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Abstract. This paper deals with the dynamics of charged spherical perfect fluid collapse in the framework
of f(G, T ) gravity. We formulate dynamical equations through the Misner-Sharp formalism and investigate
the effects of correction terms, fluid parameters as well as electromagnetic field on the collapse rate. We also
construct a relationship among Weyl scalar, correction terms, electric field intensity and energy density.
For zero electric charge and constant f(G, T ), it is found that if the metric is conformally flat then energy
density is homogeneous and vice versa. We conclude that the electric charge and positive correction terms
behave as anti-gravitational force and hence diminish the collapse rate.

1 Introduction

The current cosmic accelerated expansion has been found from different observational evidence including large scale
structures, cosmic microwave background radiations and supernova type Ia, etc. This expansion is considered as the
result of a cryptical force named as dark energy which possesses large negative pressure. The mysterious nature of
dark energy has stimulated many researchers to reveal its salient features. Modified theories of gravity are supposed
as the most optimistic and promising approaches to uncover its ambiguous nature. Such theories can be modeled by
replacing the corresponding scalar invariants with their generic functions in the geometric part of the Einstein-Hilbert
action.

The Lovelock gravity is one of the modified versions of general relativity (GR) in n-dimensional space which is
found to be equivalent to GR for the case of 4 dimensions [1,2]. It is worth mentioning here that the first Lovelock scalar
contains only the Ricci scalar R, while the second Lovelock scalar contains the Gauss-Bonnet (GB) invariant which
gives Einstein GB gravity in 5 dimensions [3, 4]. The GB invariant is defined as G = RαβξηRαβξη + R2 − 4RαβRαβ ,
where Rαβξη and Rαβ represent the Riemann and Ricci tensors, respectively which is found to be 4-dimensional
topological quantity. Nojiri and Odintsov [5] introduced f(G) gravity which gives interesting features of current cosmic
expansion. This theory is free from instability problems like ghost spin-2 instabilities [6] and is consistent with solar
system constraints as well as cosmological structure [7–9].

Nojiri and Odintsov [10] introduced the notion of curvature-matter coupling and Harko et al. [11] established such
coupling in f(R) theory referred as f(R, T ) gravity. The curvature-matter couplings can describe the rotation curves
of galaxies and different epochs of the universe evolution. These couplings also provide non-conservation of stress
energy tensor implying the presence of an extra force; consequently, the path of particles is changed. These coupling
models are extremely useful for explaining the current cosmic expansion as well as dark matter and dark energy
interactions [12]. Recently, Sharif and Ikram [13] introduced this coupling in the f(G) theory named as the f(G, T )
gravity. The same authors [14] also reconstructed several cosmological models including power-law solutions, de Sitter
universe and phantom as well as non-phantom eras in this gravity. They also studied the effect of f(G, T ) gravity
on the stability of Einstein universe with non-conserved background [15]. Recently, Bhatti et al. [16] investigated the
stability of some stellar solutions in this gravity and inferred that power-law and logarithmic correction terms could
give an arena to host stable configurations of stellar models.

Gravitational collapse is one of the key aspects of stellar evolution and is referred as the fundamental mechanism
in the formation of new stars. The process of gravitational collapse was first studied by Chandrasekhar [17], who
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concluded that a star remains in its equilibrium position if the inward gravitational force is balanced by outward
directed pressure. Oppenheimer and Snyder [18] explored the dynamics of dust collapse and found that a black hole
is the eventual result of dust collapse. Misner and Sharp [19] discussed the dynamics of dissipative spherical collapse
and concluded that interior energy is transformed into a flux directed in the outward direction. Chan [20] studied the
collapse of a radiating star and found that anisotropic pressure of the fluid increases due to shear viscosity. Herrera and
Santos [21] investigated spherical collapse by using the Misner-Sharp technique and found that energy disappears in
the shape of radiation and heat flow. Herrera [22] studied the dynamics of dissipative collapse through dynamical and
transport equations. Herrera et al. [23] worked on cylindrical collapse and discussed the effects of anisotropic pressure
on the collapsing phenomenon.

The study of spherical collapse with different fluid distributions has also been studied in various modified gravity
models. Sharif and Abbas [24] investigated the spherical collapse for dissipative fluids in f(G) gravity. They also dis-
cussed the dynamics of shearfree charged radiating spherical systems in this theory [25]. Chakrabarti and Banerjee [26]
studied the collapse of spherical stars for the charged dissipative fluids in f(R) gravity. Recently, Sharif and Farooq [27]
examined the collapse of charged spherical stars incorporated with perfect fluid in f(R) gravity.

