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Abstract. This work is focused on the study of analytic anisotropic solutions to Einstein’s field equations,
describing spherically symmetric and static configurations by way of the gravitational decoupling through
the method of minimal geometric deformation (MGD). For this we apply MGD to Heintzmann’s solution
obtaining two new analytic and well behaved anisotropic solutions, in which all their parameters such as
the effective density, the effective radial and tangential pressure, as well as radial and tangential sound
speed, fulfill each of the requirements for the physical acceptability available in the literature.

1 Introduction

In recent years great interest in the anisotropic solutions of Einstein’s equations has emerged. This is so because the
anisotropic scenarios describe some relevant astrophysical phenomena. Harko and Mak [1] showed some examples of
this: nuclear matter may be anisotropic in certain high density ranges, or from the point of view of the Newtonian
gravity, spherical galaxies can have anisotropic matter distribution. Harko and Mak in refs. [1, 2] argue that the
interior of a star must fulfill the general physical conditions that describe a well behaved isotropic or anisotropic
solution. Due to the later arguments, several models of anisotropic compact objects and its criteria have been studied
in the literature [3–9].

According to the above-mentioned and other arguments, in recent years there has been a great interest in finding
new anisotropic analytic solutions of Einstein equations, but this is not an easy task due the highly nonlinear behaviour
of these equations (some examples of how to generate anisotropic solutions are exposed at refs. [10–12]). To address
this problem, Ovalle [13], proposed a method called Minimal Geometric Deformation (MGD), which leads to finding
new analytic anisotropic solutions of Einstein equations for spherically symmetric and static configurations. MGD was
initially employed for the study of solutions at the braneworld scenarios [14,15] and then this was spread to the study
of black hole solutions [16,17] (other applications can be seen in refs. [18–21]).

In this method the isotropic energy momentum tensor T̄μν is deformed by an additional source Θμν whose coupling
is proportional to the constant α, and causes anisotropic effects on the self-gravitating system. This additional source
can contain new fields, like scalar, vector and tensor fields [22]. However, in this work the source Θμν will represent a
generic gravitational source. Then the energy momentum tensor reads:

Tμν �→ T̄μν + αΘμν , (1)

with the corresponding conservation equation
∇νTμν = 0. (2)

Ovalle at ref. [22] argue “To summarise, the MGD-decoupling amounts to the following procedure: given two grav-
itational sources A and B, standard Einstein’s equations are first solved for A, and then a simpler set of quasi-Einstein
equations are solved for B. Finally, the two solutions can be combined in order to derive the complete solution for the
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total system”. The remarkable novelty of this method is that: one isotropic solution A is deformed and it produces a
combined anisotropic solution A∪B that preserves spherical symmetry. Due to the above explanation it is very inter-
esting to apply MGD to an isotropic well behaved and spherically symmetric solution and then analyze the behavior
of the new anisotropic solution (but now with an anisotropic criterion). Regarding this, in reference [23] one hundred
twenty seven isotropic solutions were analyzed where only 9 of them were well behaved from the physical point of view.

One interesting isotropic spherically symmetric solution is the Heintzmann’s space-time [24]. In ref. [23] it was
shown that this solution is well behaved for an arbitrary election of the constants (specifically the special case in which
the constants a, c and A have magnitude equal to 1 in eq. (25)). In this work we will show that this solution is still well
behaved for the values of mass and radii of physical interest described below. These values yield to values of constants
a and c that are no longer restricted to be equal to one. Heintzmann’s solution has been extended to an anisotropic
charged case in refs. [25,26] also showing that it is a well behaved solution.

Furthermore, in this work we will analyze the minimal geometric deformation of the isotropic Heintzmann’s solution
and we will get two new anisotropic solutions. The matching conditions are obtained with the Schwarzschild exterior
solution and then we will study the physical admissibility of these new solutions. For this, we will use realistic values
of radii and mass that correspond to the starts 4U 1538-52, RXJ 1856-37 and Vela X-1 [8, 9], again these values of
mass and radii will lead to values of the constants a and c that are no longer restricted to be equal to one.

This work is organized as follows: Section 2 presents the Einstein equations for the energy momentum tensor (1);
in sect. 3 we explain the MGD method in more detail; in sect. 4 we study the physical acceptability of the isotropic
Heintzmann’s solution for typical values of radius and mass of some compact objects. Section 5 is devoted to the
application of the MGD method to the Heintzmann’s solution, showing two new anisotropic physically acceptable
solutions; finally, sect. 6 summarizes the essentials of this work and exposes some conclusions.

