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Abstract. A theoretical study is presented for the oblique propagation of linear and nonlinear electron
acoustic waves (EAWs) in a two-electron population, dissipative, quantum magnetoplasma. The linear
dispersion relation yields a complex plasma wave frequency ω, denoting a decaying wave, with the amount
of damping directly related to the strength of the dissipative force. The small amplitude analysis for
the nonlinear structures using the reductive perturbation technique, gives the Korteweg-de Vries-Burgers
equation. The numerical solutions depict a soliton for negligible dissipation and a monotonic shock for
relatively large dissipation. For intermediate values, the solutions are damped oscillations. The dispersion
of the EAWs gets enhanced with increase in strength of the magnetic field and a higher value of the ratio
of hot to cold electron density. The stability analysis is also carried out, and the corresponding phase
portraits are plotted to observe the trajectories. Of the two critical points, one is a saddle point, hence
always unstable, while the other is a stable focus or a stable node, depending on the relative strengths of
the plasma parameters.

1 Introduction

Electron acoustic waves (EAWs), initially conceived by Fried and Gould way back in 1961 [1], are studied widely because
of their potential importance in a variety of phenomena, from naturally occurring space plasmas [2–4], geomagnetic
tail [5,6], to those artificially created in the laboratory [7–9]. These nonlinear waves exist in a two-temperature (hot
and cold) electron plasma, or electron-ion plasma with the ions hotter than the electrons [10]. For the generation of
such EAWs in a non-thermal plasma consisting of two species of electrons at two different temperatures, against a
stationary background of neutralizing ions, the required inertia is provided by the cold electrons whereas the restoring
force is obtained from the thermal pressure provided by the inertialess hot electrons [11]. Typically, the frequency
of these waves is much higher as compared to the ion plasma frequency. The easier mobility of the cold electrons
as compared to the heavier ions ensures stronger Landau damping of EAWs than ion-acoustic waves [12]. The hot
electrons being inertialess, the dynamics of the EAWs is primarily related to the dynamics of the cold electrons.

Most studies on EAWs are in classical plasma [13–25]. However, quantum effects become significant at very high
densities like laser produced plasmas [26–29] and in dense astrophysical environments [30–33]. In the present work,
we shall study nonlinear wave propagation in a two-electron population dense quantum plasma, in the presence of an
external magnetic field, and a dissipative force. Since these waves exist at moderately small amplitudes [13], we shall
restrict ourselves to small amplitude analysis in this article. It is worth mentioning here that propagation of IAWs (ion
acoustic waves) in degenerate relativistic quantum plasma with heavy nuclei, was taken up in ref. [34] whereas EAWs
propagation was studied in a magnetised quantum plasma in ref. [11], but without any dissipation. So our emphasis
in the present study shall be on this additional term.
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The organization of the work is as follows: in sect. 2 we introduce the basic governing equations and carry out the
linear analysis in sect. 3. To study the small amplitude weak dissipative waves, we apply the reductive perturbation
theory in sect. 4 and arrive at the dissipative Korteweg-de Vries-Burgers (KdVB) equation. We perform the stability
analysis and verify our observations by drawing the corresponding trajectories in the phase plane. The numerical
solutions are plotted using Mathematica. In fact, our focus is to see the effect of the different plasma parameters like
dissipation, fractional density of hot to cold electrons and the magnetic field on the EAWs. Finally, we conclude our
observations in sect. 5.

2 Nonlinear governing equations

The subject of our study is a dense magnetoplasma, consisting of hot electrons, cold electrons and stationary ions
in the background [11]. Now, in a quantum plasma, the Fermi temperature TFj is directly related to the electron
concentration nj through the formula TFj = (3π2nj)2/3h̄2/2mkB , where j = h, c denotes hot and cold electrons
respectively, nj is the total number density, kB is the Boltzman constant, and m is the electron mass. So, basically,
hot and cold electrons refer to thickly and sparsely populated electrons, respectively. Our assumptions in this work are
nc � nh ⇒ TFc � TFh. So the Fermi pressure due to cold electrons could be ignored in comparison with the hot
electrons [35]. To avoid Landau damping, the phase speed of EAWs is assumed to be large as compared to the cold
electron Fermi velocity, but small as compared to the Fermi velocity of hot electrons: vFc � ω/k � vFh, where the
Fermi speed vFj =