In the phenomenon of collapse, the electric charge plays a role of Coulomb repulsive force which reduces the
gravitational force and hence prevents the collapse process. The effects of an electromagnetic field on the dynamics of
a stellar structure were first studied by Rosseland [28]. Bekenstein [29] investigated the charged spherical ideal collapse.
Di Prisco et al. [30] studied spherical collapse coupled with non-adiabatic charged fluid and observed a dissipation
procedure through transport and dynamical equations. Sharif and Abbas [31] discussed cylindrical collapse of charged
non-adiabatic fluid in f(G) gravity and studied the effects of electromagnetic field, anisotropy and heat flux on the
collapse rate. Guha and Benerji [32] studied the dynamics of cylindrical collapse with anisotropic charged fluid and
discussed the effects of heat dissipation through dynamical equations. Sharif and his collaborators [33–35] explored
the influence of the electromagnetic field on self-gravitating compact objects by investigating instability constraints
during the collapse process. Sharif and Yousaf [36] found the effects of electric charge on the evolution of a sphere
and concluded that the electromagnetic field decreases the collapse rate. Sharif and Farooq [37] explored the charged
cylindrical perfect fluid collapse in f(R) gravity and concluded that correction terms, anisotropic pressure as well as
electric charge prevent the collapse process.

In this paper, we analyze the role of correction terms, matter variables and electric charge on the dynamical
behavior of a collapsing perfect fluid sphere in the background of f(G, T ) gravity. For this purpose, the interior region
of a spherical star is matched with exterior charged Viadya spacetime through Darmois conditions [38]. The paper is
planned as follows. In sect. 2, we construct f(G, T ) equations of motion and formulate junction conditions. Section 3
is devoted to develop the dynamical equations by using the Misner-Sharp formalism. The relationship among Weyl
scalar, correction terms, electric charge and energy density is established in sect. 4. In the last section, we provide a
summary of the results.

2 Field equations and junction conditions

In this section, we construct the field equations for a charged spherical system with perfect fluid as well as junction
conditions with exterior charged Viadya spacetime. The Einstein-Hilbert action for this gravity is given by [13]

Sf(G,T ) =
1

2κ2

∫
[f (G, T ) + R]

√
−gd4x +

∫
Lm

√
−gd4x, (1)

where κ2, Lm and g represent the coupling constant, matter Lagrangian density and determinant of the metric tensor
gαβ , respectively. Here, f(G, T ) is an arbitrary function of a GB invariant and trace of the stress energy tensor. We
consider that the spherical configuration is filled with perfect fluid given by

T
(M)
αβ = (ρ + p)UαUβ + pgαβ ,

where ρ, p and Uα are the energy density, pressure and four-velocity (with UαUα = −1) of the fluid, respectively. The
field equations for the action (1) are

Gαβ = 8πTαβ − (Θαβ + Tαβ) fT (G, T ) +
1
2
gαβf (G, T )

+
(
4RξβRξ

α + 4RξηRαξβη − 2RRαβ − 2RβξηδR
ξηδ
α

)
fG (G, T )

+ (4Rαβ∇2 + 4gαβRξη∇ξ∇η + 2R∇α∇β − 2gαβR∇2 − 4Rξ
α∇β∇ξ

− 4Rξ
β∇α∇ξ − 4Rαξβη∇ξ∇η)fG(G, T ), (2)
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where ∇2 = � = ∇α∇α and Gαβ = Rαβ − 1
2gαβR represent the d’Alembert operator and Einstein tensor, respectively.

Also, fG (G, T ) = ∂f(G,T )
∂G and fT (G, T ) = ∂f(G,T )

∂T . It is noteworthy that for T = 0, the field equations of this theory are
reduced to that of f(G) gravity. Furthermore, when f(G, T ) = 0 the field equations of GR are recovered. Rearranging
eq. (2), we obtain

Gαβ = 8πT
(eff)
αβ = 8π

(
T

(M)
αβ + T

(GT )
αβ

)
, (3)

where T
(eff)
αβ is the effective stress energy tensor and T

(GT )
αβ are the correction terms of f(G, T ) gravity given as follows:

T
(GT )
αβ =

1
8π

[
(ρ + p)UαUβfT (G, T ) +

1
2
gαβf(G, T )

+
(
4RξβRξ

α + 4RξηRαξβη − 2RRαβ − 2RβξηδR
ξηδ
α

)
fG(G, T )

+ (4Rαβ∇2 + 4gαβRξη∇ξ∇η + 2R∇α∇β − 2gαβR∇2 − 4Rξ
α∇β∇ξ

− 4Rξ
β∇α∇ξ − 4Rαξβη∇ξ∇η)fG(G, T )