2 Einstein’s field equations for multiple sources

Starting with the standard Einstein’s equations:

Gμν ≡ Rμν − 1
2
Rgμν = −κ2Tμν , (3)

where Tμν is given by (1) and T̄μν corresponds to a perfect fluid,

T̄μν = (ρ̄ + p̄)uμ uν − p̄ gμν , (4)

being uμ the four-velocity, ρ̄ and p̄ the density and the isotropic pressure, respectively.
In Schwarzschild coordinates the spherically symmetric line element reads:

ds2 = eν(r) dt2 − eλ(r) dr2 − r2
(
dθ2 + sin2 θ dφ2

)
, (5)

where ν = ν(r) and λ = λ(r) are purely radial functions and r ranging from r = 0 (the object center) to r = R (the
object surface). The line element (5) satisfy the Einstein’s equation (3), which leads to:

κ2
(
ρ̄ + α Θ0

0

)
=

1
r2

− e−λ

(
1
r2

− λ′

r

)
, (6)

κ2
(
p̄ − α Θ1

1

)
= − 1

r2
+ e−λ

(
1
r2

+
ν′

r

)
, (7)

κ2
(
p̄ − α Θ2

2

)
=

e−λ

4

(
2ν′′ + ν′2 − λ′ν′ + 2

ν′ − λ′

r

)
. (8)

The conservation equation (2), which is a linear combination of eqs. (6)–(8), yields:

p̄′ +
ν′

2
(ρ̄ + p̄) − α(Θ1

1)
′ +

ν′

2
α(Θ0

0 − Θ1
1) +

2α

r
(Θ2

2 − Θ1
1) = 0. (9)

Here the prime means differentiation respect to r. So, the perfect fluid is recovered in the limit α → 0.
In order to simplify the above system, we identify the effective density, the effective radial and tangential pressures as

ρ = ρ̄ + αΘ0
0, (10)

pr = p̄ − αΘ1
1, (11)

pt = p̄ − αΘ2
2, (12)

where in the extra fluid Θ1
1 �= Θ2

2 = Θ3
3. So the total anisotropy introduced by the generic source Θμν is given by

Π ≡ pt − pr = α
(
Θ1

1 − Θ2
2

)
. (13)
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3 Minimal geometric deformation method

This method for spherically symmetric distributions was proposed in refs. [13, 22]. We will begin by considering a
solution to eqs. (6)–(8) with α = 0, namely, a GR perfect fluid solution {η, μ, ρ̄, p̄}, where η and μ are the corresponding
metric functions:

ds2 = eη(r)dt2 − μ(r)−1dr2 − r2dΩ2. (14)

Turning on the parameter α we can see the effects of the source Θμν on the perfect fluid solution {η, μ ρ̄, p̄}. These
effects can be encoded in the geometric deformation undergone by the perfect fluid geometry {η, μ} in eq. (14) as
follows:

μ(r) �→ e−λ(r) = μ(r) + αf∗(r), (15)
η(r) �→ ν(r) = η(r); (16)

it means that only the radial component of the line element (14) is deformed, where f∗(r) is the corresponding
deformation to the radial part. Upon replacing eqs. (15) and (16) in the Einstein equations (6)–(8), the system splits
into two sets of equations:

1) The standard Einstein equations for a perfect fluid (with α = 0), where η(r) = ν(r),

κ2ρ̄ =
1
r2

− μ

r2
− μ′

r
, (17)

κ2p̄ = − 1
r2

+ μ

(
1
r2

+
ν′

r

)
, (18)

κ2p̄ =
μ

4

(
2ν′′ + ν′2 + 2

ν′

r

)
+

μ′

4

(
ν′ +

2
r

)
, (19)

along with the conservation equation (2) with α = 0, namely, ∇ν T̄μν , yielding

p̄′ +
ν′

2
(ρ̄ + p̄) = 0, (20)

which is a linear combination of eqs. (17)–(19).
2) The terms of order α give rise to the following quasi-Einstein equations [13, 22], which include the source Θμν :

κ2Θ0
0 = −f∗

r2
− f∗′

r
, (21)

κ2Θ1
1 = −f∗

(
1
r2

+
ν′

r

)
, (22)

κ2Θ2
2 = −f∗

4

(
2ν′′ + ν′2 + 2

ν′

r

)
− f∗′

4

(
ν′ +

2
r

)
. (23)

The conservation equation (2) then yields to ∇νΘμν = 0, which explicitly reads:

(
Θ1

1

)′ − ν′

2
(
Θ0

0 − Θ1
1

)
− 2

r

(
Θ2

2 − Θ1
1

)
= 0. (24)

It is worth stressing that eqs. (20) and (24) imply that there is no exchange of energy momentum between the
perfect fluid and the extra source Θμ

ν . So there is only purely gravitational interaction.