√
2kBTFj/m. Furthermore, we assume the external magnetic field to be pointed in the z direction:

�B = B0ẑ, and propagation to be in the x-z plane. If nj0 represents the equilibrium value of the total number density
of the i-th species, then charge neutrality condition at equilibrium implies nh0 + nc0 = Zini0, i standing for ion. Now,
in 3 dimensions, the hot electron pressure is given by

Ph =
1
5
mv2

Fhnh0

(
nh

nh0

)5/3

. (1)

We shall study the dynamics of electron acoustic waves (EAWs) in the low-frequency limit: ω � ωcc where the
electron Larmor frequency ωcc = eB0

mc . The basic governing equations for such a plasma in the presence of cold electron
kinematic viscosity μ, in the framework of quantum magneto hydrodynamic (QMHD) model are given as [36,37]

∂nc

∂t
+ �∇ · (nc�uc) = 0, (2)

∂�uc

∂t
+

(
�uc · �∇

)
�uc =

e

m
�∇Φ − e

mc

(
�uc × �B

)
+

h̄2

2m2
�∇

(
1√
nc

)
∇2√nc +

μ

mnc
∇2�uc, (3)

e

m
�∇Φ − 1

mnh

�∇Ph +
h̄2

2m2
�∇

(
1√
nh

)
∇2√nh = 0, (4)

∇2Φ = 4πe (nc + nh − Zini) . (5)

Next we apply the following normalizations:

r̄ =
ωpc

cse
r, t̄ = ωpct, n̄j =

nj

nj0
, ūj =

uj

cse
, Φ̄ =

Φ

Φ0
, ω̄cc =

ωcc

ωpc
, P̄h =

Ph

2kBTFhnh0
, (6)

where Φ0 = 2kBTFh/e, the ratio of background hot to cold electron number densities is denoted as α = nh0/nc0, and
the quantum electron acoustic speed and the cold electron plasma speed ωpc are respectively given by

ωpc =

√
4πnc0e2

m
, cse =

√
2kBTFh

mα
. (7)

Now, nh0 � nc0 implies ω−1
pc � ω−1

ph ; i.e., the oscillation time scale of the cold electrons (∼ ω−1
pc ) is much greater

than that of the hot electrons (∼ ω−1
ph ). In this slow time scale, the hot electrons move fast enough to maintain

thermodynamic equilibrium.
Defining the non-dimensional quantum parameter H as

H =
h̄ωpc

mc2
se

=
h̄eα

kBTF

√
πnc0

m
, (8)

it is easy to observe that H is directly proportional to α.
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Dropping the bars for simplicity of notation, the basic set of normalized governing equations in the framework of
QMHD model, for a dissipative 2-electron quantum plasma, in the presence of a magnetic field may be written as

∂nc

∂t
+ �∇ · (nc�uc) = 0, (9)

∂�uc

∂t
+

(
�uc · �∇

)
�uc = α�∇φ − ωcc (�uc × ẑ) +

H2

2
�∇

(
1√
nc

)
∇2√nc + η∇2�uc, (10)

�∇Φ − 1
3
n
−1/3
h

�∇nh +
H2

2
�∇

(
1√
nh

)
∇2√nh = 0, (11)

∇2Φ =
1
α

nc + nh −
(

1 +
1
α

)
, (12)

where η = μ
mnc

is the cold electron dynamic viscosity, and η̄ = η
ω2

pc

c2
se

is its normalized value. In component form, the
governing equations reduce to

∂nc

∂t
+

∂

∂x
(ncucx) +

∂

∂z
(ncucz) = 0, (13)

∂ucx

∂t
+

(
ucx

∂

∂x
+ ucz

∂

∂z

)
ucx = α

∂φ

∂x
− ωccucy +

H2

2
∂

∂x

{
1√
nc

(
∂2

∂x2
+

∂2

∂z2

)√
nc

}
+ η

(
∂2

∂x2
+

∂2

∂z2

)
ucx, (14)