]
. (4)

The line element for the interior geometry (U−) is

ds2
− = −X2(t, r)dt2 + Y 2(t, r)dr2 + Z2(t, r)(dθ2 + sin2 θ dφ2), (5)

where Z represents the areal radius of a spherical star and Uα = 1
X δα

0 defines the comoving velocity of the fluid.
Including the effects of the electromagnetic field, eq. (3) becomes

Gαβ = 8π
(
T

(M)
αβ + T

(GT )
αβ + T

(E)
αβ

)
, (6)

where T
(E)
αβ is the electromagnetic stress energy tensor defined by

T
(E)
αβ =

1
4π

[
Fμ

α Fβμ − 1
4
gαβFμνFμν

]
. (7)

The Maxwell field equations are
F[αβ;ν] = 0, Fαβ

;β = 4πJα, (8)

where Fμν = φν,μ − φμ,ν is the Maxwell field tensor, while the terms φμ and Jα correspond to the four-current and
four-potential, respectively. For comoving coordinates, the charge is at rest so, the magnetic field is zero. Consequently,
the four-current and four-potential become

Jα = μ0V
α, φα = φδ0

α,

here μ0 = μ0(t, r) is the charge density and φ = φ(t, r) is the scalar field potential. For the interior spacetime, the
charge conservation law yields

q(r) = 4π
∫ r

0

μ0Y Z2dr, (9)

where q(r) is the total amount of electric charge in the interior region of the spherical star. The electric field intensity
for spherically symmetric metric can be given as follows:

E =
q(r)
4πZ2

.

The Maxwell field equations become

φ′′ − φ′
(

X ′

X
+

Y ′

Y
− 2

Z ′

Z

)
= 4πμ0XY 2, (10)

φ̇′ − φ′

(
Ẋ

X
+

Ẏ

Y
− 2

Ż

Z

)
= 0. (11)
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In the above equations, prime and dot represent differentiation with respect to radial and temporal coordinates,
respectively. The corresponding field equations are

8π
(
T

(M)
00 + T

(GT )
00 + T

(E)
00

)
= 8π

(
ρ +

T
(GT )
00

X2
+ 2πE2

)
X2

=
X2

Z2

(
−Z ′2

Y 2
+ 2

Y ′Z ′Z

Y 3
− 2

Z ′′Z

Y 2

)
+

(
X2

Z2
+

Ż2

Z2
+

2Ẏ Ż

Y Z

)
, (12)

8π
(
T

(M)
11 + T

(GT )
11 + T

(E)
11

)
= 8π

(
P +

T
(GT )
11

Y 2
− 2πE2

)
Y 2

=
Y 2

Z2

(
2
ẊŻZ

X3
− Ż2

X2
− 2

Z̈Z

X2

)
+

(
−Y 2

Z2
+ 2

X ′Z ′

XZ
+

Z ′2

Z2

)
, (13)

8π
(
T

(M)
22 + T

(GT )
22 + T

(E)
22

)
= 8π

(
P +

T
(GT )
22

Z2
+ 2πE2

)
Z2

=
Z2

Y 2

(
X ′Z ′

XZ
+

X ′′

X
− Z ′Y ′

ZY
+

Z ′′

Z
− X ′Y ′

XY

)
+

Z2

X2

(
ẊẎ

XY
− Ÿ

Y
− Ẏ Ż

Y Z
− Z̈

Z
+

ẊŻ

XZ

)
,

(14)

8π
(
T

(M)
33 + T

(GT )
33 + T

(E)
33

)
= 8π

(
P +

T
(GT )
33

Z2 sin2 θ
+ 2πE2

)
Z2 sin2 θ

=
Z2

Y 2

(
X ′Z ′

XZ
+

X ′′

X
− Z ′Y ′

ZY
+

Z ′′

Z
− X ′Y ′

XY

)
+

Z2

X2

(
ẊẎ

XY
− Ÿ

Y
− Ẏ Ż

Y Z
− Z̈

Z
+

ẊŻ

XZ

)
,

(15)

8π
(
T

(M)
01 + T

(GT )
01 + T

(E)
01

)
= 8πT

(GT )
01

=

(
2
X ′Ż

XZ
+ 2

Z ′Ẏ

ZY
− 2

Ż ′

Z

)
, (16)

where T
(GT )
00 , T

(GT )
01 , T

(GT )
11 , T

(GT )
22 and T

(GT )
33 are the correction terms given in appendix A. The mass function for the

interior geometry is defined as [39]

m(t, r) =
Z

2
− Z

2
(
gαβ∂αZ∂βZ

)
.