4 Heintzmann’s solution

In this section we will analyze if the isotropic Heintzmann’s solution [24] is still well behaved for our physical interest
parameters of mass and radii, these correspond to the starts 4U 1538-52, RXJ 1856-37 and Vela X-1 [8,9]. In ref. [23]
this solution is called as Heint IIa. The line element is

ds2 = A2
(
1 + ar2

)3
dt2 −

(
1 − 3ar2

2
1 + c(1 + 4ar2)−1/2

1 + ar2

)−1

dr2 − r2dΩ2, (25)
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where a, c and A are constant parameters. The pressure p̄ and the energy density ρ̄ are

p̄(r) = −3a[(3ar2 − 3)(1 + 4ar2)1/2 + c(1 + 7ar2)]
2κ2(4ar2 + 1)1/2(1 + ar2)2

, (26)

ρ̄(r) =
3a[(4a2r4 + 13ar2 + 3)(1 + 4ar2)1/2 + 3c + 9acr2]

2κ2(4ar2 + 1)1/2(1 + ar2)2
. (27)

4.1 Coupling with Schwarzschild exterior solution

We will present the conditions for the coupling of isotropic solution (25) with the Schwarzschild vacuum exterior
solution:

ds2 =
(

1 − 2M̄

r

)
dt2 −

(
1 − 2M̄

r

)−1

dr2 − r2dΩ2. (28)

For this, we will take into account the Israel-Darmois matching conditions. At the stellar surface Σ defined by
r = R these conditions give [27]

[Gμνrν ]Σ = 0, (29)

where rν is a unit radial vector and [F ]Σ ≡ F (r → R+)− F (r → R−), for any function F = F (r). Using eq. (29) and
the general Einstein equations, we find that [

T̄μνrν
]
Σ

= 0, (30)

which leads to
[p̄]Σ = 0, (31)

because in the external vacuum Schwarzchild solution the pressure is zero, then the last equation yields

p̄(R) = 0. (32)

Using eq. (26), we find the value of the constant c from eq. (32)

c =
3(1 + 4aR2)1/2(1 − aR2)

1 + 7aR2
. (33)

The second condition, also given by the Israel-Darmois conditions, says that the line element must be continuous,
i.e. there must be no jumps in the metric, [

ds2
]
Σ

= 0, (34)

so,
g −

tt (R) = g +
tt (R) (35)

and
g −

rr (R) = g +
rr (R), (36)

where gtt and grr are the temporal and radial components of the metric. Then equating (25) with (28) and using the
conditions (35) and (36) we get:

A2
(
1 + aR2

)3
= 1 − 2M̄

R
, (37)

1 − 3aR2

2
1 + c(1 + 4aR2)−1/2

1 + aR2
= 1 − 2M̄

R
. (38)

We will take M̄ and R as free parameters. Inserting the parameter c from eq. (33) into eq. (38), we find:

a =
M̄

R2(3R − 7M̄)
, (39)

then with this value for a we obtain the value for c from eq. (33) and for A from eq. (37).
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Fig. 1. Panel (a) shows the isotropic pressure which vanishes at the boundary r = R. Panel (b) shows that the sound speed
velocity obeys causality condition vs ≤ 1. Panel (c) exhibits the monotonically decreasing behaviour of the density with
increasing r. Finally panel (d) shows the decreasing pressure-density ratio p̄/ρ̄. In the graphics the pressure and density are
divided by the value of a. These plots correspond to the solution of sect. 4.