∂ucy

∂t
+

(
ucx

∂

∂x
+ ucz

∂

∂z

)
ucy = ωccucx, (15)

∂ucz

∂t
+

(
ucx

∂

∂x
+ ucz

∂

∂z

)
ucz = α

∂Φ

∂z
− ωccucy +

H2

2
∂

∂z

{
1√
nc

(
∂2

∂x2
+

∂2

∂z2

)√
nc

}
+ η

(
∂2

∂x2
+

∂2

∂z2

)
ucz, (16)

∂Φ

∂x
− 1

3
n
−1/3
h

∂nh

∂x
+

H2

2
∂

∂x

{
1√
nc

(
∂2

∂x2
+

∂2

∂z2

)√
nc

}
= 0, (17)

∂Φ

∂z
− 1

3
n
−1/3
h

∂nh

∂z
+

H2

2
∂

∂z

{
1√
nc

(
∂2

∂x2
+

∂2

∂z2

)√
nc

}
= 0, (18)

∂2Φ

∂x2
+

∂2Φ

∂z2
=

1
α

nc + nh −
(

1 +
1
α

)
. (19)

The full set of seven equations —viz., (13) to (19)— describes the system. Now, to solve this entire set of equations is
a tedious task, if not an impossible one. So, to have an insight into the system behaviour, we shall adopt different ap-
proximation methods like linearization, stability analysis, reductive perturbation technique to see the small amplitude
structures, etc. In this regard, a phase portrait is a powerful graphical tool in visualizing the behaviour of the solutions
in the long run, without actually solving the set of differential equations. We shall elaborate on these approaches one
by one.

3 Linear analysis

In order to deduce a linear dispersion relation for the plasma waves, we assume the following expansions:

nc,h = 1 + n
(1)
c,h, φ = 0 + φ(1), uc,j = 0 + u

(1)
c,j (j = x, y, z), (20)

with the perturbations n
(1)
c,h, φ(1) and u

(1)
c,j proportional to ei(kx−ωt). Here ω and k are the perpendicular components

of wave frequency and wave vector, respectively. After plugging in eq. (20) into eqs. (13)–(19), and considering the
fact that the perturbations are proportional to ei(kx−ωt), one obtains a quartic equation in ω,

ω4 + id1ω
3 + d2ω

2 + id3ω + d4 = 0, (21)
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Fig. 1. (a) Plot of Re[ω] and (b) Plot of Im[ω], for different values of the dissipation parameter η, for α = 2, TF = 1.5× 107 K,
B0 = 3 × 1010 G, nh0 = 1.1 × 1026 cm−3 and lz = 0.6. (c) Plot of Re[ω] for different values of α, for η = 0.1, TF = 1.5 × 107 K,
B0 = 3 × 1010 G, lz = 0.4.

where

d1 = 2ηk2, (22)

d2 = −
{

η2k4 + ω2
cc +

H2k4

4
+

1
3 + H2k4

4

σ

}

, (23)

d3 = −η

{

ω2
cck

2 + k4

(
H2k4

4
+

1
3 + H2k4

4

σ

)}

, (24)

d4 = ω2
cck

2
z

(
H2k4

4
+

1
3 + H2k4

4

σ

)

, (25)

with

σ = 1 +
k2

3
+

H2k2

4
. (26)

In the absence of a dissipative term (η = 0), d1, d3 = 0, and we get back the result given in ref. [11].
We plot the real and imaginary parts of the wave frequency, ωR and ωI , respectively, in fig. 1, against the wavenum-

ber k. Equation (21) has two real and two imaginary roots. The real part of the wave frequency (ωR) is hardly affected
by η, as seen in the left plot of fig. 1. The imaginary roots ωI are negative, signifying damped or decaying wave.
Increasing the dissipative term η, increases the magnitude of ωI —thus the wave gets more and more damped, as seen
in the middle plot of fig. 1. In the plot on the right, we show the variation of Re[ω] w.r.t. α. It is observed that the
magnitude of ωR increases with increase in α, i.e., decrease in the number of cold electrons for a fixed number of hot
electrons. Furthermore, it is observed that B0 has a very little effect on ωR, while ωI remains unaffected by changes
in α as well as B0; hence these plots are not drawn here. As expected, ωI is influenced by the dissipation term η only.