Inclusion of electromagnetic field yields

m(t, r) =
Z

2
+

ZŻ2

2X2
− ZZ ′2

2Y 2
+

q2

2Z
. (17)

For the exterior geometry (U+), we consider the charged Vaidya spacetime

ds2
+ = −

(
1 +

Q2

R2
− 2M

R

)
dν2 − 2 dν dR + R2

(
dθ2 + sin2 θ dφ2

)
, (18)

where Q and M determine the charge and mass of the exterior geometry, respectively. We use the Darmois junction
conditions for smooth matching of both regions. These conditions lead to [38]

M = m ⇐⇒ Q = q, (19)

Q2

2Z3
+ 4πZ

[
T

(GT )
01

XY
+

(
p +

T
(GT )
11

Y 2
+ 2πE2

)]
= 0. (20)

These equations give the necessary and sufficient conditions for the smooth matching of both spacetimes. Equation (19)
shows that if masses of interior and exterior metrics are equal then their corresponding charges are the same and
vice versa. Equation (20) provides the relationship between the correction terms of the interior spacetime and the
electromagnetic field.
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3 Dynamical equations

Here, we discuss the dynamical behavior of a spherical star with the influence of electric charge and correction terms.
The dynamical equations obtained by the contraction of Bianchi identity are given as

[
T (M)αβ + T (GT )αβ + T (E)αβ

]
;β
Xα = 0,

[
T (M)αβ + T (GT )αβ + T (E)αβ

]
;β
Uα = 0,

where Xα = 1
Y δα

1 = (0, y−1, 0, 0) is a four-vector. After simplification, it follows that:

X ′

Y 2X

[
ρ + p +

T
(GT )
00

X2
+

T
(GT )
11

Y 2

]
+

1
Y 2

[
T

(GT )
11

Y 2

]′

− 1
Y X

[
T

(GT )
01

Y X

]·

+
p′

Y 2
− 2T

(GT )
01

Y 2X2

[
Ẏ

Y
+

Ż

Z

]

+
2Z ′

ZY 2

[
T

(GT )
11

Y 2
− T

(GT )
22

Z2

]
− 4πE

ZY 2
[E′Z + 2Z ′E] = 0, (21)

Ẏ

Y X2

[
ρ + p +

T
(GT )
00

X2
+

T
(GT )
11

Y 2

]
+

ρ̇

X2
+

[
T

(GT )
00

X4

]·

+
2Ẋ

X3

[
T

(GT )
00

X2

]
− 1

Y X

[
T

(GT )
01

Y X

]′

− 2T
(GT )
01

Y 2X2

[
X ′

X
+

Z ′

Z

]

+
2Ż

ZX2

[
ρ + p +

T
(GT )
00

X2
+

T
(GT )
22

Z2

]
= 0. (22)

These equations are used to study the change in evolution of a stellar structure. To discuss the properties of a dynamical
system, let us define the proper time derivative Dt and radial derivative Dr as [39]

Dt = Uα ∂

∂xα
=

1
X

∂

∂t
, Dr =

1
Z ′

∂

∂r
. (23)

In the collapsing procedure, the proper time derivative of areal radius defines the corresponding velocity of fluid
particles, i.e.,

V = Dt(Z) =
Ż

X
< 0. (24)

Using eqs. (17) and (24), we obtain
Z ′

Y
=

[
1 − 2m

Z
+

q2

Z2
+ V2

] 1
2

= ε. (25)

The proper time variation of m is given by

Dt(m) = −4πZ2

[(
p +

T
(GT )
11

Y 2
− 2πE2

)
V − T

(GT )
01

Y X
ε

]
+

V
2

q2

Z2
. (26)

This expression describes how internal energy of a star varies with the passage of time. On the right-hand side, the

factor (p+ T
(GT )
11
Y 2 −2πE2)V yields the effective electric field intensity and pressure on the collapsing system. The velocity

of fluid particles and pre-factor (−4π) indicate that this term is positive and the inequality (p+ T
(GT )
11
Y 2 ) > 2πE2 exists.

This implies that the effective outward directed pressure is larger than the effects of charge. The second entity (T
(GT )
01
Y X ε)

manifests the additional effects of correction terms as compared to GR while the remaining factor ( q2

Z2 ) indicates the
Coulomb repulsive effect which decreases the internal energy of star.

The proper radial variation of m yields

Dr(m) = 4πZ2

[(
ρ +

T
(GT )
00

X2
+ 2πE2

)
− T

(GT )
01

Y X

V
ε

]
+

q

Z
Dr(q) −

q2

2Z2
. (27)

This demonstrates the change of total energy between the adjacent spherical surfaces of a star. On the right-hand

side, the factor (ρ + T
(GT )
00
X2 + 2πE2) depicts how the effective electric field intensity and energy density affect the
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collapsing process. The effective energy density plays a role of work done which enhances the energy of the system.

