′′(r)[h′(r)]2p−2 = 0, p �= 1
2

.

The solution to the above differential equation can be written in the following form:
⎧⎪⎨
⎪⎩

h(r) = − q(2p − 1)
2p − 2 − A

r1− A+1
2p−1 , p �= 1

2
,

Ftr(r) = q r−
1+A
2p−1 ,

(14)
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where A = 2γ(αp − β) and q is an integration constant related to the total electric charge of the black hole. It will
be calculated in the following section. It must be noted that in order for the potential function h(r) to be physically
reasonable (i.e. zero at infinity), the statement 1 − A+1

2p−1 must be negative.
Now, eq. (9) can be rewritten as

Ψ ′(r) − 2βγ

r
Ψ(r) + r(1 + 2β2)[V (φ) + (2p − 1)L(F , φ)] = 0. (15)

For solving this equation for the metric function Ψ(r), we need to calculate the functional form of V (φ(r)) as the
function of the radial coordinate. For this purpose we return to the scalar field equation (5). It can be written as

dV (φ)
dφ

+
4γ

r

(
Ψ ′(r) − 2βγ

r
Ψ(r)

)
+ 2αpL(F , φ) = 0. (16)

The combination of the coupled differential equations (15) and (16) leads to the following first-order differential
equation for the scalar potential

dV (φ)
dφ

− 4βV (φ) + [2β + p(α − 4β)]2p+1F 2p
tr e−2αpφ = 0. (17)

The solution to the differential (17) can be written as

V (φ) = 2Λe4βφ + 2Λ0e
4β0φ, (18)

where

Λ0 =
2p−1q2p(2p − 1)Υ1

b
2p(A+1)

2p−1

, with Υ1 =
β(4βp − αp − 2β)

p(1 + αβ − 4β2) + 2β2
and β0 =

p(1 + αβ)
2(2p − 1)β

. (19)

It is notable that the solution given by eq. (18) can be considered as the generalized form of the Liouville scalar
potential. Also, it must be noted that in the absence of dilatonic field φ, we have V (φ = 0) = 2Λ = −2�−2 and the
action (1) reduces to that of Einstein-Λ-Maxwell theory [48,49].

Now, making use of eqs. (14), (15) and (18) the metric function Ψ(r) can be obtained as

Ψ(r) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−mr2/3 + 3

⎡
⎣2(b2r)

2
3

�2
ln

( r

L

)
− 3q2p(2p − 1)2

b2(B−1)
Υ (β = 1)

(
b

r

) 2(αp+3−5p)
3(2p−1)

⎤
⎦ , for β = 1,

−mr2βγ − (1 + 2β2)2
[

Λb2

1 − β2

(
b

r

)4βγ−2

+
q2p(2p − 1)2

b2(B−1)
Υ (β)

(
b

r

)2β0γ−2
]

, for β �= 1,

(20)

where L is a dimensional constant and

B =
p(1 + A)
2p − 1

, B =
p(1 + 2αp)
3(2p − 1)

,

Υ (β) = 2p−1 (1 + Υ1)Υ2, with Υ2 =
[
(2p − 1)(1 + β2) − p(1 + αβ)

]−1
. (21)

Note that in the case p = 1 the metric function (20) is compatible with that of ref. [12]. The plots of metric functions
Ψ(r), presented in eq. (20), have been shown in figs. 1 and 3 and figs. 2 and 4 for β = α and β �= α cases, respectively.
From the curves of figs. 1–4, it is understood that, for the suitably fixed parameters, the metric functions Ψ(r) can
produce two horizon, extreme and naked singularity black holes for both of β = 1 and β �= 1 cases.