4 Small amplitude nonlinear structures

To investigate the propagation of electron-acoustic solitary waves in a magnetized quantum plasma, for weak dissipa-
tion, we adopt the standard reductive perturbation technique [38], stretching the independent variables as

ξ = ε1/2 (lxx + lzz − Mt) , τ = ε3/2t, (27)

where M is the Mach number, ε determines the strength of nonlinearity, and lx, lz are the direction cosines of the
wave vector k along the x and z axes respectively, with l2x + l2z = 1. All physical quantities can be expanded in terms
of power series in ε, about their equilibrium values as

nc,h = 1 + εn
(1)
c,h + ε2n

(2)
c,h + . . . ,

φ = εφ(1) + ε2φ(2) + . . . ,

uz = εu(1)
z + ε2u(2)

z + ε3u(3)
z + . . . ,

ux,y = ε3/2u(1)
x,y + ε2u(2)

x,y + ε5/2u(3)
x,y + . . . . (28)
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The strong magnetic field in the z direction introduces the anisotropy in the velocity components ux,y,z. After plugging
in eqs. (27) and (28) into eqs. (13)–(19), the first-order equations turn out to be

u(1)
cx =0, u(1)

cy =α
lx
ωcc

∂

∂ξ
φ(1) , u(1)

cz =−α
lz
M

φ(1), u(2)
cx =−α

lxM

ωcc

∂2

∂ξ2
φ(1) , u(2)

cy =0, n(1)
c =−αn

(1)
h =−3αφ(1),

(29)
whereas the second-order equations are obtained as

∂2

∂ξ2
φ(1) =

n
(2)
c

α
+ n

(2)
h ,

∂n
(1)
c

∂τ
− M

∂n
(2)
c

∂ξ
+ 2Mn(1)

c

∂n
(1)
c

∂ξ
+

(

lx
∂u

(2)
cx

∂ξ
+ lz

∂u
(2)
cz

∂ξ

)

= 0,

∂φ(1)

∂τ
+

M2

αlz

∂u
(2)
cz

∂ξ
− αl2z

M
φ(1) ∂φ(1)

∂ξ
+ M

∂φ(2)

∂ξ
+

H2

4
M

α

∂3n
(1)
c

∂ξ3
− η0

∂2φ(1)

∂ξ2
= 0,

∂φ(2)

∂ξ
+ φ(1) ∂φ(1)

∂ξ
+

3
4
H2 ∂3φ(1)

∂ξ3
− 1

3
∂n

(2)
h

∂ξ
= 0, (30)

with lz = 3M2. Since viscosity is a characteristic property of the medium, for weak values of this parameter, it can
be stretched as η = η0ε

1/2 [13,39–41]. Mathematically, this is consistent with the nonlinear perturbation.
Equations (29) and (30) combined give the final equation as the Korteweg-de Vries-Burgers (KdVB) equation:

∂n
(1)
c

∂τ
+ A1n

(1)
c

∂n
(1)
c

∂ξ
+ A2

∂3n
(1)
c

∂ξ3
+ A3

∂2n
(1)
c

∂ξ2
= 0, (31)

where

A1 = M

{
1

2lz
+

1
6α

+
1

9α2

}
,

A2 =
M

2

{
1
3

+
1

3ωcc

(
1 − l2z

)
− 3

2
H2

}
,

A3 = −1
2
η0, (32)

with the quantum term H proportional to α, as defined in eq. (8). Thus A1 is the nonlinearity coefficient, A2 signifies
dispersion and A3 denotes dissipation. Evidently, for small amplitude waves, η is solely responsible for the dissipation
in the system, while the external magnetic field determines the dispersion. The quantum effects also contribute to
the dispersion of the nonlinear waves. In the absence of any dissipative force, eq. (31) reduces to the well known
Korteweg-de Vries (KdV) equation with soliton solution, whereas for strong dissipation A3 dominates over A2, giving
the Burgers equation with shock solution. Decreasing α increases the cold electron concentration of the ensemble,
thus increasing the nonlinearity coefficient A1. We shall now look into the stability of eq. (31) and plot its solutions
numerically, using Mathematica.

