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Abstract. In this paper, we have derived field equations of Brans-Dicke (Phys. Rev. 124, 925 (1961)) theory
of gravitation with the help of an axially symmetric anisotropic Bianchi-type space-time in the presence
of dark matter and anisotropic modified holographic Ricci dark energy. We have presented a cosmological
model solving the field equations. We have used i) the hybrid expansion law, ii) a relation between metric
potentials and iii) the modified holographic Ricci dark energy defined by Chen and Jing (Phys. Lett. B
679, 144 (2009)) to solve the field equations. We have determined the cosmological parameters, namely,
EoS parameter, matter energy density, anisotropic dark energy density, Skewness parameter, deceleration
and jerk parameters. A detailed physical discussion of these dynamical parameters is presented through a
graphical representation. We observe that we have a quintessence model which exhibits a smooth transition
from decelerated phase to an accelerated phase of the universe. This situation is quite in agreement with
the scenario of modern cosmology.

1 Introduction

The accelerated expansion of our universe is established by the recent cosmological observations [1,2]. It is said that
an exotic type of unknown force with positive energy density and huge negative pressure known as “dark energy” (DE)
is responsible for this cosmic acceleration. Although around 70% of the mass and energy content of our universe is
occupied with this type of DE, its nature, even today, is an open problem in cosmology. Usually the behaviour of DE
phenomena is characterized with the equation of state (EoS) parameter ω(= p/ρ), where p is pressure and ρ is energy
density. The EoS parameter ω lying in the range (−1,−1/3) represents the quintessence DE model, ω = −1 describes
the vacuum DE, commonly known as cosmological constant or ΛCDM model and ω < −1 describes the DE model
known as the phantom model. This phantom DE model can lead to a future unavoidable singularity of the space-time.

Cosmologists believe that the simplest DE model is the cosmological constant but it faces some theoretical prob-
lems [3,4] like “fine tuning problem” (some precisely small value) and “coincidence problem” (why dark matter and
DE are of almost the same order at the present epoch even though the universe is expanding?). Hence, physicists
from all over the globe have proposed various dynamical DE models, considered as an alternative way to solve these
problems. Mainly these models are classified into two categories: scalar field models which include the quintessence,
phantom, k-essence, tachyon, quintom [5–10] and the interacting DE models including the family of Chaplygin gas,
braneworld, holographic DE (HDE), agegraphic DE models [11–16], etc. In another scenario, modification of standard
Einstein-Hilbert action results in various modified theories of gravity. Some of the modified theories of gravity are
Brans-Dicke scalar-tensor theory [17], f(R) and f(R, T ) theories [18–20], (where R is the curvature scalar and T is
the trace of the energy momentum tensor), etc. Even after all these attempts, the origin, evolution and true nature of
DE have not been convincingly explained yet.
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Among the above-mentioned candidates for DE, a very interesting model which is attracting more and more
attention is the so-called “holographic dark energy (HDE)”. This is based on the holographic principle which states
that the number of degrees freedom of a physical system should scale with its bounding area L2 rather than with its
volume [21] and it should be constrained by an infrared (IR) cut off. Cohen et al. [22], motivated by this principle,
suggested that the vacuum energy density is proportional to the Hubble scale L ≈ H−1. Li [23] has defined the energy
density of holographic dark energy as

ρΛ = 3c2M2
plL

−2, (1)

where L is the IR cut off radius, c is a constant and

M2
pl =

1
8πG

(2)

is the Planck mass. The IR cut off has been considered as the Hubble radius or future event horizon. Later Gao
et al. [24] have assumed that the future event horizon is replaced by the inverse of the Ricci scalar curvature, i.e.,
L ≈ |R|− 1

2 . In this case the model is called Ricci dark energy model. Also Granda and Oliveros [25,26] proposed a
new holographic Ricci dark energy model with energy density given by

ρΛ =
3

8πG

(
ξH2 + ηḢ

)
, (3)

and, subsequently, Chen and Jing [27] have modified this model and named it as modified holographic Ricci dark
energy (MHRDE) with energy density given by

ρΛ =
3

8πG

(
ξH2 + ηḢ + ζḦH−1

)
, (4)

where an overhead dot indicates differentiation with respect to t and G is the gravitational constant which is taken as
a function of time.