Now, we investigate the space time singularities regarding the Ricci and Kretschmann scalars. They can be written
in the following forms:

R = 4γ2(1 + 4β2)
Ψ(r)
r2

− 2
1 + 2β2

Ψ ′(r)
r

− Ψ ′′(r), (22)

RμνρλRμνρλ = 16γ3

(
Ψ(r)
r2

)2

− 8β2

(1 + 2β2)3
Ψ(r)Ψ ′(r)

r3
+

2
(1 + 2β2)2

(
Ψ ′(r)

r

)2

+ (Ψ ′′)2. (23)

Making use of the metric function (20) in eqs. (22) and (23), one can show that the Ricci and Kretschmann scalars
are finite for finite values of r. Also, it is easy to show that

lim
r−→∞

R = 0, and lim
r−→0

R = ∞,

lim
r−→∞

RμνρλRμνρλ = 0, and lim
r−→0

RμνρλRμνρλ = ∞,
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Fig. 1. Ψ(r) versus r for M = 0.5, Q = 0.5, � = 1, L = 1 and β = α = 1, eq. (20). Left: b = 2 and p = 0.585, 0.5925, 0.6, 0.61
for black, blue, red and brown curves, respectively. Right: p = 0.7 and b = 1.56, 1.68, 1.82, 1.95 for black, blue, red and brown
curves, respectively.

Fig. 2. Ψ(r) versus r for M = 0.5, Q = 1, � = 1, L = 1, β = 1 and α �= β, eq. (20). Left: p = 0.8, b = 1.2 and α = 2.35, 2.396,
2.45, 2.5 for black, blue, red and green curves, respectively. Middle: b = 1.2, α = 2.5 and p = 0.8, 0.825, 0.85, 0.875 for black,
blue, red and green curves, respectively. Right: p = 0.8, α = 2.5 and b = 1.19, 1.22, 1.253, 1.29 for black, blue, red and green
curves, respectively.

Fig. 3. Ψ(r) versus r for M = 2, Q = 0.6, � = 1, β �= 1 and β = α, eq. (20). Left: b = 1.5, p = 0.8 and α = 0.6, 0.635, 0.6615,
0.685 for black, blue, red and brown curves, respectively. Middle: b = 1.5, α = 0.73 and p = 0.69, 0.72, 0.744, 0.765 for black,
blue, red and brown curves, respectively. Right: p = 0.7, α = 0.76 and b = 1.37, 1.42, 1.48, 1.55 for black, blue, red and brown
curves, respectively.

from which, one can conclude that there is an essential singularity located at r = 0 and the asymptotic behavior of
the solutions is neither flat nor AdS. Therefore, the inclusion of the scalar field modifies the asymptotic behavior of
the solutions.

Up to now, we have obtained two new classes of static and spherically symmetric exact solutions to the coupled
field equations of the Einstein-dilaton gravity theory presented in eq. (20). It must be noted that the solutions can be
interpreted as black holes provided that the two following conditions are satisfied, simultaneously: 1) The existence of
the singularity which could be determined by divergencies of the curvature scalars as presented in eqs. (22) and (23).
2) The appearance of at least one event horizon which has been illustrated by figs. 1–4. Therefore, our solutions are
certainly black holes. Also, it is worth noting that the dilatonic black hole solutions, we just obtained, are non-singular
and they are interesting to study because they can provide a deeper insight into their QFT counterpart.
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Fig. 4. Ψ(r) versus r for M = 2.5, Q = 1.25, � = 1, β �= 1 and β �= α, eq. (20). Top left: b = 2, p = 1.2, β = 0.5 and α = 1.985,
2.025, 2.07, 2.12 for black, blue, red and brown curves, respectively. Top right: b = 2, p = 1.2, α = 2.1 and β = 0.49, 0.52, 0.542,
0.56 for black, blue, red and brown curves, respectively. Bottom left: b = 2, α = 2, β = 0.5 and p = 1.135, 1.16, 1.184, 1.21 for
black, blue, red and brown curves, respectively. Bottom right: β = 0.5, p = 1.2, α = 2 and b = 1.84, 1.9, 1.96, 2.03 for black,
blue, red and brown curves, respectively.

3 Black hole thermodynamics

The aim of this section is to check the validity of the first law of black hole thermodynamics for both of the new
charged dilatonic BTZ black holes introduced here. For this purpose, we calculate the conserved and thermodynamical
quantities related to either of the black hole solutions. The black hole entropy as a pure geometrical quantity can be
obtained from the well-known entropy-area law. It is equal to one quarter of the black hole surface area and for our
new black hole solutions it can be written in the following form

S =
A

4
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

πr+

2

(
b

r+

)2/3

, for β = 1,

πr+

2

(
b

r+

)2βγ

, for β �= 1.