4.1 Stability analysis

To examine the stationary solutions of eq. (31), we introduce a new variable

ζ = ξ − Uτ, (33)

where U is a constant velocity. To obtain the travelling wave solution to eq. (31), we transform it into the stationary
wave frame

∂3n
(1)
c

dζ3
=

U

A2

dn
(1)
c

dζ
− A1

A2
n(1)

c

dn
(1)
c

dζ
− A3

A2

d2n
(1)
c

dζ2
(34)

Now we integrate eq. (34) w.r.t. ζ once, subject to the boundary condition n
(1)
c → 1 and dn

(1)
c /dζ → 0, as ζ → ∞, to

obtain
∂2n

(1)
c

dζ2
=

U

A2
n(1)

c − A1

A2

n
(1) 2
c

2
− A3

A2

dn
(1)
c

dζ
+

1
A2

(
A1

2
− U

)
. (35)
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Now, the above second-order equation (35) can be written as a system of two first-order equations as

dn
(1)
c

dζ
= n̄ = P

(
n(1)

c , n̄
)

(say)

dn̄

dζ
= − A1

2A2
n(1) 2

c +
U

A2
n(1)

c −
(

U

A2
− A1

2A2

)
− A3

A2
n̄ = Q

(
n(1)

c , n̄
)

(say). (36)

In the (n(1)
c , n̄) plane, the set of eqs. (36) has two critical points. In this particular case, the roots of the corresponding

linearized system turn out to be (1, 0) and (2U
A1

− 1, 0). For stability analysis, we have to solve the eigenvalue equation
|J − λI| = 0, where I is the identity matrix and the Jacobian J , given by

J =

⎛

⎜⎜
⎜⎜
⎝

∂P

∂n
(1)
c

∂P

∂n̄

∂Q

∂n
(1)
c

∂Q

∂n̄

⎞

⎟⎟
⎟⎟
⎠

, (37)

is evaluated at the critical points. The roots (say, λ1, λ2) of the eigenvalue equation determine the stability of the
system [42]. If λ1, λ2 are real and distinct, the critical point is a node —if both are positive, the node is unstable,
whereas if both are negative the node is stable. If λ1, λ2 are of opposite sign, the critical point is called a saddle point;
it is always unstable. On the other hand, complex eigenvalues denote a spiral point —unstable focus if the real part is
positive, and stable focus if the real part is negative. We shall check the stability at the critical points for physically
relevant values of the parameters, remembering that A3 is negative. In dense astrophysical environment, typical values
of the plasma parameters are: magnetic field B0 ∼ 1010 G to 1011 G, Fermi temperature Tf ∼ 108 K to 1010 K and
nh0 ∼ 1029 cm−3 to 1031 cm−3 [11,43]. For nc0 � nh0, we observe that A2 < 0, so that

– at the critical point (1, 0), λ = −A3
A2

± 1
A2

√
A2

3 + 4(U − A1)A2.

Thus, the point (1, 0) is a saddle point; hence always unstable

– at the critical point (2U
A1

− 1, 0), λ = −A3
A2

± 1
A2

√
A2

3 − 4(U − A1)A2.

Hence, for A2
3 > 4(U − A1)A2, the point (2U

A1
− 1, 0) is a stable node, and the shock wave has a monotonic profile,

whereas for A2
3 < 4(U −A1)A2, the point (2U

A1
−1, 0) is a stable focus, and the shock wave has an oscillatory profile.

We shall endorse our stability analysis with phase portrait diagrams and numerical plots in the next section.