The time variation of the gravitational constant G is the natural consequence of Dirac’s “Large Number Hypoth-
esis” [28]. Inspired by this hypothesis, many attempts have been made to obtain physical and cosmological results
about the universe. The idea of Brans-Dicke (BD) scalar-tensor theory [17] and its generalization to other forms of
scalar-tensor theories like general scalar-tensor theories with the special conditions given by Wagoner [29] arose from
variable-G theories. In these theories the inverse of gravitational constant G is replaced by a scalar field φ coupling to
gravity through a new parameter. Further, it was proven through various observations that G could be a function of
time [30–32]. Setare [33,34] and Jamil et al. [35] have investigated interacting HDE models with or without varying G
in order to explain the current status of the universe. Sharif and Jawad [36] have explored interacting modified HDE
in the Kaluza-Klein universe.

BD theory introduces a scalar field φ, in addition to the metric tensor fields gij , which plays the role of inverse of
the gravitational constant G. The gravitational field equations of BD theory for the combined scalar and tensor fields
are given by

Gij = −8πφ−1Tij − wφ−2

(
φ,iφ,j −

1
2
gijφ,kφ,k

)
− φ−1

(
φi;j − gijφ;k

,k
)

(5)

and
φ;k

,k = 8π(3 + 2w)−1T, (6)

where Gij = Rij − 1
2Rgij is an Einstein tensor, R is the scalar curvature, w is the BD coupling parameter Tij is

the stress energy tensor of the matter and the comma and semicolon denote partial and covariant differentiations,
respectively.

Also, we have the energy conservation equation

T ij
,j = 0. (7)

Since the family of HDE density belongs to a dynamical cosmological model, a dynamical frame instead of Einstein
general theory is necessary to describe it. Hence it is justified to study the family of HDE models in the framework of
BD theory.

Recent experimental data and theoretical arguments support the existence of an amount of anisotropy in the
early stage of evolution of the universe which evolves into an isotropy at late times. Hence it becomes necessary to
investigate the evolution of the universe with the anisotropic background. Since Bianchi-type space-times are spatially
homogeneous and anisotropic, several Bianchi-type cosmological models both in general relativity and in modified
theories of gravitation have been studied in the presence of different physical matter distributions. In particular,
Kiran et al. [37] have obtained minimally interacting Bianchi type-V dark energy models in BD scalar-tensor theory of
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gravitation. Adhav et al. [38] have studied interacting holographic dark energy models in Bianchi space-times. Recently,
many authors in the literature have investigated HDE and MHRDE cosmological models within the framework of
Bianchi space-times using the constant deceleration parameter and the time varying deceleration parameter [39–42].
Jawad et al. [43] have discussed MHRDE in Chameleon BD cosmology with non-minimally matter coupling of the
scalar field and its thermodynamic consequence. Rao and Prasanthi [44] have explored some Bianchi-type MHRDE
models in Saez-Ballester scalar-tensor theory of gravity with a variable deceleration parameter. Santhi et al. [45,46]
have studied the Bianchi-type-III and -VI0 MHRDE model within the framework of general relativity and BD theory,
and discussed various dynamical properties of the models. Reddy [47] has discussed the Bianchi-type-V MHRDE model
of the universe in Saez-Ballester scalar-tensor theory of gravitation for different dynamical average scale factors.

Motivated by the above discussion, we investigate, in this paper, the axially symmetric Bianchi-type modified
holographic Ricci dark energy model in BD theory of gravitation. Our model has not been, so far, considered in the
literature. Also, this model gives a clear and simple cosmological evolution of the dark energy universe. The outline of
this paper is as follows: in sect. 2 we derive the BD field equations. Section 3 deals with the solution and presentation of
the model. Section 4 is concerned with physical and kinematical parameters of the model, and their physical discussion
using graphical representations is presented in sect. 5. The last section contains our concluding remarks.