The second entity (T
(GT )
01
Y X

V
ε ) manifests the additional effects of f(G, T ) terms as compared to GR. The next term

( q
Z Dr(q)) describes the effect of charge. The remaining factor ( q2

2Z2 ) indicates that the energy of neighboring surfaces
of a spherical star decreases due to the repulsive nature of the Coulomb force. Adopting eqs. (23) and (24), we obtain
the acceleration for collapsing matter as

Dt(V) = −4πZ

[(
p +

T
(GT )
11

Y 2
− 2πE2

)]
− m

Z2
+

q2

2Z3
+

ε

Y

X ′

X
. (28)

Using eq. (21), we have

X ′

X
=

(
ρ + p +

T
(GT )
00

X2
+

T
(GT )
11

Y 2

)−1 [
Y

X

(
T

(GT )
01

Y X

)·

+
2T

(GT )
01

X2

(
Ẏ

Y
+

Ż

Z

)

−
(

p +
T

(GT )
11

Y 2

)′

− 2Z ′

Z

(
T

(GT )
11

Y 2
− T

(GT )
22

Z2

)
+

4πE

Z
[E′Z + 2Z ′E]

]
.

Inserting the value of X′

X in eq. (28), we obtain

fnewtn = −fgrav + fhyd + fds, (29)

where

fnewtn =

(
ρ + p +

T
(GT )
00

X2
+

T
(GT )
11

Y 2

)
Dt(V),

fgrav =

(
ρ + p +

T
(GT )
00

X2
+

T
(GT )
11

Y 2

) [
4πZ

(
p +

T
(GT )
11

Y 2
− 2πE2

)
+

m

Z2
− q2

2Z3

]
,

fhyd = −ε2

[
Dr

(
p +

T
(GT )
11

Y 2

)
− q

4πZ4
Dr(q) +

2
Z

(
T

(GT )
11

Y 2
− T

(GT )
22

Z2

)]
,

fds = ε

[
Dt

(
T

(GT )
01

Y X

)
+

2
Y X

T
(GT )
01

(
Ẏ

Y X
+

V
Z

)]
.

Equation (29) demonstrates the effects of different forces on the collapsing phenomenon including Newtonian
(fnewtn), hydrodynamical (fhyd), gravitational (fgrav) forces. It can be observed that all these forces are affected by

f(G, T ) gravity together with an additional force (fds). In fnewtn, the factors (ρ+p+ T
(GT )
00
X2 + T

(GT )
11
Y 2 ) and Dt(V) describe

the inertial mass density and acceleration of collapsing matter, respectively. In fgrav, the terms (ρ+ p+ T
(GT )
00
X2 + T

(GT )
11
Y 2 )

and [4πZ(p + T
(GT )
11
Y 2 − 2πE2) + m

Z2 − Q2

2Z3 ] depict the gravitational mass density and acceleration of a collapsing object,
respectively. The inertial and gravitational mass density is the same implying that the equivalence principle holds,
these masses are not affected by the electric charge.

We analyze how correction terms affect the collapse rate in the existence of realistic fluid (ρ+ p > 0) with the help

of (ρ + p + T
(GT )
00
X2 + T

(GT )
11
Y 2 ).

– If the inertial mass density is positive then (ρ + p + T
(GT )
00
X2 + T

(GT )
11
Y 2 ) will be larger than GR. Due to the minus sign,

the action of gravitational force may change and depicts the action of the anti-gravity force which slows down the
collapse rate.

– If the inertial mass density is negative then the factor (ρ + p + T
(GT )
00
X2 + T

(GT )
11
Y 2 ) becomes negative, hence the above

factor becomes positive and enhances the collapse rate.

The factor 4πZ(p + T
(GT )
11
Y 2 − 2πE2) manifests the effect of pressure as well as electric field intensity and represents the

relativistic part while the second term ( m
Z2 ) describes the effect of mass function on the collapsing system and defines

the Newtonian part in the gravitational force. The last factor manifests the Coulomb repulsive force which opposes the

collapse rate. In fhyd, the factor Dr(p + T
(GT )
11
Y 2 ) prevents the collapse rate due to the negative gradient of the effective

pressure and the work done will be in the outward direction. The other terms represent the effect of correction terms
and charge. The factor fds gives the effect of correction terms on the collapsing system.
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4 Relation between Weyl scalar and energy density