4.2 Numerical plots

Now, as stated earlier, the dynamics of EAWs is mainly related to the dynamics of the cold electrons. So we shall
study the influence of the dissipative force η, the external magnetic field B, and the hot to cold electron ratio α, on
the leading-order cold electron density n

(1)
c , when EAWs propagate in a dissipative, quantum magnetoplasma. For

this purpose, we find the numerical solution to eq. (31) using Mathematica, under boundary conditions n
(1)
c → 1 and

dn
(1)
c /dξ → 0 as ξ → ±∞. We plot the cold electron concentration n

(1)
c against ξ —for various values of η, α and

B in fig. 2, fig. 4 and fig. 6, respectively. In the absence of any dissipative force (i.e., for negligible values of η), we
have a soliton solution as shown in fig. 2(a). This is expected as the KdVB eq. (31) reduces to the KdV equation.
As η is increased, the waves get more and more damped —fig. 2(b) and 2(c). Finally, at some critical value of η, the
Burgers term predominates and we get a monotonic shock solution as observed in fig. 2(d). The corresponding phase
portraits are plotted in fig. 3. The blue dashed curve denotes the soliton solution of fig. 2(a). The oscillatory plot in
fig. 2(b) corresponds to the solid magenta spiral in fig. 3. The very damped plot of fig. 2(c) is shown by the black
dot-dashed curve in fig. 3. Finally the red saddle in fig. 3 corresponds to the monotonic shock solution in fig. 2(d).
Additionally, the phase portraits drawn in fig. 3 indicate that the amplitude of the nonlinear structures decreases with
increasing dissipation. Furthermore, it is evident from fig. 3 that the critical point (1, 0) is an unstable saddle, whereas
the other critical point (2U

A1
− 1, 0) is asymptotically stable. Thus the trajectories plotted in fig. 3 validate the stability

analysis.
The hot to cold electron ratio at equilibrium has just the opposite effect on the shape of the nonlinear structures.

As α decreases, i.e., the relative number density of cold electrons increases, the oscillatory solution gets more and
more damped, along with decrease in dispersion —fig. 4. Figure 5 shows the corresponding phase portraits. The solid
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Fig. 2. Plot of n
(1)
c for different values of η0, for α = 5, TF = 1.5× 108 K, B0 = 5× 1010 G, nh0 = 1.1× 1029 cm−3 and lz = 0.8.

Fig. 3. Plot showing phase portraits n
(1)
c versus dn

(1)
c /dξ for different values of η0, for α = 5, TF = 1.5×108 K, B0 = 5×1010 G,

nh0 = 1.1 × 1029 cm−3 and lz = 0.8.

blue trajectory in fig. 5 is for the lowest value of α, whereas the magenta trajectory is for the highest α value. The
decrease in the amplitude as well as width of the waves with increase in α is quite evident. The stability analysis at
the two critical points is also verified. Now, from eq. (8), the quantum term H is proportional to α. So, the quantum
term H has a similar impact on the nonlinear electron acoustic waves, as that of α.

As observed from the coefficients in eq. (31), the magnetic field B0 is present in the dispersion coefficient A2

only, through the term ωcc. When we plot the numerical solutions for varying B0 in fig. 6, we observe that as the
magnetic field is increased, the dispersion gets enhanced and the oscillations increase, without any change in amplitude.
A relatively weaker magnetic field may not support an oscillatory wave, giving a monotonic shock —fig. 6(a). The
corresponding trajectories in the phase plane are plotted in fig. 7 —the black dotted saddle for the lowest value of B0

and the red dot dashed spiral for its highest value. These plots authenticate the following observations:
– the amplitude of the nonlinear waves is not affected by the magnitude of the external magnetic field;
– a stronger magnetic field enhances dispersion;
– oscillations prevail for a longer time with increase in B0;
– the stability analysis at the 2 critical points is authenticated.
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Fig. 4. Plot of n
(1)
c for different values of α, for η0 = 0.04, TF = 1.5 × 108 K, B0 = 5 × 1010 G, nh0 = 1.1 × 1029 cm−3 and

lz = 0.8.

Fig. 5. Plot showing phase portraits n
(1)
c versus dn

(1)
c /dξ for different values of α, for η0 = 0.04, TF = 1.5 × 108 K, B0 =

5 × 1010 G, nh0 = 1.1 × 1029 cm−3 and lz = 0.8.