The criteria for the physical admissibility are well known (as an example see ref. [23]), and could represent a
particular case of the conditions of subsect. 5.1 when pr = pt (excluding the energy momentum tensor conditions).
In this work we will choose the following values of mass and radius: M̄ = 0.87 solar mass and R = 7.866 km with a
compactness factor u = M̄/R = 0.16; M̄ = 0.9041 solar mass and R = 6km with a compactness factor u = M̄/R =
0.22 and M̄ = 1.77 solar mass and R = 9.56 km with a compactness factor u = M̄/R = 0.27 (these values are typical
of compact objects. Indeed these correspond to the starts 4U 1538-52, RXJ 1856-37 and Vela X-1, respectively [8,9]).
With these values we obtain the constants a, c and A from eqs. (39), (33) and (37). In fig. 1 we observe that in the
three cases the density and pressure are positive and decreasing, the pressure vanishes at the boundary and the square
of light velocity is less than 1 (for simplicity in the graphic analysis we take κ = 1). Therefore Heintzmann’s solution
is well behaved under our physical assumptions. Throughout the text u represents in all figures the mass-radius ratio.

5 Applying MGD to Heintzmann’s solution

In this section we will apply the MGD method to Heintzmann’s solution and we will obtain two new analytic solutions.
Furthermore, we will test if these new solutions are well behaved from the physical point of view; to do this we will
use realistic values of mass and radii that correspond to the starts 4U 1538-52, RXJ 1856-37 and Vela X-1 [8, 9].

From eq. (25) we have:

eν(r) = A2
(
1 + ar2

)3
, (40)

μ(r) = 1 − 3ar2

2
1 + c(1 + 4ar2)−1/2

1 + ar2
. (41)
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Now we apply the MGD method to Heintzmann’s solution (25). Following eqs. (15) and (16) we get:

eν(r) = A2
(
1 + ar2

)3
, (42)

e−λ(r) = 1 − 3ar2

2
1 + c(1 + ar2)−1/2

1 + ar2
+ αf∗(r), (43)

where f∗(r) is determined by imposing a mimic constraint on the density or pressure. With respect to this, two choices
leading to physically acceptable solutions are following mimic constraints [21,22]:

Θ0
0(r) = ρ̄(r), (44)

or
Θ1

1(r) = p̄(r). (45)
As soon as any mimic constraint (44) or (45) is imposed, f∗(r) can be determined. With respect to the con-

stant parameters a, c and A, they are determined matching the expressions (42) and (43) with the corresponding
Schwarszchild’s exterior solution:

ds2 = −
(

1 − 2M

r

)
dt2 +

(
1 − 2M

r

)−1

dr2 + r2dΩ2. (46)

The first matching condition is given by eqs. (29) and (11), obtaining:

pr(R) = 0, (47)

so,
p̄(R) − αΘ1

1(R) = 0. (48)
The second matching condition is given by eq. (34), yielding to

A2
(
1 + aR2

)3
= 1 − 2M

R
(49)

and (
1 − 3aR2

2
1 + c(1 + 4aR2)−1/2

1 + aR2

)
+ αf∗ = 1 − 2M

R
. (50)

Equating eqs. (49) and (50) we obtain

A2
(
1 + aR2

)3
=

(
1 − 3aR2

2
1 + c(1 + 4aR2)−1/2

1 + aR2

)
+ αf∗. (51)

5.1 Admissibility of the solution

On the other hand, when one considers an anisotropic matter distribution the basic requirements change slightly; these
are given by refs. [1, 2, 28]:
1) The density and pressure pr should be positive inside the star.
2) The gradients dρ/dr, dpr/dr and dpt/dr should be negative.
3) Inside the static configuration the speed of sound should be less than the speed of light, i.e., 0 ≤ dpr/dρ ≤ 1 and

0 ≤ dpt/dρ ≤ 1.
4) A physically reasonable energy-momentum tensor has to obey the conditions ρ−pr −2pr ≥ 0 and ρ+pr +2pt ≥ 0.
5) The radial pressure must vanish but the tangential pressure may not vanish at the boundary r = R of the sphere.

However, the radial pressure is equal to the tangential pressure at the center of the fluid sphere.
In this article we will analyze the above criteria. However, some of these requirements are still in discussion,for

example in [29] it has been claimed that a solution which disrupts the condition 3) could still be allowed.
Other authors argued that the speed of sound must decrease with increasing r. But the latest assumption could

not be valid for an anisotropic fluid, since the speed of sound at the isotropic case could be directly related to the
material rigidity. In fact, it is expected that stable configurations have a greater rigidity inside and that it decrease with
increasing r, i.e. the sound speed should be decreasing as increasing r. But the latest assumption is not mandatory
for anisotropic fluids [30].