(24)

which reduces to the entropy relation of the BTZ black holes in the absence of dilatonic parameters (β = 0 = γ).
Indeed, the area law is a nearly universal law and dilatonic black holes are not exceptions. It is well-known that the
entropy-area law is a direct result of the general relativity on one hand and, as proved by Jacobson, Einstein’s field
equations can be derived by assuming the universality of the area law, on the other hand [50].

The other thermodynamical quantity which can be calculated geometrically is the Hawking temperature associated
with the black hole horizon r = r+. In terms of the surface gravity κ it can be written as T = κ

2π , where

κ =

√
−1

2
(∇μχν) (∇μχν).

The four-vector χν is known as the null killing vector of the horizon. Taking χν = (−1, 0, 0, 0), we have χν =
(Ψ(r+), 0, 0, 0) and hence ∇μχν∇μχν = − 1

2 (dΨ(r)
dr )r=r+ . Therefore, we have T = 1

4π (dΨ(r)
dr )r=r+ and noting eq. (20)
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Fig. 5. T and (∂2M/∂S2)Q versus r+, for � = 1, Q = 0.5 and β = α = 1, eqs. (26) and (35). Left: b = 2.8, (T , p = 0.6, 0.62
for black, blue curves, respectively) and (2 (∂2M/∂S2)Q, p = 0.6, 0.62 for red and brown curves, respectively). Right: p = 0.65,
(T , b = 2.8, 3 for black, blue curves, respectively) and (10 (∂2M/∂S2)Q, b = 2.8, 3 for red and brown curves, respectively).

Fig. 6. T and (∂2M/∂S2)Q versus r+, for � = 1, Q = 0.5 and β = 1, α �= β, eqs. (26) and (35). Left: p = 0.8, b = 2, (T ,
α = 2.5, 5 for black, blue curves, respectively) and (4 (∂2M/∂S2)Q, α = 2.5, 5 for red and brown curves, respectively). Middle:
b = 2, α = 2.5 (T , p = 0.8, 0.9 for black, blue curves, respectively) and (4 (∂2M/∂S2)Q, p = 0.8, 0.9 for red and brown curves,
respectively). Right: p = 0.8, α = 2.5 (T , b = 1.7, 2 for black, blue curves, respectively) and (4 (∂2M/∂S2)Q, b = 1.7, 2 for red
and brown curves, respectively).

one can obtain the black hole temperature as follows:

T =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

3
2πr+

⎡
⎣b2

�2

(r+

b

)2/3

+
q2p(2p − 1)

b2(B−1)
(αp + 2 − 3p)Υ (β = 1)

(
b

r+

) 2(αp+3−5p)
3(2p−1)

⎤
⎦ , for β = 1,

1 + 2β2

2πr+

[
b2

�2

(
b

r+

)4βγ−2

+
q2p(2p − 1)2

b2(B−1)
(2β0β − 1 − β2)Υ (β)

(
b

r+

)4β0γ−2
]

, for β �= 1.

(25)

The black hole temperature (25) reduces to that of ref. [12], if one lets p = 1. Note that we have used the relation
Ψ(r+) = 0 for eliminating the mass parameter m from the obtained equations. Also, it must be noted that extreme
black holes occur if q and r+ are chosen such that T = 0. Now, making use of eq. (25) we can obtain the horizon
radius of the extreme black holes in the following forms:

rext =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

b

[
q2p�2(2p − 1)

b2B Υ (β = 1) (3p − αp − 2)
] 3(2p−1)

2(αp+2−3p)

, for β = 1,

b

[
q2p�2(2p − 1)2

b2B
(1 + β2 − 2β0β)Υ (β)

] 1
4(β0−β)γ

, for β �= 1.