2 Brans-Dicke field equation

In this section, we re-write BD field equations in the presence of anisotropic matter distribution and modified holo-
graphic Ricci dark energy and derive them explicitly with the help of anisotropic axially symmetric metric given by

ds2 = dt2 − X2dx2 − Y 2
(
dy2 + dz2

)
, (8)

where X and Y are functions of cosmic time t only.
In this particular case, BD field equations (5)–(7) take the form

Rij −
1
2
Rgij = −8πφ−1

(
T ′

ij + T ij

)
− wφ−2

(
φ,iφ,j −

1
2
gijφ,kφ,k

)
− ϕ−1

(
φi;j − gijφ,k

,k
)

, (9)

where T ′
ij and T ij are energy-momentum tensors for matter and modified holographic Ricci dark energy respectively

which are defined as

T ′
ij = ρMuiuj , i, j = 1, 2, 3, 4, (10)

T ij = (pΛ + ρΛ)uiuj − pΛgij , (11)

where ρM is the matter energy density, pΛ is the energy density of the modified holographic Ricci dark energy and
the other symbols have their usual meaning.

Now, parameterizing, we have, from eq. (11)

T
j

i = diag[−1, ωx, ωy, ωz]ρΛ

= diag[−1, ω, (ω + δ), (ω + γ)]ρΛ, (12)

where ω we have used the EoS parameter given by

ωρΛ = PΛ, (13)

and ωx, ωy, ωz are the directional EoS parameters along the x-, y- and z-axis, respectively. For the sake of simplicity
we choose ωx = ω and the skewness parameters δ and γ are the deviations from ω on the y and z axes, respectively.
Also the assumed axial symmetry yields

δ = γ. (14)

The scalar field satisfies the wave equation

φ,k
;k =

8π

3 + 2w
(T ′ + T ) (15)

and the energy conservation equation takes the form

(T ′
ij + T ij);j = 0. (16)
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Now using a co-moving coordinate system and eqs. (9)–(16) we obtain the field equations of BD theory for the
metric (1) in the following explicit form:

Ẍ

X
+

Ÿ

Y
+

ẊẎ

XY
− w

2
φ̇2

φ2
− φ̈

φ
− φ̇

φ

(
Ẋ

X
+

Ẏ

Y

)
= −8πφ−1(ω + δ)ρΛ, (17)

2
Ÿ

Y
+

Ẏ 2

Y 2
− w

2
φ̇2

φ2
− φ̈

φ
− 2

φ̇

φ

Ẏ

Y
= −8πφ−1ωρΛ, (18)

2
ẊẎ

XY
+

Ẏ 2

Y 2
+

w

2
φ̇2

φ2
− φ̇

φ

(
Ẋ

X
+ 2

Ẏ

Y

)
= 8πφ−1(ρM + ρΛ), (19)

φ̈ + φ̇

(
Ẋ

X
+ 2

Ẏ

Y

)
= 8π(3 + 2w)−1(ρM + ρΛ − (3ω + 2δ)) (20)

and the conservation equation takes the form

ρ̇M + ρ̇Λ +

(
Ẋ

X
+ 2

Ẏ

Y

)
ρM +

(
Ẋ

X
+ 2

Ẏ

Y

)
(1 + ω)ρΛ + 2ρΛδ

Ẏ

Y
= 0. (21)

Here an overhead dot denotes differentiation with respect to cosmic time t.

3 Modified holographic Ricci dark energy model

In this section, we present a modified holographic Ricci dark energy model by solving the field equations using some
physically valid conditions.

The field equations (17)–(21) are a set of four independent equations (the conservation eq. (21) being the conse-
quence of eqs. (17)–(20)) in seven unknowns X, Y , φ, ρM , ρΛ, ω and δ. Hence to get a determinate solution we need
three more conditions. Therefore we use the following physically viable conditions which have been extensively used
in the literature.

i) The shear scalar σ2 is proportional to the scalar expansion θ, which gives us [48]

X = cY k, (22)

where c is a constant which can be set equal to unity without loss of generality so that we have

X = Y k. (23)

ii) We use the hybrid law expansion for the average scale factor given by Akarsu et al. [49] as

a(t) = (XY 2)
1
3 = a0t

α1eα2t, (24)

where α1 and α2 are non-negative constants. Here, when α1 = 0 we get the exponential law and when α2 = 0
we obtain power law. Thus, eq. (24) gives the combination of exponential and power law which is usually known
as hybrid expansion law. This choice of average scale factor leads to a time-dependent deceleration parameter.
The solution gives the inflation and radiation dominance era with subsequent transition from the decelerating to
the accelerating phase of the universe. This type of average scale factor has already been considered by many
authors [50,51].