With respect to item 1), some authors have argued that if ordinary matter is present, described by a high density
state equation, in which anisotropies naturally appear, one should impose the condition of the positivity of all pressures.
However, for more exotic types of matter (dark energy, or as in our case: scalar or vectorial fields, or generic gravitational
sources, etc.) the tangential pressure may be negative inside the star, and it may not vanish on the surface. Exotic
objects like compact gravastars or compact boson stars could have negative pressures [31].
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5.2 Solution I: Mimic constraint for pressure

We will use the contraint (45), so from eq. (11) we get the following value for the effective radial pressure:

pr = (1 − α)p̄(r), (52)

where p̄(r) is given by eq. (26).
Equating eqs. (18) and (22) we obtain the following expression for f∗(r):

f∗(r) =
3ar2

2
1 + c(1 + 4ar2)−1/2

1 + ar2
+

ar2 + 1
7ar2 + 1

− 1. (53)

Hence from eq. (43) the deformed radial metric component reads:

e−λ(r) = (1 − α) μ(r) + α

(
ar2 + 1
7ar2 + 1

)
, (54)

where μ(r) corresponds to eq. (41). The interior metric functions given by eqs. (42) and (54) represent the Heintzmann’s
solution minimally deformed by the generic anisotropic source Θμν . We can see that the limit α → 0 in eq. (54) leads
to the standard Heintzmann’s solution for a perfect fluid.

At this point, we will match the deformed interior metric given by (42) and (54), with the exterior vacuum
Schwarzschild solution (46). Using (47), and since α �= 0 in eq. (52) we arrive at

p̄(R) = 0, (55)

which, according to eq. (26) leads to

c =
3(1 + 4aR2)1/2(1 − aR2)

1 + 7aR2
. (56)

The continuity of the metric is given by eqs. (49) and (50):

A2
(
1 + aR2

)3
= 1 − 2M

R
(57)

and

(1 − α) μ(r) + α

(
ar2 + 1
7ar2 + 1

)
= 1 − 2M

R
. (58)

Equations (56), (57) and (58) are the necessary and sufficient conditions to match the interior solution with the
exterior Schwarzschild space-time.

We will evaluate c from eq. (56) at eq. (58) and we get the following expression for a:

a =
M

R2(3R − 7M)
. (59)

Then with the above expression (59), we will obtain the value for c from eq. (56) and for A from eq. (57).
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Fig. 2. The three panels display the radial (lower curve) and the tangential (upper curve) pressures, exhibiting a monotonically
decreasing behaviour with the increasing r. All the above quantities are divided by a, i.e. Pr = pr/a and Pt = pt/a. These plots
correspond to the solution of subsect. 5.2 with α = 0.2.

Fig. 3. Panel (a) shows the effective radial pressure. Panel (b) shows the effective tangential pressure and panel (c) shows
the decreasing effective energy density. All these quantities are normalized by a. These plots correspond to the solution of
subsect. 5.2 with α = 0.2.

On the other hand, by replacing f∗(r) given by (53) in eqs. (21) and (23), we obtain Θ0
0(r) and Θ2

2(r):

Θ0
0(r) = − 9a

2κ2

ζ(r)
(ar2 + 1)2(7ar2 + 1)2(4ar2 + 1)3/2

, (60)

Θ2
2(r) = − 3a

2κ2

ξ(r)
(ar2 + 1)2(7ar2 + 1)2(4ar2 + 1)1/2

, (61)

where the functions ζ(r) and ξ(r) are

ζ(r) =
√

1 + 4ar2
(
−3 − 15ar2 + 19a2r4 + 131a3r6 + 28a4r8

)
+ 17car2 + 91a2r4c + 147a3r6c + c, (62)

ξ(r) =
√

1 + 4ar2
(
189a3r6 − 45a2r4 − 21ar2 − 3

)
+ 343a3r6c + 147a2r4c + 21car2 + c. (63)

The above expressions allow us to find the effective density and the effective tangential pressure from eqs. (10)
and (12):

ρ(r) = ρ̄(r) − α

2κ2

9aζ(r)
(ar2 + 1)2(7ar2 + 1)2(4ar2 + 1)3/2

(64)

pt(r) = p̄(r) +
α

2κ2

3aξ(r)
(ar2 + 1)2(7ar2 + 1)2(4ar2 + 1)1/2

. (65)

From the physical admissibility analysis we will fix as free parameters the constants M and R corresponding again
to the same values of mass and radius above declared in sect. 4. We evaluate at eq. (59) and obtain the value of a and,
from eq. (56), we obtain the value of c. In figs. 2, 3, 4 and 5 we see that all conditions from physical admissibility of
subsect. 5.1 are satisfied.