(26)

In order to investigate the effects of dilatonic and nonlinearity parameters (i.e. α, β, b and p) on the horizon temperature
of the black holes, the plots of black hole temperature versus horizon radius are shown in figs. 5–8 for both of α = β
and α �= β cases, separately. They show that, for the properly fixed parameters, the physical black holes with positive
temperature are those for which r+ > rext and un-physical black holes, having negative temperature, occur if r+ < rext.
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Fig. 7. T and (∂2M/∂S2)Q versus r+, for � = 1, Q = 0.5 and β �= 1, α = β, eqs. (26) and (35). Left: p = 0.6, b = 2, (T ,
α = 2, 2.2 for black, blue curves, respectively) and ((∂2M/∂S2)Q, α = 2, 2.2 for red and brown curves, respectively). Middle:
b = 2, α = 2 (T , p = 0.6, 0.62 for black, blue curves, respectively) and ((∂2M/∂S2)Q, p = 0.6, 0.62 for red and brown curves,
respectively). Right: p = 0.6, α = 2 (T , b = 1.6, 1.8 for black, blue curves, respectively) and ((∂2M/∂S2)Q, b = 1.6, 1.8 for red
and brown curves, respectively).

Fig. 8. T and (∂2M/∂S2)Q versus r+, for � = 1, Q = 0.5 and β �= 1, α �= β, eqs. (26) and (35). Top left: p = 0.8, b = 2, β = 1.2
(0.1T , α = 2, 2.5 for black, blue curves, respectively) and (10 (∂2M/∂S2)Q, α = 2, 2.5 for red and brown curves, respectively).
Top right: p = 0.8, b = 2, α = 2 (T , β = 1.2, 1.3 for black, blue curves, respectively) and (10 (∂2M/∂S2)Q, β = 1.2, 1.3 for red
and brown curves, respectively). Bottom left: b = 2, α = 2, β = 1.2 (T , p = 0.8, 0.7 for black, blue curves, respectively) and
(10 (∂2M/∂S2)Q, p = 0.8, 0.7 for red and brown curves, respectively). Bottom right: p = 0.8, α = 2, β = 1.2 (T , b = 1.8, 2 for
black, blue curves, respectively) and (10 (∂2M/∂S2)Q, b = 1.8, 2 for red and brown curves, respectively).

The electric potential Φ of black holes, measured by an observer located at infinity with respect to the horizon,
can be calculated making use of the following standard relation [51–58]:

Φ = Aμχμ|reference − Aμχμ|r=r+ , (27)

where χ = C∂t is the null generator of the horizon and C is an arbitrary constant to be determined [45–47]. Noting
eqs. (14) and (27) we obtained the black hole’s electric potential on the horizon as

Φ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3Cq(2p − 1)
2(αp − 3p + 2)

r
1− 2αp+1

3(2p−1)
+ , for β = 1,

Cq(2p − 1)
A + 2 − 2p

r
1− A+1

2p−1
+ , for β �= 1.

(28)
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The conserved electric charge of the black holes can be obtained by calculating the total electric flux measured by an
observer located at infinity with respect to the horizon (i.e., r → ∞) [52–58]. With this issue in mind and making use
of eq. (14) together with the help of Gauss’s law, after some simple calculations, we arrived at

Q =

⎧⎪⎨
⎪⎩

p 2p−2q2p−1 b
2
3 (1−αp), for β = 1,

p 2p−2

bA
q2p−1, for β �= 1,

(29)

which reduces to that of charged BTZ black holes in the absence of the dilatonic field. Also, it is compatible with the
results of our previous work in the case p = 1 [12].

The other conserved quantity to be calculated is the black hole mass. As mentioned before, it can be obtained
in terms of the mass parameter m. It is a matter of calculation to show that the total mass of the new nonlinearly
charged dilatonic BTZ black holes is [11,12,59,60]

M =

⎧⎪⎨
⎪⎩

m

24
b2/3, for β = 1,

m γ

8β
b2βγ , for β �= 1,

(30)

which is compatible with the mass of charged BTZ black holes when the dilatonic potential disappears.
Now, we are in the position to investigate the consistency of these quantities with the thermodynamical first law.

From eqs. (20), (24) and (29), we can obtain the black hole mass as the function of extensive parameters S and Q. To
do so, we use the relation Ψ(r+) = 0. The Smarr-type mass formula for both of the new black holes can be obtained as

M(S,Q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
4

⎡
⎣b2

�2
ln

(
r+(S)

L

)
− 3q2p(2p − 1)2

2b2(B−1)
Υ (β = 1)

(
b

r+(S)

) 2(αp+3−5p)
3(2p−1)

⎤
⎦ , for β = 1,

− β

8γ

[
Λb2

1 − β2

(
b

r+(S)

)4βγ−2

+
q2p(2p − 1)2

b2(B−1)
Υ (β)

(
b

r+(S)

)4β0γ−2
]

, for β �= 1.