iii) We use modified holographic Ricci dark energy defined by eq. (4) (using the fact that φ plays the role of G−1 in
BD theory) in the form

ρΛ =
3φ

8π

(
ξH2 + ηḢ + ζḦH−1

)
. (25)

Also, since the field equations are highly non-linear we use a power law between BD scalar field and the average
scale factor of the universe in the form

φ α am,

so that
φ = φ0a

m, (26)

where φ0 and m are positive constants. This power law has been used by Johri and Sudharsan [52] and Johri and
Desikan [53] to study the evolution of the universe in BD theory.
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Now from eqs. (23) and (24) we obtain the metric potentials as

X =
(
a0t

α1eα2t
) 3k

k+2 , Y =
(
a0t

α1eα2t
) 3

k+2 , (27)

so that the metric (8) can be written as

ds2 = dt2 −
(
a0t

α1eα2t
) 6k

k+2 dx2 −
(
a0t

α1eα2t
) 6

k+2
(
dy2 + dz2

)
. (28)

Also, from eqs. (24) and (26) the BD scalar field in the model is given by

φ = φ0

(
a0t

α1eα2t
)m

. (29)

Hence the axially symmetric modified holographic Ricci dark energy model in BD theory is given by the space-time (28)
with the BD scalar field given by eq. (29).

4 Cosmological parameters of the model

We shall now define and determine the cosmological parameters of the universe given by eqs. (28) and (29), which
play an important role in cosmology. We shall also discuss the physical behaviour of these parameters using graphical
representation.

The spatial volume of the universe given by eq. (28) is

V = a3(t) = XY 2 =
(
a0t

α1eα2t
)3

. (30)

The average Hubble parameter is

H =
1
3

(
Ẋ

X
+ 2

Ẏ

Y

)
=

(α1

t
+ α2

)
. (31)

The scalar expansion in the universe is

θ = 3H =
Ẋ

X
+ 2

Ẏ

Y
=

(α1

t
+ α2

)
. (32)

The shear scalar is

σ2 =
1
2
σijσij =

1
3

[
Ẋ

X
− Ẏ

Y

]2

= 3
(

k − 1
k + 2

)2 (α1

t
+ α2

)2

. (33)

The anisotropy parameter is

Ah =
1
3

3∑
i=1

(
Hi − H

H

)2

= 2
(

k − 1
k + 2

)2

. (34)

Using eq. (32), the deceleration parameter is obtained as

q =
d
dt

(
1
H

)
− 1 = −1 +

α1

(α1 + α2t)2
. (35)

The cosmic jerk parameter j in cosmology is defined as the third derivative of the scale factor with respect to the
cosmic time and is given by [54]

j(t) =
1

H3

...
a

a
= q + 2q2 − q̇

H
. (36)

This is used to discuss the models close to ΛCDM in cosmology. It is believed that the transition of the universe
from decelerated phase to accelerated phase occurs for models with negative value of the deceleration parameter and
positive value of the jerk parameter. The jerk parameter for the ΛCDM model has a constant jerk, j = 1. In this
model, we get

j(t) = 1 − 3α1

(α1 + α2t)2
+

2α1

(α1 + α2t)3
. (37)
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Fig. 1. Plot of BD scalar field versus cosmic time t for a0 = 1, φ0 = 15, α1 = 0.66 and α2 = 0.06.

From eqs. (25) and (32) the energy density of the modified holographic dark energy in the universe is obtained as

ρΛ =
3φo (a0t

α1eα2t)m

8π

[(
ξ
(α1

t
+ α2

)2

− η
α1

t2
+ 2ζ

α1

t3

)]
. (38)

The energy density of matter can be obtained from eqs. (19), (28), (29) and (38) as

ρM =
3φo (a0t

α1eα2t)m

8π

(α1

t
+ α2

)2
[
[18(2k + 1) + 6m(k + 2)2 + wm2(k + 2)2]

2(k + 2)2

]
−

(
ξ
(α1

t
+ α2

)2

− η
α1

t2
+ 2ζ

α1

t3

)
.