Eur. Phys. J. Plus (2018) 133: 453 Page 9 of 15

Fig. 4. Panels (a) and (b) show the squares of radial and tangential velocities, respectively. These plots correspond to the
solution of subsect. 5.2 with α = 0.2.

Fig. 5. Panels (a) and (b) show the energy conditions ρ + Pr + 2Pt and ρ − Pr − 2Pt, respectively. These plots correspond to
the solution of subsect. 5.2 with α = 0.2.

5.3 Solution II: mimic constraint for density

An alternative choice leading to a physically acceptable solution is the mimic constraint for the density (44); then,
from eq. (10), we obtain

ρ = ρ̄(1 + α). (66)

Then, equating eqs. (17) and (21) we get f∗(r), which reads:

f∗(r) =
B

r
− 3ar2

2
1 + c(1 + 4ar2)−1/2

1 + ar2
, (67)

where the density ρ̄ from eq. (27) has been used. To avoid a singular behaviour at the center r = 0 we must impose
B = 0, then eq. (15) yields

e−λ(r) = μ(r) − α

(
3ar2

2
1 + c(1 + 4ar2)−1/2

1 + ar2

)
. (68)

Next, evaluating f∗(r) from eq. (67) at eqs. (22) and (23) we find the expressions for Θ1
1(r) and Θ2

2(r):

Θ1
1 =

3a

2κ2

(
√

1 + 4ar2 + c)(1 + 7ar2)
(1 + ar2)2

√
1 + 4ar2

, (69)

Θ2
2 =

3a

2κ2

√
1 + 4ar2(9ar2 + 1) + 7ar2c + c

(1 + ar2)2
√

1 + 4ar2
. (70)

With expressions (69) and (70) the radial and tangential pressures (11) and (12) are:

pr(r) = p̄(r) − α
3a

2κ2

(
√

1 + 4ar2 + c)(1 + 7ar2)
(1 + ar2)2

√
1 + 4ar2

(71)
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Fig. 6. The three panels display the tangential (lower curve) and the radial (upper curve) pressures, exhibiting a monotonically
decreasing behaviour with the increasing r. All the above quantities are divided by the constant a, i.e., Pr = pr/a and Pt = pt/a.
These plots correspond to the solution of subsect. 5.3 with α = 0.3.

Fig. 7. Panel (a) shows the effective radial pressure. Panel (b) shows the effective tangential pressure and panel (c) shows the
decreasing effective energy density. All these quantities are divided by the value of a. These plots correspond to the solution of
subsect. 5.3 with α = 0.3.

and

pt(r) = p̄(r) − α
3a

2κ2

(
√

1 + 4ar2(9ar2 + 1) + (7ar2 + 1)c)
(1 + ar2)2

√
1 + 4ar2

. (72)

The continuity of the effective radial pressure (47), along with eq. (71), yields to

c = −
√

1 + 4aR2(−3 + 3aR2 + α + 7αaR2)
(1 + α)(1 + 7aR2)

. (73)

Using the expression given by (67), the matching conditions in (49) and (50) lead to

A2
(
1 + aR2

)3
= 1 − 2M

R
(74)

and

1 − (1 + α)
(

3ar2

2
1 + c(1 + 4ar2)−1/2

1 + ar2

)
= 1 − 2M

R
. (75)

Equations (73)–(75) are the necessary and sufficient conditions to match the exterior Schwarzschild solution with
the deformed interior solution.

Inserting f∗(r) from eq. (67) and c from eq. (73) at eq. (75) we again find the same value for a from eq. (59). Next
with this value for a we will obtain the value for c from eq. (73) and A from eq. (74).