In this section, we find a relationship between the Weyl scalar, energy density, correction terms and electric charge.
The Weyl scalar C2 = CαβμνCαβμν in terms of Ricci scalar, Kretchmann scalar R = RαβμνRαβμν and Ricci tensor is
defined as [30]

C2 =
1
3
R2 + R− 2RαβRαβ . (30)

The expressions of Ricci and Riemann tensors for interior spacetime are given in appendix A. The Kretschmann scalar,
after simplification, is given as

R =
48
Z6

(m − q2

2Z
)2 − 16

Z3
(m − q2

2Z
)
(

G00

X2
− G11

Y 2
+

G22

Z2

)

+ 3

[(
G00

X2

)2 (
G11

Y 2

)2
]

+ 4
G22

Z2

(
G00

X2
− G11

Y 2

)

+ 4

[(
G22

Z2

)2

−
(

G01

Y X

)2
]
− 2

G00G11

Y 2X2
. (31)

Inserting the values of R, R and Rαβ in eq. (30), it follows that:

CZ3

√
48

= m − 4πZ3

3

(
ρ +

T
(GT )
00

X2
− T

(GT )
11

Y 2
+

T
(GT )
22

Z2
+ 6πE2

)
− q2

2Z
. (32)

Using eqs. (23) and (26), the proper time derivative of the above equation yields

Dt

(
CZ3

√
48

)
+

4πZ3

3
Dt

[(
ρ +

T
(GT )
00

X2
− T

(GT )
11

Y 2
+

T
(GT )
22

Z2
+ 6πE2

)]

+ 4πZ2

[
V

(
ρ + p +

T
(GT )
00

X2
+

T
(GT )
22

Z2
+ 4πE2

)
− ε

T
(GT )
01

Y X

]
= 0.

The proper radial derivative of eq. (32) with (27) give

Dr

(
CZ3

√
48

)
+

4πZ3

3
Dr

[(
ρ+

T
(GT )
00

X2
−T

(GT )
11

Y 2
+

T
(GT )
22

Z2
+6πE2

)]
−4πZ2

[(
T

(GT )
11

Y 2
−T

(GT )
22

Z2
−4πE2

)
−V

ε

T
(GT )
01

Y X

]
=0.

(33)
If we neglect the effect of electric charge (Q = 0), eq. (33) yields

Dr

(
CZ3

√
48

)
+

4πZ3

3
Dr

[(
ρ +

T
(GT )
00

X2
− T

(GT )
11

Y 2
+

T
(GT )
22

Z2

)]
− 4πZ2

[(
T

(GT )
11

Y 2
− T

(GT )
22

Z2

)
− V

ε

T
(GT )
01

Y X

]
= 0. (34)

Di Prisco et al. [30] discussed the collapse of a spherical star for an anisotropic fluid and concluded that homogeneity
of energy density implies conformal flatness and vice versa. In order to analyze the validity of this result in the f(G, T )
theory, we assume a particular form of a generic function. There are two possibilities, i.e., the minimal or non-
minimal curvature-matter coupling. The assumption of non-minimal coupling f(G, T ) = f1(G) + f2(G)f3(T ) leads to
the complicated form of dynamical eq. (22) and we cannot deduce any result from this. So, for convenience we consider
the second choice, i.e., f(G, T ) = f1(G) + f2(T ). It is worth mentioning here that f2(T ) = 0 leads to the correction
terms of f(G) gravity while the choice f1(G) = 0 = f2(T ) yields the results of GR. Sharif and Ikram [10,11] analyzed
the viability of this model by examining the stability of the Einstein universe and some reconstructed cosmological
models. The first as well as the generalized second law of thermodynamics are also investigated corresponding to this
model [40]. Here, we take f1(G) and f2(T ) as constants so that f(G, T ) becomes constant. For a constant value of
f(G, T ), eq. (34) becomes

Dr

(
CZ3

√
48

)
+

4πZ3

3
Dr(ρ + f0) = 0, (35)

where f0 = − f1(G)+f2(T )
16π . This indicates that C = 0 provides Drρ = 0 and vice versa. Thus the system would experience

a homogeneous distribution of energy density if and only if it is conformally flat.
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5 Concluding remarks

This work deals with the dynamics of charged spherical collapse with perfect fluid distribution in f(G, T ) gravity.
To examine how the total energy of the system varies with respect to temporal and radial coordinates, we have
developed dynamical equations of the spherical region by using the Misner-Sharp formalism and discussed the role of
electromagnetic field, correction terms and matter variables on the collapse rate. A relation among the energy density,
Weyl scalar, electric charge and correction terms is also established. A direct relationship between energy density and
Weyl scalar has been developed with the assumption of zero electric charge and constant f(G, T ).