(39)
From eqs. (17), (18), (28), (29) and (38) the skewness parameters are given by

δ = γ =
(k − 1)[α1t − t(α1t + α2)2(m + 3)]

(k + 2)[ξt(α1 + α2t)2 − ηα1t + 2ζα1]
. (40)

From eqs. (18), (28), (29) and (38) we get the EoS parameter in the model as

ω = −
[
t(α1 + α2t)2[6(2m + 9) + m2(k + 2)2(2 − w)] − 2α1t(k + 2)[m(k + 2) + 6]

6(k + 2)2[ξt(α1 + α2t)2 − ηα1t + 2ζα1]

]
. (41)

5 Physical discussion of the results

The above results facilitate the discussion of the physical behavior of the model (29). It may be observed that the
spatial volume increases with time. This confirms the spatial expansion of the universe. It can be seen that the above
physical parameters like θ, σ2 and H of the model diverse at initial epoch, i.e., at t = 0 while all of them converges to
α2 as t approaches infinity. It may also be noted that when k = 1, the anisotropy parameter vanishes and the model
becomes isotropic and shear free at late times.

The behaviour of the BD scalar field φ versus cosmic time is shown in fig. 1. It can be seen that this scalar field
increases with time for all three values of m. Hence the corresponding kinetic energy of the model decreases and
approaches to zero with the passage of time. In fig. 2, we have plotted the MHRDE and matter energy densities
in terms of cosmic time t. It is observed that both energy densities are positive throughout the evolution, attain a
constant value at the present epoch and vanish in the future. Also, we observe that the energy density of MHRDE ρΛ

is almost not affected by the BD scalar field φ. But the energy density of matter increases with the BD scalar field
and has no effect in the present epoch. Figure 3 represents the behaviour of the skewness parameter with cosmic time
t for different values of m. It is observed the skewness parameter is always positive and vanishes for k = 1. We also
observed that the skewness parameter increases as the BD scalar field increases.

The EoS parameter for m = 0.01, 0.11, 0.21 with respect to cosmic time t is shown in fig. 4. Also, the constants
a0 = 1, φ0 = 15, k = 0.98, ξ = 1.5, η = 0.5 and ζ = 0.01 have been taken such that the energy densities remain positive
throughout the evolution. It is observed that the EoS parameter of our MHRDE model is a decreasing function of
time and later on it attains a constant value. As the BD scalar field φ increases the EoS parameter ω moves towards
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Fig. 2. Plot of energy densities versus time t for k = 0.98, a0 = 1, φ0 = 15, α1 = 0.66, α2 = 0.06, ξ = 1.5, η = 0.5 and ζ = 0.01.

Fig. 3. Plot of skewness parameters versus time t for k = 0.98, a0 = 1, φ0 = 15, α1 = 0.66, α2 = 0.06, ξ = 1.5, η = 0.5 and
ζ = 0.01.

Fig. 4. Plot of the EoS parameter versus time t for k = 0.98, a0 = 1, φ0 = 15, α1 = 0.66, α2 = 0.06, ξ = 1.5, η = 0.5 and
ζ = 0.01.

a lower quintessence region. It can be seen that at the very early stages of the universe the EoS parameter ω > 0. In
this case the EoS parameter of our MHRDE model may be playing an important role to represent the earlier standard
matter-dominated era (i.e., the deceleration phase) of the universe. Again, it is found that at some particular point
of time, the EoS parameter becomes zero (dust-dominated universe). After that, the EoS of MHRDE enters into the
negative region and attains a constant value in the quintessence region (−1 < ω < −1/3) for all values of m, leading to
an accelerated expansion phase. It is worthwhile to mention here that the EoS parameter of our MHRDE model in BD
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Fig. 5. Plot of the deceleration parameter versus time t for α1 = 0.66 and α2 = 0.06.

Fig. 6. The evolution of the MHRDE model in the j-q plane for α1 = 0.66 and α2 = 0.06.

scalar-tensor theory corresponds to the quintessence era of the universe which is a favourable sign to the scalar-field
conjecture. The work of Sarkar [55,56] on Bianchi-type-I and -V interacting DE models of the universe with variable
deceleration parameter also supports the behaviour of the EoS parameter of our model. Das and Sultana [57] have
studied the Bianchi-type-VI0 MHRDE model in general relativity with sign-changeable interaction and obtained a
similar result from an analysis of the EoS parameter. Rao and Prasanthi [44] have discussed Bianchi-type-I and -III
MHRDE models in Saez-Ballester scalar-tensor theory of gravitation, and they have obtained a model which starts
the evolution from the phantom region and ultimately reaches the quintessence region. Also, Mishra et al. [58] found a
quite similar result from the analysis of the EoS parameter in their study of Bianchi-type-V string cosmological model
with anisotropic distribution of DE. It can be observed that the behaviour of the MHRDE model obtained, here, is in
good agreement with the current observational data [59–61].