(31)

It is a matter of calculation to show that the intensive parameters T and Φ, conjugate to the black hole entropy and
charge, satisfy the following relations

(
∂M

∂S

)
Q

= T and
(

∂M

∂Q

)
S

= Φ, (32)

provided that C be chosen as [45–47]

C = −2−p(1 + 2β2)(A + 2 − 2p)Υ. (33)

Therefore, we proved that the first law of black hole thermodynamics is valid, for both classes of the new nonlinearly
charged dilatonic BTZ black holes, in the following form:

dM(S,Q) = TdS + ΦdQ. (34)

Here, S and Q are known as the thermodynamical extensive parameters and T and Φ are intensive parameters
conjugated to S and Q, respectively. Equation (34) shows that, although the conserved and thermodynamical quantities
are affected by dilaton fields, the first law of black hole thermodynamics remains valid for the black hole solutions,
obtained here.

4 Black hole solutions in the canonical ensemble

In this section, we investigate the thermal stability or phase transition of our new the black hole solutions, making
use of the canonical ensemble method. To do so, we need to calculate the black hole heat capacity with the black hole
charge as a constant. It is defined in the following form:

CQ = T

(
∂S

∂T

)
Q

= T

(
∂2M

∂S2

)−1

Q

, (35)
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where, the last step in eq. (35) comes from the fact that T = (∂M/∂S)Q. From the thermodynamical point of view, the
positivity of the black hole heat capacity CQ or equivalently the positivity of (∂S/∂T )Q or (∂2M/∂S2)Q is sufficient to
ensure the local stability of the physical black holes. The unstable black holes undergo phase transitions to be stabilized.
Type one phase transition takes place at the points where the black hole heat capacity vanishes. On the other hand,
an unstable black hole undergoes type two phase transition at the divergent points of the black hole heat capacity,
where the denominator of the heat capacity vanishes [51–58]. Regarding the above-mentioned points, we proceed to
perform a thermal stability or phase transition analysis for both of the new black hole solutions we just obtained.

Making use of eq. (31), the denominator of the black hole heat capacity can be calculated as

(
∂2M

∂S2

)
Q

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−2
π2�2

(
b

r+

) 2
3

⎡
⎣1 − 4p − 2αp − 3

(αp + 2 − 3p)−1

�2q2p

b2B Υ (β = 1)
(

b

r+

) 2(αp+2−3p)
3(2p−1)

⎤
⎦ , for β = 1,

1 − 4β4

π2�2

(
b

r+

)2βγ
[
1 − �2q2p(2p − 1)2

(1 − 2β2)b2B

4β0β − 1 − 2β2

(2β0β − 1 − β2)−1
Υ (β)

(
b

r+

)4(β0−β)γ
]

, for β �= 1.

(36)

It is understood from eq. (36) that the denominator of the black hole heat capacity vanishes at the point

r+ ≡ r0 = b

[
4p − 2αp − 3

(αp + 2 − 3p)−1

�2q2p

b2B Υ (β = 1)
] 3(2p−1)

2(αp+2−3p)

, for β = 1. (37)

The plots of T and (∂2M/∂S2)Q versus r+, in terms of different values of dilatonic and nonlinearity parameters, are
shown in figs. 5 and 6 for α = β = 1 and α �= β = 1 cases, respectively. They show that the heat capacity of the black
holes with the size satisfying the condition given by eq. (37), diverges and they undergo type two phase transition.
Also, the black hole heat capacity vanishes at the r+ = rext (eq. (26)) and the type one phase transition takes place.
In addition, for the black holes with the horizon radius in the range rext < r+ < r0 both the temperature and the
denominator of the heat capacity are positive. As a result, black holes with the horizon radius in this range are locally
stable.