The importance of charge distribution has been discussed in the dynamics of gravitational collapse. In particular,
it is noteworthy that the active gravitational mass is not affected by electric charge. The existence of electric charge is
significant in the dynamics of collapse which behaves as a Coulomb repulsive force and resists the collapsing process.
The results are summarized as follows.

– The matching conditions show that masses of both spacetimes are equal when their corresponding charges are the
same and vice versa.

– The change in total energy with the passage of time depicts that the internal energy of spherical star decreases
due to the repulsive nature of the Coulomb force and pressure in the outward direction.

– The variation of total energy with respect to radial coordinates manifests that the energy of the system decreases
due to the Coulomb repulsive force and increases because of the effective energy density.

– The correction terms strongly affect the inertial mass density. The positive values of inertial mass density resist
the collapse rate due to anti-gravitational effects while the negative values enhance the collapse rate.

– The electromagnetic field prevents the collapsing procedure due to the Coulomb repulsive force.

– The rate of collapse becomes slow in the case of a negative gradient pressure. The hydrodynamical force manifests
the stable state for constant f(G, T ) and prevents the more expanding and collapsing processes.

– In order to obtain the conformal flatness of the spacetime, we have assumed zero electric charge. Consequently,
we have found that the energy density of the fluid is homogeneous if and only if the metric is conformally flat and
this statement is true only for constant f(G, T ).

Appendix A.

The Ricci and Riemann tensors for the interior spacetime (5) are

R00 = X2

[
G00

2X2
+

G11

2Y 2
+

G22

Z2

]
,

R11 = Y 2

[
G00

2X2
+

G11

2Y 2
− G22

Z2

]
,

R22 = Z2

[
G00

2X2
− G11

2Y 2

]
,

R01 = G01,

R33 = sin2 θR22,

R0101 = (X2Y 2)
[

G00

2X2
− G11

2Y 2
+

G22

Z2
− 2

Z3

(
m − q2

2Z

)]
,

R0202 = (X2Z2)
[

G11

2Y 2
+

1
Z3

(
m − q2

2Z

)]
,

R1212 = (Y 2Z2)
[

G00

2X2
− 1

Z3

(
m − q2

2Z

)]
,

R2323 = 2Z

(
m − q2

2Z

)
sin2 θ, R0212 =

Z

2

2

G01,

R0303 = sin2 θR0202, R0313 = sin2 θR0212,

R1313 = sin2 θR1212.
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The expressions for the correction terms are

T
(GT )
00 =

X2

8π

[
fT (ρ + p) − 1

2
f +

1
Y 3X2Z2

(
4Z ′2Ẏ ḟG − 4Ż2Y ′f ′

G + 8ŻẎ Z ′f ′
G + 8Y ′Z ′Z̈fG − 4Z ′2Ÿ fG − 8Y ′Z ′ŻḟG

+
8Z ′′X ′Z ′

Y
fG +

8Ẏ 2Z ′2

Y
fG − 8ŻẎ X ′Z ′

X
fG +

8Y ′Z ′ẊŻ

X
fG +

4Ż2X ′Y ′

X
fG +

4Z ′2ẊẎ

X
fG

)

− 1
Y 2X2Z2

(
8Ż ′2fG + 8Z ′′ŻḟG − 8Z ′′Z̈fG +

8Z ′′ẊŻ

X
fG − 4Ż2Ÿ

X
fG − 16Ż ′Ẏ Z ′

Y
fG − 16Ż ′ŻX ′

X
fG

)

+
1

Y X2Z2

(
4Ÿ fG − 4Ẏ ḟG − 4ẊẎ

X
fG +

4Ż2Ÿ

X2
fG +

8Ż2X ′2

Y X2
fG +

8ŻẎ Z̈

X2
fG − 12Ż2ẊẎ

X3
fG − 12Ż2Ẏ

X2
ḟG

)

− 1
Y 2Z2

(
4XX ′′fG +

4Y ′

Y
f ′
G +

8Z ′Z ′′

Y 2
fG − 4Z ′2X ′′

Y 2X
fG − 4X ′Y ′

Y X
fG

)]
,

T
(GT )
11 =

Y 2

8π

[
1
2
f +

1
Y 3X2Z2

(
4Z ′2Ÿ fG − 8Z̈Y ′Z ′fG + 16Ż ′Ẏ Z ′fG − 4Ż2X ′Y ′

X
fG − 4Z ′2ẊẎ

X
fG − 8X ′Z ′ŻẎ

X
fG

+
8ẊŻY ′Z ′

X
fG

)
+

1
Y 2X2Z2

(
8Z̈Z ′′fG − 8Ż ′2fG − 8Z̈Z ′f ′

G − 4Z ′2f̈G +
4Ż2X ′′

X
fG +

4Z ′2Ẋ

X
ḟG − 4Ż2X ′

X

× fG +
8ẊŻZ ′

X
f ′
G − 8X ′Z ′Ż

X
ḟG − 8Ż2X ′2

X2
fG − 8Ẏ 2Z ′2

Y 2
fG

)