For testing the admissibility of our solution we again choose the same values of mass and radius from subsects. 4
and 5.2 but now α = 0.3, obtaining a from eq. (59) and c from eq. (73). For these values fig. 6 shows the radial pressure
pr(r) and tangential pressure pt(r) inside the spherical distribution, showing how the magnitude of the anisotropy
increases towards the surface. The tangential pressure is less than radial pressure, i.e., there is an attractive force.
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Fig. 8. Panels (a) and (b) show the squares of radial and tangential velocities respectively. These plots correspond to the
solution of subsect. 5.3 with α = 0.3.

Fig. 9. Panels (a) and (b) show the energy conditions ρ + Pr + 2Pt and ρ − Pr − 2Pt, respectively. These plots correspond to
the solution of subsect. 5.3 with α = 0.3.

Fig. 10. The three panels display the radial (lower curve) and the tangential (upper curve) pressures, exhibiting a monotonically
decreasing behaviour with the increasing r. All the above quantities are divided by the constant a, i.e., Pr = pr/a and Pt = pt/a.
These plots correspond to the solution of subsect. 5.3 with α = −0.3.

Also we observe that the tangential pressure becomes negative before the boundary. In figs. 6, 7, 8 and 9 we observe
that all requirements of admissibility of subsect. 5.1 are fulfilled.

With the same values of mass and radius it is also possible show a scenario where the tangential pressure is
greater than radial pressure and being both positives, i.e., there is a repulsive force, for example, with α = −0.3. In
figs. 10, 11, 12 and 13 we see, again, that all the admissibility conditions are fulfilled, therefore with α = −0.3 the
solution is also well behaved.
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Fig. 11. Panel (a) shows the effective radial pressure. Panel (b) shows the effective tangential pressure and panel (c) shows the
decreasing effective energy density. All these quantities are divided by the value of a. These plots correspond to the solution of
subsect. 5.3 with α = −0.3.

Fig. 12. Panels (a) and (b) show the squares of radial and tangential velocities, respectively. These plots correspond to the
solution of subsect. 5.3 with α = −0.3.

Fig. 13. Panels (a) and (b) show the energy conditions ρ + Pr + 2Pt and ρ− Pr − 2Pt, respectively. These plots correspond to
the solution of subsect. 5.3 with α = −0.3.

5.4 Stability conditions

One important aspect in the study of compact objects in general relativity describing anisotropic matter distributions
is the stability of the model. In this section we analyze the stability of the present model from two perspectives. The
first one is via the adiabatic index Γ and the second one is through the analysis of the square of the sound speeds
using Abreu et al. [32] studies based on Herrera’s cracking concept [33].
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(a) (b) (c)

Fig. 14. Adiabatic index criterion: (a) Solutions of subsect. 5.2. (b) Solutions of subsect. 5.3 with α = −0.3. (c) Solutions of
subsect. 5.3 with α = 0.3.

(a) (b) (c)

Fig. 15. Abreu criterion v2
r − v2

t : (a) Solutions of subsect. 5.2. (b) Solutions of subsect. 5.3 with α = −0.3. (c) Solutions of
subsect. 5.3 with α = 0.3.

It is well known that a spherically symmetric and static configuration associated with a Newtonian isotropic matter
distribution will collapse if the adiabatic index is Γ < 4/3. In distinction with the relativistic anisotropic fluid spheres
the collapsing condition becomes [34,35]

Γ <
4
3

+
[
1
3
κ

ρ0pr0

|p′r0|
r +

4
3

(pt0 − pr0)
|p′r0|r

]

max

, (76)

where ρ0, pr0 and pt0 are the initial density, radial and tangential pressure when the fluid is in static equilibrium. The
second term in the right-hand side represents the relativistic corrections to the Newtonian perfect fluid and the third
term is the contribution due to anisotropy. Heintzmann and Hillebrandt [36] showed that the stability condition for
a relativistic compact object is given by Γ > 4/3. Since the gravitational collapse takes place in the radial direction
of the configuration it is sufficient to calculate the adiabatic index Γr in such direction. We can explicitly obtain the
adiabatic index from, [37]

Γr =
ρ + pr

pr

dpr

dρ
. (77)

Figure 14 shows that all our models satisfy the above criteria. Therefore it is a stable model. On the other hand,
Abreu et al. analysis regarding the square of the sound speeds within the stellar configuration, provides us a criteria
to determine the regions where the model is stable. So the model is stable if v2

r − v2
t remains between 0 and 1 and

unstable if v2
r − v2

t remains between −1 and 0. We can see that the solutions of figs. 15(a) and (b) become potentially
stable since they fulfill the condition 0 < v2

r − v2
t < 1, whereas the solutions of fig. 15(c) become unstable.
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Fig. 16. Minimal geometric deformation approach.