On the other hand, the nonlinearly charged dilatonic BTZ black holes are unstable and undergo type two phase
transition at the real root of eq. (36), which is located at

r+ ≡ r1 = b

[
�2q2p(2p − 1)2

(1 − 2β2)b2B

4β0β − 1 − 2β2

(2β0β − 1 − β2)−1
Υ (β)

] 1
4(β0−β)γ

, for β �= 1. (38)

Also, type one phase transition takes place at the point r+ = rext, given by eq. (26), where the black hole heat capacity
vanishes. The plots of T and (∂2M/∂S2)Q versus r+ are shown in figs. 7 and 8 for α = β �= 1 and α �= β �= 1 cases,
respectively. They show that the black holes with the horizon radius in the range rext < r+ < r1 have positive heat
capacity and are thermally stable.

All of the plots shown in figs. 5–8 correspond to the case in which both rext and r0 (r1) exist, simultaneously. A
notable point, which is not shown in figs. 5–8, is that there is an interesting case corresponding to the especial choice
of the dilatonic and nonlinearity parameters for which rext exist but the denominator of the black hole heat capacity
is positive and r0 (r1) does not. In this case no type two phase transition takes place. The r+ = rext is the only point
of type one phase transition and both of the new black hole solutions are stable for r+ > rext.

5 Conclusion

In this work we have investigated the new nonlinearly charged dilatonic BTZ black hole solutions, as the exact solutions
to the to the field equations of the Einstein-power-Maxwell-dilaton gravity theory. By varying the proper action of
the theory, we obtained the explicit form of the coupled scalar, electromagnetic and gravitational field equations. By
introducing a static and spherically symmetric geometry, we found that the solution of the scalar field equation can
be written in the form of a generalized Liouville dilatonic potential. Also, two new classes of charged dilatonic BTZ
black hole solutions, as the exact solutions to the gravitational field equations, have been obtained in the presence
of the power-Maxwell invariant as the nonlinear theory of electrodynamics. Regarding the Ricci and Kretschmann
scalars, we found that there is a point of essential singularity located at the origin. Also, the asymptotic behavior of
the solutions is neither flat nor AdS. The existence of the real roots of the metric functions together with the singular
Ricci scalars is in favor of the black hole interpretation of the solutions. As it is shown in figs. 1–4, for both of the
new black hole solutions the two horizon, extreme and naked singularity black holes can occur, if the parameters of
the theory are fixed suitably.
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Next, we studied the thermodynamics of the new black hole solutions. We have obtained the conserved charge and
mass of the black holes. Also, by using the geometrical methods, we have calculated the temperature, entropy and
electric potential for both of the new black hole solutions. We showed that the extreme, physical and un-physical black
holes can occur if r+ = rext, r+ > rext and r+ < rext, respectively (eq. (26)). Through a Smarr-type mass formula, we
have obtained the black hole mass as the function of the thermodynamical extensive parameters S and Q, from which
we have obtained the intensive parameters T and Φ. Compatibility of the results obtained from thermodynamical and
geometrical approaches proves the validity of the thermodynamical first law for both of the new black hole solutions.

At the final stage, from the canonical ensemble point of view, we have analyzed the thermal stability or phase
transition for both of the new black hole solutions. Regarding the black hole heat capacity, with the black hole charge
as a constant, we found that two following possibilities are considerable, separately. i) If the dilatonic and nonlinearity
parameters are fixed such that both rext and r0(r1) exist simultaneously, the black holes undergo type one phase
transition at r+ = rext where the black hole heat capacity vanishes. There is a point of type two phase transition
located at r+ = r0(r1) at which the black hole heat capacity diverges. The physical black holes with the horizon radius
in the range rext < r+ < r0(r1) are locally stable (figs. 5–8). ii) If the parameters are chosen such that rext exist
but the denominator of the heat capacity is positive everywhere and r0(r1) does not exist, there is no type two phase
transition. The unstable black holes undergo type one phase transition at r+ = rext and the physical black holes with
the horizon radius in the range r+ > rext are locally stable. Note that this case is not shown in the figures.

Studies of the dynamical stability and finding the quasi-normal modes of these novel dilatonic charged BTZ black
holes are interesting subjects for future works.

The author acknowledges the Razi University Research Council for officially supporting of this work.
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