+
1

Z2X4

(
4Ż2f̈G − 4XẊḟG + 4X2f̈G − 4ŻŸ

Y
fG − 8ŻZ̈Ẏ

Y
fG +

12Ż2ẊẎ

XY
fG

− 4Ÿ X2

Y
fG − 8ẊŻZ ′′X

Y 2
fG +

4ẊẎ X

Y
fG − 8Ẏ 2Z ′2

Z2
fG − 12Ż2Ẋ

X
ḟG

)

+
1

Y 4XZ2

(
12Z ′2X ′f ′

G − 8X ′Z ′Z ′′fG − 4X ′Y ′Y fG − 4Z ′2X ′′fG + 4X ′′Y 2fG +
12Z ′2X ′Y ′

Y
fG

)]
,

T
(GT )
22 =

Z2

8π

[
1
2
f +

1
Y 3X3Z2

(
4Ÿ Z ′2fG + 4ẊẎ Y 2fG + 4X ′′Ż2Y fG + 4Z ′′ẊZḟG + 4ẊŻZ ′Zf ′

G

+ 4Ẏ Z ′X ′ZḟG + 4Y ′Z ′Zf̈G + 4X ′Y ′ŻZḟG + 4Z̈Y ′Zf ′
G + 4ŻẎ X ′Zf ′

G − 4X ′Y ′X2fG

− 4ẊŻY ′Zf ′
G − 4ẊẎ Z ′2fG − 4X ′Y ′Ż2fG + 8ẊŻY ′Z ′fG − 8ŻẎ X ′Z ′fG − 8Ż ′X ′Y ZḟG − 8Ż ′Ẏ XZf ′

G

− 8Z̈Y ′Z ′XfG
)

+
1

Y 2X2Z2

(
8Z̈Z ′′fG − 8Ż ′2fG + 4X ′′XfG − 4Ÿ Y fG − fG

× 8Ẏ 2Z ′2

Y
+

16Ż ′ŻX ′

X
fG

)
+

1
X4Y Z

(4Z ′′X ′f ′
G + 4Ÿ ŻḟG + 4X ′′Z ′f ′

G + 4

× ŻẎ f̈G + 4Z̈Ẏ ḟG +
8ŻX ′2

Y
ḟG − 4X ′′Z ′2X3

Y 3Z
fG − 12ŻẊẎ

X
ḟG − 8Z̈ŻẎ

Z
fG − 8X ′Z ′Z ′′X3

Y 3Z
fG

]
,

T
(GT )
01 =

1
8π

[
1

ZX3

(
8ŻX ′f̈G + 8Ż ′ẊḟG − 8Z̈X ′ḟG − 8Ż ′Xf̈G +

8ẊŻẎ

Y
f ′
G − f ′

G

× 8Z̈Ẏ X

Y
− 12Ż2X ′

Z
ḟG +

8Ż ′ŻX

Z
ḟG − 8Ẏ Z ′Ẋ

Y
ḟG

)

+
1

Y 2X2Z

(
8X ′2Z ′ḟG + 8ŻẎ 2f ′

G − 8Ẏ 2Z ′ḟG − 8ŻX ′2f ′
G + 8Ẏ Z ′Y f̈G + 8Ż ′Ẏ Y ḟG + 8Ż ′X ′Xf ′

G

− 8Z ′′X ′XḟG +
4Z ′2X ′X

Z
ḟG − 4Ż2Ẏ Y

Z
f ′
G − 8Ẏ Z ′ŻY

Z
ḟG +

8ŻX ′Z ′X

Z
f ′
G − 8ŻX ′Y ′X

Y
f ′
G

)

+
1

Z2

(
12Z ′2Ẏ

Y 3
f ′
G − 4X ′

X
ḟG − 4Ẏ

Y
f ′
G − 8Z ′′Ẏ Z

Y 3
f ′
G + f ′

G
8Ż ′Y ′Z

Y 3
− 8Ż ′Z ′

Y 2
f ′
G +

8Y ′Z ′X ′Z

XY 3
ḟG

)]
,

T
(G,T )
33 = sin2 θT

(G,T )
22 .
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