5 Summary and conclusions

To summarize, in this study we presented both linear and nonlinear analyses of electron acoustic waves, in a dissipative,
quantum magnetoplasma, with electrons at two different temperatures, in the background of stationary, neutralizing
ions. In contrast to classical plasma, the temperature (Fermi temperature TF ) in quantum plasma is directly related
to the electron concentration n. So, hot and cold electrons (symbolized by subscripts h and c) refer to dense and
sparse populations, respectively. In the approximation of TFc � TFh (i.e., nc � nh), and the phase velocity of
EAWs in between the Fermi velocities of hot and cold electrons (vFc � ω/k � vFh), Landau damping can be avoided.
Additionally, the hot electrons can be treated as inertialess fermions while the cold electrons contribute to the dynamics
of the system. Applying the reductive perturbation theory, we restricted our study to a weak dissipative force. The
justification for doing so lies in the moderately small amplitudes of these electron acoustic waves. Our aim was to
primarily see the effects of the external magnetic field B0, dissipation η, and the ratio of hot to cold electrons α, on
the shape of the nonlinear structures.
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Fig. 6. Plot of n
(1)
c for different values of B0, for η0 = 0.1, TF = 1.5 × 108 K, α = 4.6, nh0 = 1.1 × 1029 cm−3 and lz = 0.8.

Fig. 7. Plot showing phase portraits n
(1)
c versus dn

(1)
c /dξ for different values of B0, for η0 = 0.1, TF = 1.5 × 108 K, α = 4.6,

nh0 = 1.1 × 1029 cm−3 and lz = 0.8.

The linear analysis yielded a quartic dispersion relation in ω, which imparts an imaginary component to the wave
frequency. This produces a decaying wave, with the damping increasing with increasing dissipation. At the same time,
the real part of the frequency increases with the fractional decrease in the concentration of cold electrons. These
observations were corroborated by graphical plots in fig. 1.

The small amplitude analysis yielded the Korteweg-de Vries-Burgers (KdVB) equation, with the interplay between
dissipation and dispersion being determined by the different plasma parameters like η, α and B0. Interestingly, the
absence of any dissipative force renders KdV equation, with soliton solution, whereas strong dissipation gives the
Burgers equation with monotonic shock solution. The solutions to the KdVB equation were obtained numerically,
using Mathematica. For negligible dissipation, the plot shows a soliton, as expected, whereas for relatively large
dissipation, the profile is a monotonic shock. In between, the nonlinear structures are damped oscillations, with the
amplitude steadily decreasing with increasing η. These are depicted in fig. 2. On the other hand, the ratio of hot to
cold electron concentration has just the opposite effect on the shape of the nonlinear structures —fig. 4. The damping
increases (with reduced amplitude) with decrease in the value of α. Additionally, the dispersion is directly related to
α. The magnetic field, however, has no impact on the amplitude of the nonlinear waves —fig. 6. A stronger magnetic
field only enhances the dispersion of these waves, with increased oscillations. A relatively weaker magnetic field may
not support an oscillatory wave, giving a monotonic shock.
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We also carried out the stability analysis of the final KdVB equation (31). Of the two critical points obtained, the
point (1, 0) is always a saddle point, and hence unstable. The other critical point is a stable focus or a stable node,
depending on the relative strengths of the plasma parameters. These findings were endorsed by the phase portrait
trajectories plotted in figs. 3, 5 and 7, for varying η, α and B0, respectively.

To conclude, the results in this study, along with figs. 1 to 7, reveal the following observations:

– the linear dispersion relation gives a complex wave frequency, indicating a decaying wave, with the amount of
damping being determined by the dissipation term η;

– the amplitude of the nonlinear waves is affected directly by η, indirectly by α, and not at all by B0;
– the dispersion gets enhanced by a stronger magnetic field and a higher value of α;
– oscillations prevail for a longer time with increase in B0;
– the stability analysis yields 2 critical points —an unstable saddle point and an asymptotically stable focus or node,

depending on the values of the plasma parameters.

With the existence of such waves in laser produced plasmas, dense astrophysical environment and geomagnetic tail,
it is anticipated that our findings in this study might help in understanding certain features of the finite-amplitude
localized electron acoustic solitary pulses in a two-population electron Fermi gas. We propose to extend our work to
arbitrary amplitude nonlinear structures in the near future.

One of the authors (AS) thanks the Department of Science and Technology, Govt. of India, for financial assistance, through its
grant SR/WOS-A/PM-14/2016.
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