Figure 5 depicts the variation of the deceleration parameter with respect to cosmic time t. It can be seen that
the deceleration parameter is a decreasing function of time, and varies in both positive and negative regions. Modern
observational data [62] indicates that the universe is accelerating and the value of the deceleration parameter lies
within the range −1 < q < 0. In our MHRDE model the constants α1 = 0.66 and α2 = 0.06 have been chosen so that
there is a smooth transition of the model from early deceleration to late time acceleration.

Figure 6 shows the evolution of our MHRDE model in the j-q plane. Here, the blue and green dots represent the
fixed points {j, q} = {1,−1} and {j, q} = {1, 0.5} for Steady State (SS) and standard cold dark matter (SCDM)
models, respectively. The dotted line at j = 1 explains the time evolution of the ΛCDM model. It can be seen from
the j-q trajectory that there is a sign change in the deceleration parameter (q), i.e., from positive to negative in
the quintessence region. Our MHRDE model starts from the SCDM model and approaches to the SS model at late
times. It can also be observed from the j-q trajectory that our MHRDE model in BD theory exhibits almost similar
behaviour like the quintessence scalar field model [63,64], which approaches asymptotically to the ΛCDM model at
late times.
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6 Final remarks

The main motive of this paper is to discuss the behavior of the modified holographic Ricci dark energy model in
axially symmetric anisotropic Bianchi-type space-time within the framework of Brans-Dicke scalar-tensor theory of
gravitation. We have presented a deterministic cosmological model by solving the field equations of BD theory in
the presence of matter and anisotropic MHRDE using hybrid expansion law for the scale factor of the universe. The
dynamical parameters of the MHRDE model are determined and their physical interpretation is presented through a
graphical representation, and summarized them in the following.

The BD scalar-field increases with cosmic time t (fig. 1). The energy densities of matter and MHRDE are positive
decreasing functions of cosmic time and satisfy the null energy condition, i.e., ρM ≥ 0 and ρΛ ≥ 0 (fig. 2). The
skewness parameter is always positive, increases with the increase in BD scalar field and also vanishes for k = 1.
The EoS parameter of our MHRDE model starts in the matter-dominated (ω > −1/3) region at the early epoch,
crosses dust dominated era (ω = 0) of the universe and ultimately attains a constant value in the quintessence region
(−1 < ω < −1/3). Also, it is observed that the EoS parameter never crosses the phantom divided line (ω = −1) and
hence we have a quintessence model. But at late times it approaches to the ΛCDM model (ω = −1) (fig. 4). This
behaviour of the EoS parameter is in good agreement with the recent observational data [57–59]. We observe that
there is a phase transition of our universe from the early deceleration to the present acceleration, since the deceleration
parameter is time-dependent and exhibits a signature change from positive to negative (fig. 5). In our model, the jerk
parameter is also a function of cosmic time t. The trajectory of the j-q plane is plotted to discriminate our MHRDE
model with the existing DE models. It is observed that the j-q trajectory starts from SCDM model at an early
time and approaches to the SS model at the later epoch. We noticed that the j-q trajectory of our MHRDE model
exhibits a similar behaviour of quintessence model [63,64]. It is interesting to mention, here, that our results of the
EoS parameter and the j-q trajectory favour the quintessence behaviour of the model. This type of behaviour of the
MHRDE model favours the scalar-field hypothesis. Also, it is observed, from the above results, that our MHRDE
model approaches the ΛCDM model at late times since ω → −1 and (j, q) = (1,−1).

A very interesting feature of our model is the following: usually, in the discussion of DE models we obtain the
quintessence (−1 < ω < −1/3) or ΛCDM(ω = −1) models. But, in our case, it can be observed from the j-q and EoS
trajectories that we are obtaining both the quintessence model in the present epoch and the ΛCDM model at late
times.

The authors are very much grateful to the reviewer for their constructive comments which certainly improved the quality and
presentation of the paper.
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