Table 1. Energy density and central pressure in the CGS system.

Solution u α a c (dimensionless) Central density Surface density Central pressure

(cm−2) (g/cm3) (g/cm3) (dyne/cm2)

Section 4 0.163 0 1.422 · 10−13 1.969 1.018 · 1015 7.57 · 1014 1.06 · 1035

0.222 0 4.287 · 10−13 1.551 2.634 · 1015 1.672 · 1015 4.49 · 1035

0.27 0 2.756 · 10−13 1.151 1.43 · 1015 7.612 · 1014 3.683 · 1035

Subsection 5.2 0.163 0.2 1.422 · 10−13 1.969 1.089 · 1015 7.324 · 1014 8.48 · 1034

0.222 0.2 4.287 · 10−13 1.551 2.934 · 1015 1.598 · 1015 3.592 · 1035

0.27 0.2 2.756 · 10−13 1.151 1.676 · 1015 7.195 · 1014 2.946 · 1035

Subsection 5.3 0.163 0.3 1.422 · 10−13 1.246 1.001 · 1015 7.653 · 1014 5.551 · 1034

0.222 0.3 4.287 · 10−13 0.9 2.552 · 1015 1.706 · 1015 2.371 · 1035

0.27 0.3 2.756 · 10−13 0.558 1.348 · 1015 7.878 · 1014 1.966 · 1035

0.163 −0.3 1.422 · 10−13 3.311 1.035 · 1015 7.489 · 1014 5.049 · 1034

0.222 −0.3 4.287 · 10−13 2.761 2.722 · 1015 1.638 · 1015 2.119 · 1035

0.27 −0.3 2.756 · 10−13 2.251 1.513 · 1015 7.345 · 1014 1.717 · 1035

6 Conclusions and remarks

We showed that by imposing our matching conditions the isotropic Heintzmann’s solution is well behaved using typical
mass and radius values for some compact objects such as 4U 1538-52, RXJ 1856-37 and Vela X-1, whose compactness
factors u are 0.16, 0.22 and 0.27, respectively. The choice of the Heintzmann IIa solution is merely arbitrary, because
there is no evidence that the mentioned compact stars are described fully by this solution.

Then, applying the Minimal Geometric Deformation method to Heintzmann’s solution we have found two new
analytic anisotropic and spherically symmetric solutions of Einstein field equations. These two solutions are the
results of the decoupling of Einstein equations in a isotropic sector described by T̄μν and the sector described by
the quasi-Einstein equations with a source Θμν . Due to the application of MGD the perfect and the extra fluid are
separately conserved. So, the combination of these two sectors has only gravitational interaction, and does not has
exchange of energy momentum.

We have shown that these two new solutions are well behaved for the above parameters of mass and radius, since
they fulfill every admissibility criteria of the subsect. 5.1. To accomplish it we use α = 0.2 and α = 0.3 in the first
and second constraint, respectively. Moreover, considering α = 0.3 in the second constraint, we obtained an attractive
force where the tangential pressure becomes negative before the boundary of the compact object, but using α = −0.3
a repulsive force appears. In all cases the solutions are well behaved. The matching conditions are perfectly satisfied
in both solutions.

All the sources Θμν used in this work are generic gravitational sources, therefore they do not represent a high
density equation of state i.e. they do not impose that the tangential pressure is positive inside the fluid sphere.

In fig. 16 we observe how any perfect fluid solution can be consistently extended to the anisotropic domain via
the MGD approach. In our case the seed well behaved Heintzmann’s solution {ν, μ} is extended to an anisotropic well
behaved scenario {ν, μ + α · f∗}.

In this work we do not make a complete study about compact objects, however our solutions would serve for
future studies about these objects. Moreover, working in the CGS system table 1 shows the values of the central and
surface energy density and central pressure, corresponding to the isotropic Heintzmann’s solution from sect. 4 and
both anisotropic extensions from subsect. 5.2 (mimic constraint for pressure) and from subsect. 5.3 (mimic constraint
for density). We found values for central and surface density of the order of 1014–1015 g/cm3 and central pressure
of the order of 1034–1035 dyne/cm2. These are typical values for compact objects, some examples can be found in
refs. [8, 9, 38].
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